Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory
Part I: Basics of WQO Theory

Sylvain Schmitz & Philippe Schnoebelen
LSV, CNRS & ENS Cachan

Lecture notes & exercices available at http://tinyurl.com/esslllil2wqo
MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo’s) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. *NB:* they can be seen as a version of well-founded orderings with more flexibility.

- In program verification, wqo’s are prominent in well-structured transition systems (WSTS’s), a generic framework for infinite-state systems with good decidability properties.

- Analysing the complexity of wqo-based algorithms is still one of the dark arts . . .

- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the complexity analysis of wqo-based algorithms.
MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo’s) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. **NB**: they can be seen as a version of well-founded orderings with more flexibility.

- In program verification, wqo’s are prominent in well-structured transition systems (WSTS’s), a generic framework for infinite-state systems with good decidability properties.

- Analysing the complexity of wqo-based algorithms is still one of the dark arts . . .

- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the complexity analysis of wqo-based algorithms.
OUTLINE OF THE COURSE

- (This) Lecture 1 = **Basics of Wqo’s.** Rather basic material: explaining and illustrating the definition of wqo’s. Building new wqo’s from simpler ones.

- Lecture 2 = **Algorithmic Applications of Wqo’s.** Well-Structured Transition Systems, Program Termination, Relevance Logic, etc.

- Lecture 3 = **Complexity Classes for Wqo’s.** Fast-growing complexity. Working with subrecursive hierarchies.

- Lecture 4 = **Proving Complexity Lower Bounds.** Simulating fast-growing functions with weak/unreliable computation models.

- Lecture 5 = **Proving Complexity Upper Bounds.** Bounding the length of bad sequences (for Dickson’s and Higman’s Lemmas).
Recalls) Ordered Sets

Def. A non-empty \((X, \leq)\) is a quasi-ordering (qo) \(\text{def} \leq\) is a reflexive and transitive relation.

\(\approx\) a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent

Examples. \((\mathbb{N}, \leq)\), also \((\mathbb{R}, \leq)\), \((\mathbb{N} \cup \{\omega\}, \leq)\), \ldots

divisibility: \((\mathbb{Z}, _ | _)\) where \(x | y \text{def} \exists a : a.x = y\)
tuples: \((\mathbb{N}^3, \leq_{\text{prod}})\), or simply \((\mathbb{N}^3, \leq_x)\), where \((0,1,2) <_x (10,1,5)\) and \((1,2,3) \#_x (3,1,2)\).
words: \((\Sigma^*, \leq_{\text{pref}})\) for some alphabet \(\Sigma = \{a,b,\ldots\}\) and \(ab <_{\text{pref}} abba\).
\((\Sigma^*, \leq_{\text{lex}})\) with e.g. \(abba \leq_{\text{lex}} abc\) (NB: this assumes \(\Sigma\) is linearly ordered: \(a < b < c\))
\((\Sigma^*, \leq_{\text{subword}})\), or simply \((\Sigma^*, \leq)\), with \(aba \leq baabbaa\).
(Recalls) Ordered Sets

Def. A non-empty \((X, \leq)\) is a quasi-ordering (qo) \(\overset{\text{def}}{\iff}\ \leq\) is a reflexive and transitive relation.

(≈ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. \((\mathbb{N}, \leq)\), also \((\mathbb{R}, \leq)\), \((\mathbb{N} \cup \{\omega\}, \leq)\), . . .

divisibility: \((\mathbb{Z}, _ \mid _)\) where \(x \mid y \overset{\text{def}}{\iff} \exists a : a.x = y\)

tuples: \((\mathbb{N}^3, \leq_{\text{prod}})\), or simply \((\mathbb{N}^3, \leq_{\times})\), where \((0,1,2) <_{\times} (10,1,5)\) and \((1,2,3) \#_{\times} (3,1,2)\).

words: \((\Sigma^*, \leq_{\text{pref}})\) for some alphabet \(\Sigma = \{a,b,\ldots\}\) and \(ab <_{\text{pref}} abba\).

\((\Sigma^*, \leq_{\text{lex}})\) with e.g. \(abba \leq_{\text{lex}} abc\) (NB: this assumes \(\Sigma\) is linearly ordered: \(a < b < c\))

\((\Sigma^*, \leq_{\text{subword}})\), or simply \((\Sigma^*, \leq_{*})\), with \(aba \leq_{*} baabbaa\).
(Recalls) Ordered Sets

Def. A non-empty \((X, \leq)\) is a quasi-ordering (qo) \(\overset{def}{\Rightarrow} \leq\) is a reflexive and transitive relation.

