
MPRI 1-22 Introduction to Verification October 24, 2012

Home Assignment 1:
Alternation-Free µ-Calculus

To hand in before or on November 7, 2012.
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Electronic versions (PDF only) can be sent by email to 〈schmitz@lsv.ens-cachan.fr〉,
paper versions should be handed in on the 7th or put in my mailbox at LSV, ENS

Cachan.

This assignment is concerned with the µ-calculus, which can be seen as an extension
of CTL with fixed point computations. We consider the model-checking problem for the
alternation-free fragment and show that it can be solved in linear time (in the product
of the sizes of the model and of the formula).

The numbers in the margins next to exercises are indications of time and difficulty.

1 Modal µ-Calculus

1.1 Definitions and Basic Properties

Syntax. In addition to the usual set AP of atomic propositions, we also employ a
countable set of variables X . A µ-calculus formula is a term ϕ defined by the abstract
syntax

ϕ ::= > | p | x | ¬ϕ | ϕ ∨ ϕ | ♦ϕ | µx.ϕ (µ-formulæ)

where p ranges over AP and x over X . A formula that does not use any “µx.ϕ” operator
is called a modal formula, while a formula of the form µx.ϕ is called a least fixed-point
(lfp) formula, where x is bound by the µ operator. The notions of free variables FV(ϕ)
of ϕ and of closed formulæ are defined as usual. An lfp formula µx.ϕ is well-formed if
and only if x is in FV(ϕ) and appears only positively in ϕ, i.e. under the scope of an
even number of negations. We only consider well-formed formulæ in the following.

The syntax can be extended with dual operators: ⊥ def
= ¬>, ϕ ∧ ψ def

= ¬(¬ϕ ∨ ¬ψ),

�ϕ
def
= ¬♦¬ϕ, and νx.ϕ

def
= ¬(µx.(¬ϕ[x/¬x])) where ¬x is substituted for x in ϕ (this

ensures that x also appears positively in ¬(ϕ[x/¬x])). Unsurprisingly, a µ-formula of
form νx.ϕ is called a greatest fixed-point (gfp) formula.
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Semantics. Given a Kripke structure M = 〈S, T, I,AP, `〉—where as in the lectures S
is a set of states, T ⊆ S×S is a transition relation, I ⊆ S is a set of initial states, and `
is a labeling function from S to 2AP—and a valuation v from FV(ϕ) to 2S , a µ-calculus
formula ϕ defines a satisfiability set JϕKv ⊆ S by induction over the structure of ϕ:

J>Kv
def
= S ,

JpKv
def
= {s ∈ S | p ∈ `(s)} ,

JxKv
def
= v(x) ,

J¬ϕKv
def
= S \ JϕKv ,

Jϕ ∨ ψKv
def
= JϕKv ∪ JψKv ,

J♦ϕKv
def
= T−1(JϕKv) ,

Jµx.ϕKv
def
=

⋂
{X ⊆ S | X ⊇ JϕKv[x 7→X]} .

If ϕ is a closed formula and s a state of a structure M, then M satisfies ϕ in s, written
M, s |= ϕ, if s ∈ JϕK (using the empty valuation).

Exercise 1 (Example). Consider the Kripke structure below with AP
def
= {p}:

q0

∅
q1

{p}

What are the satisfiability sets of the formulæ �p, νy.p∧�y, and µx.νy.((p∧�y)∨♦x)?[2]

Hint: Detail your computations: for instance, what is J¬p ∨ ♦yK[y 7→Y ] depending on
Y ⊆ {q0, q1}?

Exercise 2 (Fixed-Point Semantics). Another viewpoint on the semantics is that, as
both satisfiability sets of formulæ and valuations of variables ranges over 2S , one can see
the semantics of a modal formula ϕ(x) with a free variable x as a function f : 2S → 2S :

if v is a valuation of FV(ϕ) \ {x}, f(X)
def
= JϕKv[x 7→X]. We focus here on a modal for-

mula appearing inside a fixed-point formula µx.ϕ(x) or νx.ϕ(x), i.e. the well-formedness
restriction applies.

1. Show that this function f is monotonic for the inclusion ordering over 2S .[1]

2. Justify that f has a both a least and a greatest fixed-point verifying Jµx.ϕKv = lfp f[1]

and Jνx.ϕKv = gfp f . Hint: use the Knaster-Tarski Theorem; what is the name of
a set X verifying X ⊇ f(X)?

