Home Assignment 2: Fairness and Petri Nets

To hand in before or on February 17, 2013.

	28	29	30	31			
ary			\bigcirc		1	2	3
rue	4	5	6	7	8	9	10
February	11	12	13	14	15	16	(17)

Electronic versions (PDF only) can be sent by email to \langle schmitz@lsv.ens-cachan.fr \rangle , paper versions should be handed in on the 17th or put in my mailbox at LSV, ENS Cachan.

The following formula will be applied to late assignments: g - 3d + 1, where $0 \le g \le 20$ is the original grade and d > 0 is the number of days of delay, rounded up onward from the 13th at midnight.

This assignment is concerned with *fairness* in Petri nets. Fairness properties are employed to rule out behaviours where a process might wait indefinitely before being activated.

The numbers in the margins next to exercises are indications of time and difficulty.

1 The Fairness Fragment

We restrict ourselves to a fragment TL(AP, GF) where the only temporal modality is GF (sometimes also written \widetilde{F}), i.e. with syntax

$$\varphi ::= p \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{GF}\,\varphi$$

where p ranges over AP.

Let us consider the case of state-based LTL model-checking for Petri nets. In this framework, we are checking infinite sequences of markings of a Petri net $\mathcal{N} = \langle P, T, W, m_0 \rangle$, i.e. infinite sequences $m_0 m_1 \cdots m_i \cdots$ in $(\mathbb{N}^P)^{\omega}$ such that, for all i in \mathbb{N} , $m_i \to_{\mathcal{N}} m_{i+1}$ is a transition step of \mathcal{N} according to some t in T, thus verifying for all p in P that $m_i(p) \geq W(p, t)$ and $m_{i+1}(p) = m_i(p) - W(p, t) + W(t, p)$. More generally, the effect $\Delta(u)$ of a transition sequence u in T^* is defined by $\Delta(\varepsilon) = 0^P$ and $\Delta(ut) = \Delta(u) - W(P, t) + W(t, P)$.

The atomic propositions in AP $\subseteq P$ represent places, and are interpreted over such a sequence by $m_i \models p$ iff $m_i(p) > 0$. Put differently, a Petri net \mathcal{N} gives rise to an infinite Kripke structure $\mathfrak{M}_{\mathcal{N}} = \langle \mathbb{N}^P, \to_{\mathcal{N}}, \{m_0\}, \operatorname{AP}, \ell \rangle$ where $\ell(m) = \{p \in \operatorname{AP} \mid m(p) > 0\}$.

Recall (from TD 6, Exercise 3) that the model-checking problem for state-based TL(AP, X, U) is undecidable in general and PSPACE-complete for safe nets. In the following we restrict ourselves to the model-checking problem for *ordinary* Petri nets, which verify $W(t, p) \leq 1$ and $W(p, t) \leq 1$ for all p in P and t in T (note that this does *not* imply that the net is safe).

- [4] **Exercise 1** (Fairness in Petri Nets). Let \mathcal{N} be an ordinary Petri net, m a marking in $\{0,1\}^P$, and t be a transition in T. Reduce the following problems to $\mathrm{MC}^{\exists}(\mathrm{AP},\mathsf{GF})$ model-checking instances on an ordinary Petri net \mathcal{N}' :
 - repeated coverability (RC^{\exists}): there exists an infinite execution where *m* is covered infinitely often, i.e. such that $m_i \geq m$ for an infinite number of indices *i*,
 - weak fairness (WF^{\forall}): every infinite execution either fires t infinitely often, or t is infinitely often not firable,
 - strong fairness (SF^{\forall}): in every infinite execution, if t is firable infinitely often, then it is actually fired infinitely often.

One can also consider the existential questions WF^{\exists} or SF^{\exists} , which ask whether there *exist* some fair infinite execution. We will see in sections 2 and 3 that RC^{\exists} and WF^{\exists} are decidable.