\((\approx\) a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. \((\mathbb{N}, \leq),\) also \((\mathbb{R}, \leq),\) \((\mathbb{N} \cup \{\omega\}, \leq),\) \ldots

divisibility: \((\mathbb{Z}, _- | _-)\) where \(x | y \overset{def}{\Leftrightarrow} \exists a : a.x = y\)

tuples: \((\mathbb{N}^3, \leq_{prod}),\) or simply \((\mathbb{N}^3, \leq_{\times}),\) where \((0,1,2) <_{\times} (10,1,5)\) and \((1,2,3) \#_{\times} (3,1,2)\).

words: \((\Sigma^*, \leq_{pref})\) for some alphabet \(\Sigma = \{a,b,\ldots\}\) and \(ab \leq_{pref} abba.\)

\((\Sigma^*, \leq_{lex})\) with e.g. \(abba \leq_{lex} abc\) (NB: this assumes \(\Sigma\) is linearly ordered: \(a < b < c\))

\((\Sigma^*, \leq_{subword}),\) or simply \((\Sigma^*, \leq_{*}),\) with \(aba \leq_{*} baabbaa.\)
(Recalls) Ordered Sets

Def. A non-empty \((X, \leq)\) is a quasi-ordering (qo) \(\equiv \leq\) is a reflexive and transitive relation.

\((\sim\) a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent\)

Examples. \((\mathbb{N}, \leq), \) also \((\mathbb{R}, \leq), (\mathbb{N} \cup \{\omega\}, \leq), \ldots\)

divisibility: \((\mathbb{Z}, \mid \mid)\) where \(x \mid y \equiv \exists a : a.x = y\)

tuples: \((\mathbb{N}^3, \leq_{\text{prod}}), \) or simply \((\mathbb{N}^3, \leq_{\times}),\) where \((0,1,2) \prec \times (10,1,5)\)

and \((1,2,3) \# \times (3,1,2).\)

words: \((\Sigma^*, \leq_{\text{pref})\) for some alphabet \(\Sigma = \{a, b, \ldots\}\) and \(ab \prec_{\text{pref}} abba.\)

\((\Sigma^*, \leq_{\text{lex})\) with e.g. \(abba \leq_{\text{lex}} abc\) (NB: this assumes \(\Sigma\) is linearly ordered: \(a < b < c)\)

\((\Sigma^*, \leq_{\text{subword})\), or simply \((\Sigma^*, \leq_{*})\), with \(aba \leq_{*} baabbaa.\)
Def. A non-empty \((X, \leq)\) is a **quasi-ordering** (qo) \(\overset{\text{def}}{\iff} \leq\) is a reflexive and transitive relation.

(\(\approx\) a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. \((\mathbb{N}, \leq)\), also \((\mathbb{R}, \leq)\), \((\mathbb{N} \cup \{\omega\}, \leq)\), \ldots

divisibility: \((\mathbb{Z}, -| -)\) where \(x \mid y \overset{\text{def}}{\iff} \exists a : a.x = y\)
tuples: \((\mathbb{N}^3, \leq_{\text{prod}})\), or simply \((\mathbb{N}^3, \leq_{\times})\), where \((0,1,2) \lessdot_{\times} (10,1,5)\)
and \((1,2,3) \lessdot_{\times} (3,1,2)\).

words: \((\Sigma^*, \leq_{\text{pref}})\) for some alphabet \(\Sigma = \{a,b,\ldots\}\) and \(ab <_{\text{pref}} abba\).

\((\Sigma^*, \leq_{\text{lex}})\) with e.g. \(abba \lessdot_{\text{lex}} abc\) (NB: this assumes \(\Sigma\) is linearly ordered: \(a < b < c\))

\((\Sigma^*, \leq_{\text{subword}})\), or simply \((\Sigma^*, \leq_{\ast})\), with \(aba \lessdot_{\ast} baabbaa\).
Recalls Ordered Sets

Def. \((X, \leq)\) is **linear** if for any \(x, y \in X\) either \(x \leq y\) or \(y \leq x\). (I.e., there is no \(x \# y\).)