3. Show that, if S is a finite set of cardinal n, then fn(∅) = lfp f and fn(S) = gfp f .[1]
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1.2 Alternation

Thanks to the dualities, any µ-formula can be put in negative normal form (nnf):

ϕ ::= > | ⊥ | p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ

A µ-formula ϕ in nnf is alternation free if, for all lfp subformulæ µx.ψ of ϕ, if νy.ψ′ is a
direct (i.e. not under the scope of another binding operator) gfp subformula of ψ, then
x 6∈ FV(ψ′), and conversely, for all gfp subformulæ νx.ψ of ϕ, if µy.ψ′ is a direct lfp
subformula of ψ, then x 6∈ FV(ψ′). For instance, µx.(νy.p∧�y)∨♦x is alternation-free,
but µx.νy.((p ∧�y) ∨ ♦x) is not.

Exercise 3 (CTL). We want to prove that, for any CTL formula ϕ, there exists an
equivalent closed alternation-free µ-formula ϕ′, where equivalence means that for any
Kripke structure M and state s, M, s |= ϕ if and only if M, s |= ϕ′.

1. Show that, if ϕ ≡ ϕ′, then EXϕ ≡ ♦ϕ′.[1]

2. Show that, if ϕ ≡ ϕ′, then EFϕ ≡ µx.ϕ′ ∨ ♦x.[2]

3. Complete the proof.[3]

2 Model-Checking for the Alternation-Free Fragment

Given a total and finite Kripke structure M = 〈S, T, I,AP, `〉—totality means that
T (s) 6= ∅ for all s in S—and a closed alternation-free µ-formula ϕ, we want to compute
JϕK in time O(|M| · |ϕ|). This generalizes the linear-time algorithm seen in class for CTL.

The idea in the following exercise is to define a deduction system working over pairs
(s, ψ) where s is a state of M and ψ a subformula of ϕ, s.t. a pair (s, ψ) can be deduced
in the system if and only if M, s |= ψ.

In order to avoid confusions, we assume that each variable x bound by a µx.ϕ or
νx.ϕ operator is written with a subscript xϕ. This amounts to having distinct variable
names for each occurrence of a µ or ν operator, and then an occurrence of a variable xϕ
denotes unambiguously an occurrence of x bound by µx.ϕ. For instance, the formula
µx.(µx.p ∨ ♦x) ∨ ♦x would be rewritten as µxϕ.(µxψ.p ∨ ♦xψ) ∨ ♦xϕ where ϕ denotes
(µxψ.p∨♦xψ)∨♦xϕ) and ψ denotes p∨♦xψ—do not let the recursivity bother you, this
is just a convenient notation.

Exercise 4 (LFP of a Modal Formula). We begin with a particular case of an alternation-
free closed formula, where it is of the form µxϕ.ϕ with ϕ a modal formula—i.e. without
fixed point operators.
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Given M and ϕ, we construct the following deduction system Dµ over S × Sub(ϕ):

(s, p)
p ∈ `(s)

(s,¬p)
p 6∈ `(s) (APµ)

(s, ϕ)

(s, xϕ)
(Xµ)

(s, ψ)

(s, ψ ∨ ψ′)
(s, ψ′)

(s, ψ ∨ ψ′)
(∨µ)

(s, ψ) (s, ψ′)

(s, ψ ∧ ψ′)
(∧µ)

(s′, ψ)

(s,♦ψ)
s′ ∈ T (s) (♦µ)

(s1, ψ) (s2, ψ) . . . (sm, ψ)

(s,�ψ)
{s1, . . . , sm} = T (s) (�µ)

1. Show that Dµ is sound, i.e. that if (s, ϕ) can be deduced, then M, s |= µxϕ.ϕ.[2]

2. Show that Dµ is complete, i.e. that if M, s |= µxϕ.ϕ, then (s, ϕ) can be deduced.[2]

3. Explain why Dµ can be used to compute Jµxϕ.ϕKv in time linear in the product of[1]

the sizes of M and ϕ. Hint: This is a consequence of a well-known result.

Exercise 5 (General Case). Let us now turn to the full model-checking algorithm:

1. Define a sound and complete “anti-”deduction system Dν for model-checking for-[2]

mulæ of the form νxϕ.ϕ where ϕ is a modal formula: (s, ϕ) can be deduced in Dν

if and only if M, s 6|= νxϕ.ϕ.

2. Complete the proof: add rules for lfp and gfp subformulæ, and provide an algorithm[5]

in time O(|M| · |ϕ|) for the model-checking problem.
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