It turns out that SF^{\exists} is not decidable. Because the proof of this result is a bit involved, we rather look at a decidable case:

Exercise 2 (Strong Fairness in Safe Nets). We consider the SF^{\exists} problem when the Petri net \mathcal{N} is known to be *safe*, i.e. verifying $m(p) \leq 1$ for all reachable m and all places p in P.

[3]

Show that SF^{\exists} is PSPACE-complete when \mathcal{N} is safe. *Hint: For hardness, reduce from reachability in safe nets.*

2 Repeated Coverability

We show in this section that RC^{\exists} is decidable, relying for this on the properties of the coverability graph seen during TD 7.

Exercise 3 (Decidability). We prove in this exercise that repeated coverability is decidable. Let \mathcal{N} be Petri net, G be its coverability graph and m some marking in \mathbb{N}^{P} .

[4]

Show that there exists an infinite computation s.t. $m \leq m_i$ for infinitely many indices i iff there exists an accessible loop $m' \xrightarrow{v}_G m'$ in G s.t. $m \leq m'$ and $\Delta(v) \geq 0^P$. Conclude. *Hint: Use Exercise 2 from TD 7.*

Exercise 4 (Action-Based LTL). Recall from Exercise 3 of TD 6 that *action-based* LTL considers *labeled* Petri nets $\langle \mathcal{N}, \lambda \rangle$ where λ is a labelling from T to 2^{AP} . The model-checking problem then considers the infinite sequences $\lambda(t_1)\lambda(t_2)\cdots$ of transition labels along an execution $m_0 \xrightarrow{t_1}_{\mathcal{N}} m_1 \xrightarrow{t_2}_{\mathcal{N}} m_2 \cdots$; alternatively, we can consider the Kripke

structure associated with \mathcal{N} to be $\mathfrak{M}^{\lambda}_{\mathcal{N}} = \langle \mathbb{N}^{P} \times T, T', I, \ell \rangle$ where $T' = \{((m, t), (m', t')) \mid m \xrightarrow{t}_{\mathcal{N}} m' \wedge m' \geq W(P, t')\}, I = \{m_0\} \times \{t \in T \mid m_0 \geq W(P, t)\}, \text{ and } \ell(m, t) = \lambda(t).$ [3] Show that action-based LTL model-checking is decidable for labeled Petri nets.

3 Weak Fairness

We examine in this section the relationship between the existential weak fairness problem WF^{\exists} and the *reachability problem* (RP) in Petri nets: given a Petri net \mathcal{N} and a marking m in \mathbb{N}^{P} , does there exist a finite run $m_{0} \rightarrow_{\mathcal{N}}^{*} m$? This problem is known to be decidable [3, 1, 2], although its exact complexity is still open.

Exercise 5 (Lower Bounds). We want to exhibit a reduction from RP to WF^{\exists} .

- [2] 1. Show that RP can be reduced to the following problem: given a Petri net \mathcal{N} and a place p, does there exist a reachable marking m (i.e. verifying $m_0 \to_{\mathcal{N}}^* m$) such that m(p) = 0?
- [3] 2. Show that RP can be reduced to WF^{\exists} .

Exercise 6 (Decidability). We want to show that WF^{\exists} is decidable. Let us first concentrate on the subcase where there exists an infinite execution where t is infinitely often *not* firable.

- [1] 1. Reduce this case to the question whether there exists a place p in P and an execution $m_0 \to_N^* m \to_N^+ m'$ with $m \le m'$ and m(p) = m'(p) = 0.
- [2] 2. Reduce the previous question to an instance of the reachability problem.
- [2] 3. Deduce that WF^{\exists} is decidable.

References

- S. R. Kosaraju. Decidability of reachability in vector addition systems. In STOC'82, pages 267–281. ACM Press, 1982. doi: 10.1145/800070.802201.
- J. Leroux. Vector addition system reachability problem: a short self-contained proof. In POPL 2011, pages 307–316. ACM Press, 2011. doi: 10.1145/1926385.1926421.
- [3] E. W. Mayr. An algorithm for the general Petri net reachability problem. In STOC'81, pages 238–246. ACM Press, 1981. doi: 10.1145/800076.802477.