Def. \((X, \leq)\) is **well-founded** if there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \cdots\)

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq_x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_\ast)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recalls Ordered Sets

Def. \((X, \leq)\) is **linear** if for any \(x, y \in X\) either \(x \leq y\) or \(y \leq x\). (I.e., there is no \(x \# y\).)

Def. \((X, \leq)\) is **well-founded** if there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \cdots\)

<table>
<thead>
<tr>
<th></th>
<th>Linear?</th>
<th>Well-founded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{Z}, \mid)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^, \leq_{})</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
Recalls) Ordered Sets

Def. \((X, \leq)\) is linear if for any \(x, y \in X\) either \(x \leq y\) or \(y \leq x\). (i.e., there is no \(x \neq y\).)

Def. \((X, \leq)\) is well-founded if there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \cdots\)

<table>
<thead>
<tr>
<th>(X, \leq)</th>
<th>linear?</th>
<th>well-founded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td>)</td>
<td>×</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq_\times)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_\ast)</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
Well-Quasi-Ordering (WQO)

Def1. (X, \leq) is a wqo \iff any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some $i < j$.

Def2. (X, \leq) is a wqo \iff any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots$

Def3. (X, \leq) is a wqo \iff there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leq) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say “(X, \leq) has no infinite antichain”—.

Fact. These three definitions are equivalent. Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.

Recall Infinite Ramsey Theorem: “Let X be some countably infinite set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour.”
Well-quasi-ordering (WQO)

Def1. \((X, \leq)\) is a wqo \(\iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an increasing pair: \(x_i \leq x_j\) for some \(i < j\).

Def2. \((X, \leq)\) is a wqo \(\iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an infinite increasing subsequence: \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots\)

Def3. \((X, \leq)\) is a wqo \(\iff\) there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \ldots\) —i.e., \((X, \leq)\) is well-founded— and no infinite set \(\{x_0, x_1, x_2, \ldots\}\) of mutually incomparable elements \(x_i \not\leq x_j\) when \(i \neq j\) —we say “\((X, \leq)\) has no infinite antichain”—.

Fact. These three definitions are equivalent.
Clearly, Def2 \(\Rightarrow\) Def1 and Def1 \(\Rightarrow\) Def3 (think contrapositively). But the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: “Let \(X\) be some countably infinite set and colour the elements of \(X^{(n)}\) (the subsets of \(X\) of size \(n\)) in \(c\) different colours. Then there exists some infinite subset \(M\) of \(X\) s.t. the size \(n\) subsets of \(M\) all have the same colour.”
WELL-QUASI-ORDERING (WQO)

Def1. \((X, \leq)\) is a wqo \(\text{def} \iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an increasing pair: \(x_i \leq x_j\) for some \(i < j\).

Def2. \((X, \leq)\) is a wqo \(\text{def} \iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an infinite increasing subsequence: \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots\)

Def3. \((X, \leq)\) is a wqo \(\text{def} \iff\) there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \ldots\) —i.e., \((X, \leq)\) is well-founded— and no infinite set \(\{x_0, x_1, x_2, \ldots\}\) of mutually incomparable elements \(x_i \# x_j\) when \(i \neq j\) —we say “\((X, \leq)\) has no infinite antichain”—.

Fact. These three definitions are equivalent. Clearly, Def2 \(\Rightarrow\) Def1 and Def1 \(\Rightarrow\) Def3 (think contrapositively). But the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: “Let \(X\) be some countably infinite set and colour the elements of \(X^{(n)}\) (the subsets of \(X\) of size \(n\)) in \(c\) different colours. Then there exists some infinite subset \(M\) of \(X\) s.t. the size \(n\) subsets of \(M\) all have the same colour.”
Well-Quasi-Ordering (WQO)

Def1. \((X, \leq)\) is a wqo \(\text{def} \iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an increasing pair: \(x_i \leq x_j\) for some \(i < j\).

Def2. \((X, \leq)\) is a wqo \(\text{def} \iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an infinite increasing subsequence: \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots\)

Def3. \((X, \leq)\) is a wqo \(\text{def} \iff\) there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \ldots\) —i.e., \((X, \leq)\) is well-founded— and no infinite set \(\{x_0, x_1, x_2, \ldots\}\) of mutually incomparable elements \(x_i \# x_j\) when \(i \neq j\) —we say “\((X, \leq)\) has no infinite antichain”—.

Fact. These three definitions are equivalent. Clearly, Def2 \(\Rightarrow\) Def1 and Def1 \(\Rightarrow\) Def3 (think contrapositively). But the reverse implications are non-trivial.

Recall Infinite Ramsey Theorem: “Let \(X\) be some countably infinite set and colour the elements of \(X^{(n)}\) (the subsets of \(X\) of size \(n\)) in \(c\) different colours. Then there exists some infinite subset \(M\) of \(X\) s.t. the size \(n\) subsets of \(M\) all have the same colour.”
WELL-QUASI-ORDERING (WQO)

Def1. \((X, \leq)\) is a wqo \(\iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an increasing pair: \(x_i \leq x_j\) for some \(i < j\).

Def2. \((X, \leq)\) is a wqo \(\iff\) any infinite sequence \(x_0, x_1, x_2, \ldots\) contains an infinite increasing subsequence: \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots\)

Def3. \((X, \leq)\) is a wqo \(\iff\) there is no infinite strictly decreasing sequence \(x_0 > x_1 > x_2 > \ldots\) —i.e., \((X, \leq)\) is well-founded— and no infinite set \(\{x_0, x_1, x_2, \ldots\}\) of mutually incomparable elements \(x_i \# x_j\) when \(i \neq j\) —we say “\((X, \leq)\) has no infinite antichain”—.

Fact. These three definitions are equivalent.

Clearly, Def2 \(\Rightarrow\) Def1 and Def1 \(\Rightarrow\) Def3 (think contrapositively). But the reverse implications are non-trivial.

Recall **Infinite Ramsey Theorem:** “Let \(X\) be some countably infinite set and colour the elements of \(X^{(n)}\) (the subsets of \(X\) of size \(n\)) in \(c\) different colours. Then there exists some infinite subset \(M\) of \(X\) s.t. the size \(n\) subsets of \(M\) all have the same colour.”
Spot the WQO’s

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td>)</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq \times)</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^, \leq^)</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Spot the wqo’s

<table>
<thead>
<tr>
<th>Set</th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td>)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq_{\times})</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\ast})</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Spot the wqo’s

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq_x)</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^, \leq_)</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

More generally

Fact. For linear qo’s: well-founded ⇔ wqo.

Cor. Any ordinal is wqo.
Spot the WQO’s

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z}, \mid)</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq \times)</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq \text{pref})</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq \text{lex})</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^, \leq_)</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

\((\mathbb{Z}, \mid) \): The prime numbers \(\{2, 3, 5, 7, 11, \ldots\} \) are an infinite antichain.
Spot the wqo’s

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td></td>
<td>✓</td>
<td>√</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq\times)</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\ast})</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

More generally

(Generalized) Dickson’s lemma. If \((X_1, \leq_1), \ldots, (X_n, \leq_n)\)’s are wqo’s, then \(\prod_{i=1}^n X_i, \leq_{\times}\) is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite Ramsey Theorem.

(Usual) Dickson’s Lemma. \((\mathbb{N}^k, \leq_{\times})\) is wqo for any \(k\).
Spot the WQO's

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{N} \cup { \omega }, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✓</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\ast})</td>
<td>x</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

\((\Sigma^*, \leq_{\text{pref}})\) has an infinite antichain

\(bb, bab, baab, baaab, \ldots\)

\((\Sigma^*, \leq_{\text{lex}})\) is not well-founded:

\(b >_{\text{lex}} ab >_{\text{lex}} aab >_{\text{lex}} aaab >_{\text{lex}} \ldots\)
Spot the wqo’s

<table>
<thead>
<tr>
<th></th>
<th>linear?</th>
<th>well-founded?</th>
<th>wqo?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \leq)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>(\mathbb{Z},</td>
<td>x</td>
<td>✔️</td>
<td>x</td>
</tr>
<tr>
<td>(\mathbb{N} \cup {\omega}, \leq)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>(\mathbb{N}^3, \leq\times)</td>
<td>x</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{pref}})</td>
<td>x</td>
<td>✔️</td>
<td>x</td>
</tr>
<tr>
<td>(\Sigma^*, \leq_{\text{lex}})</td>
<td>✔️</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(\Sigma^, \leq_)</td>
<td>x</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

\((\Sigma^*, \leq_*)\) is wqo by Higman’s Lemma (see next slide).

We can get some feeling by trying to build a bad sequence, i.e., some \(w_0, w_1, w_2, \ldots\) without an increasing pair \(w_i \leq_* w_j\).
Higman’s Lemma

Def. The sequence extension of a qo \((X, \leq)\) is the qo \((X^*, \leq_*)\) of finite sequences over \(X\) ordered by embedding:

\[
w = x_1 \ldots x_n \leq_* y_1 \ldots y_m = v \iff x_1 \leq y_{l_1} \land \ldots \land x_n \leq y_{l_n}
\]

for some \(1 \leq l_1 < l_2 < \ldots < l_n \leq m\)

\[
\iff w \leq_\times v' \text{ for a length-}n \text{ subsequence } v' \text{ of } v
\]

Higman’s Lemma. \((X^*, \leq_*)\) is a wqo iff \((X, \leq)\) is.

With \((\Sigma^*, \leq_*)\), we are considering the sequence extension of \((\Sigma, =)\) which is finite, hence necessarily wqo.

Later we’ll consider the sequence extension of more complex wqo’s, e.g., \(\mathbb{N}^2\):

\[
\begin{array}{ccc}
0 & 2 & 0 \\
1 & 0 & 2
\end{array}
\leq_* ?
\begin{array}{ccc}
2 & 0 & 0 \\
2 & 2 & 0
\end{array}
\leq_\times
\begin{array}{ccc}
2 & 2 & 0 \\
0 & 1
\end{array}
\]
Higman’s Lemma

Def. The sequence extension of a qo \((X, \leq)\) is the qo \((X^*, \leq^*)\) of finite sequences over \(X\) ordered by embedding:

\[
w = x_1 \ldots x_n \leq^* y_1 \ldots y_m = v \iff x_1 \leq y_{l_1} \land \ldots \land x_n \leq y_{l_n} \text{ for some } 1 \leq l_1 < l_2 < \ldots < l_n \leq m\]

\[
\iff w \leq^* v' \text{ for a length-}n \text{ subsequence } v' \text{ of } v
\]

Higman’s Lemma. \((X^*, \leq^*)\) is a wqo iff \((X, \leq)\) is.

With \((\Sigma^*, \leq^*)\), we are considering the sequence extension of \((\Sigma, =)\) which is finite, hence necessarily wqo.

Later we’ll consider the sequence extension of more complex wqo’s, e.g., \(\mathbb{N}^2\):

\[
|0|2|0|2 \leq^*? |2|0|2|2|2|0|0|1
\]
Proof of Higman’s Lemma

Let \((X, \leq)\) be wqo and assume by way of contradiction that \((X^*, \leq_*)\) admits bad sequences (sequences with no increasing pairs).

Let \(w_0 \in X^*\) be the shortest word that can start a bad sequence.
Let \(w_1 \in X^*\) be the shortest word that can continue, i.e., such that there is a bad sequence starting with \(w_0, w_1\)
Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_i v_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots\)
It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).
But an increasing pair \(v_n \leq_* v_m\) leads to \(x_n v_n \leq_* x_m v_m\), i.e., \(w_n \leq_* w_m\), a contradiction.
Proof of Higman’s Lemma

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq^*) admits bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be the shortest word that can start a bad sequence.

Let $w_1 \in X^*$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_0, w_1.

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, \ldots$

Claim. S too is bad (easy with Def1)

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots$ (here we use Def2)

Now consider $S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots$

It cannot be bad (otherwise w_{n_0} would not have been shortest).

But an increasing pair $v_n \leq^* v_m$ leads to $x_n v_n \leq^* x_m v_m$, i.e., $w_n \leq^* w_m$, a contradiction.
Proof of Higman’s Lemma

Let \((X, \leq)\) be wqo and assume by way of contradiction that \((X^*, \leq^*)\) admits **bad** sequences (sequences with no increasing pairs).

Let \(w_0 \in X^*\) be the **shortest** word that can start a bad sequence.

Let \(w_1 \in X^*\) be the **shortest word that can continue**, i.e., such that there is a bad sequence starting with \(w_0, w_1\).

Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_iv_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots\)

It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).

But an increasing pair \(v_n \leq^* v_m\) leads to \(x_nv_n \leq^* x_mv_m\), i.e., \(w_n \leq^* w_m\), a contradiction.
PROOF OF HIGMAN’S LEMMA

Let \((X, \leq)\) be wqo and assume by way of contradiction that \((X^*, \leq_*)\) admits bad sequences (sequences with no increasing pairs).
Let \(w_0 \in X^*\) be the shortest word that can start a bad sequence.
Let \(w_1 \in X^*\) be the shortest word that can continue, i.e., such that there is a bad sequence starting with \(w_0, w_1\)
Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_i v_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots\)
It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).
But an increasing pair \(v_n \leq_* v_m\) leads to \(x_n v_n \leq_* x_m v_m\), i.e., \(w_n \leq_* w_m\), a contradiction.
Proof of Higman’s Lemma

Let \((X, \leq)\) be wqo and assume by way of contradiction that \((X^*, \leq_*)\) admits bad sequences (sequences with no increasing pairs).

Let \(w_0 \in X^*\) be the shortest word that can start a bad sequence.

Let \(w_1 \in X^*\) be the shortest word that can continue, i.e., such that there is a bad sequence starting with \(w_0, w_1\).

Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_i v_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots\)

It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).

But an increasing pair \(v_n \preceq_* v_m\) leads to \(x_n v_n \preceq_* x_m v_m\), i.e., \(w_n \preceq_* w_m\), a contradiction.
Proof of Higman’s Lemma

Let \((X, \leq)\) be wqo and assume by way of contradiction that \((X^*, \leq^*)\) admits bad sequences (sequences with no increasing pairs).

Let \(w_0 \in X^*\) be the shortest word that can start a bad sequence.

Let \(w_1 \in X^*\) be the shortest word that can continue, i.e., such that there is a bad sequence starting with \(w_0, w_1\).

Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_i v_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \ldots\)

It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).

But an increasing pair \(v_n \leq v_m\) leads to \(x_n v_n \leq x_m v_m\), i.e., \(w_n \leq w_m\), a contradiction.
Proof of Higman’s Lemma

Let \((X, \preceq)\) be wqo and assume by way of contradiction that \((X^*, \preceq_*)\) admits bad sequences (sequences with no increasing pairs).
Let \(w_0 \in X^*\) be the shortest word that can start a bad sequence.
Let \(w_1 \in X^*\) be the shortest word that can continue, i.e., such that there is a bad sequence starting with \(w_0, w_1\)
Continue. This way we pick an infinite sequence \(S = w_0, w_1, w_2, w_3, \ldots\)

Claim. \(S\) too is bad (easy with Def1)

Write \(w_i\) under the form \(w_i = x_i v_i\). Since \(X\) is wqo, there is an infinite increasing sequence \(x_{n_0} \preceq x_{n_1} \preceq x_{n_2} \preceq \cdots\) (here we use Def2)

Now consider \(S' \overset{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, v_{n_0}, v_1, v_2, \ldots\)

It cannot be bad (otherwise \(w_{n_0}\) would not have been shortest).
But an increasing pair \(v_n \preceq_* v_m\) leads to \(x_n v_n \preceq_* x_m v_m\), i.e., \(w_n \preceq_* w_m\), a contradiction.
MORE WQO’S

- Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)
Proof of Kruskal’s Tree Theorem

Let \((X, \leq)\) be wqo and assume, b.w.o.c., that \((T(X), \sqsubseteq)\) is not wqo.

We pick a “minimal” bad sequence \(S = t_0, t_1, t_2, \ldots\) —Def1

Write every \(t_i\) under the form \(t_i = f_i(u_{i,1}, \ldots, u_{i,k_i})\).

Claim. The set \(U = \{u_{i,j}\}\) of the immediate subterms is wqo.
(Indeed, an infinite bad sequence \(u_{i_0,j_0}, u_{i_1,j_1}, \ldots\) could be used to show that \(t_{i_0}\) was not shortest).

Since \(U\) is wqo, and using Higman’s Lemma on \(U^*\), there is some
\((u_{n_1,1}, \ldots, u_{n_1,k_{n_1}}) \leq^* (u_{n_2,1}, \ldots, u_{n_2,k_{n_2}}) \leq^* (u_{n_3,1}, \ldots, u_{n_3,k_{n_3}}) \leq^* \cdots\) —Def2

Further extracting some \(f_{n_{i_1}} \leq f_{n_{i_2}} \leq \cdots\) exhibits an infinite increasing subsequence \(t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots\) in \(S\), a contradiction.
PROOF OF KRUSKAL’S TREE THEOREM

Let \((X, \leq)\) be wqo and assume, b.w.o.c., that \((T(X), \sqsubseteq)\) is not wqo.

We pick a “minimal” bad sequence \(S = t_0, t_1, t_2, \ldots\) —Def1

Write every \(t_i\) under the form \(t_i = f_i(u_{i,1}, \ldots, u_{i,k_i})\).

Claim. The set \(U = \{u_{i,j}\}\) of the immediate subterms is wqo.
(Indeed, an infinite bad sequence \(u_{i_0,j_0}, u_{i_1,j_1}, \ldots\) could be used to show that \(t_{i_0}\) was not shortest).

Since \(U\) is wqo, and using Higman’s Lemma on \(U^*\), there is some
\((u_{n_1,1}, \ldots, u_{n_1,k_{n_1}}) \leq^* (u_{n_2,1}, \ldots, u_{n_2,k_{n_2}}) \leq^* (u_{n_3,1}, \ldots, u_{n_3,k_{n_3}}) \leq^* \cdots\) —Def2

Further extracting some \(f_{n_{i_1}} \leq f_{n_{i_2}} \leq \cdots\) exhibits an infinite increasing subsequence \(t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots\) in \(S\), a contradiction
PROOF OF KRUSKAL’S TREE THEOREM

Let \((X, \leq)\) be wqo and assume, b.w.o.c., that \((\mathcal{T}(X), \sqsubseteq)\) is not wqo.

We pick a “minimal” bad sequence \(S = t_0, t_1, t_2, \ldots\) —Def1

Write every \(t_i\) under the form \(t_i = f_i(u_{i,1}, \ldots, u_{i,k_i})\).

Claim. The set \(U = \{u_{i,j}\}\) of the immediate subterms is wqo.
(Indeed, an infinite bad sequence \(u_{i_0,j_0}, u_{i_1,j_1}, \ldots\) could be used to show that \(t_{i_0}\) was not shortest).

Since \(U\) is wqo, and using Higman’s Lemma on \(U^*\), there is some
\((u_{n_1,1}, \ldots, u_{n_1,k_{n_1}}) \leq^* (u_{n_2,1}, \ldots, u_{n_2,k_{n_2}}) \leq^* (u_{n_3,1}, \ldots, u_{n_3,k_{n_3}}) \leq^* \cdots\) —Def2

Further extracting some \(f_{n_1} \leq f_{n_2} \leq \cdots\) exhibits an infinite increasing subsequence \(t_{n_1} \sqsubseteq t_{n_2} \sqsubseteq \cdots\) in \(S\), a contradiction
MORE WQO’S

- Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)

 ![Tree Diagram]

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

 \[C_n \leq_{\text{minor}} K_n \text{ and } C_n \leq_{\text{minor}} C_{n+1} \]

- \((X^{\omega}, \leq_*)\) for \(X\) linear wqo.

- \((\mathcal{P}_f(X), \sqsubseteq_H)\) for \(X\) wqo, where

 \[U \sqsubseteq_H V \overset{\text{def}}{\iff} \forall x \in U : \exists y \in V : x \leq y \]
MORE WQO’S

- Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

\[C_n \leq_{\text{minor}} K_n \text{ and } C_n \leq_{\text{minor}} C_{n+1} \]

- \((X^\omega, \leq^*)\) for \(X\) linear wqo.

- \((\mathcal{P}_f(X), \sqsubseteq_H)\) for \(X\) wqo, where

\[U \sqsubseteq_H V \overset{\text{def}}{\iff} \forall x \in U : \exists y \in V : x \leq y \]
MORE WQO’S

- Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

\[C_n \leq_{\text{minor}} K_n \text{ and } C_n \leq_{\text{minor}} C_{n+1} \]

- \((X^\omega, \leq_*)\) for \(X\) linear wqo.

- \((\mathcal{P}_f(X), \sqsubseteq_H)\) for \(X\) wqo, where

\[U \sqsubseteq_H V \iff \forall x \in U : \exists y \in V : x \leq y \]
MORE WQO’S

- Finite Trees ordered by embeddings (Kruskal’s Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

\[C_n \leq_{\text{minor}} K_n \text{ and } C_n \leq_{\text{minor}} C_{n+1} \]

- \((X^\omega, \leq_*)\) for \(X\) linear wqo.

- \((\mathcal{P}_f(X), \sqsubseteq_H)\) for \(X\) wqo, where

\[U \sqsubseteq_H V \iff \forall x \in U : \exists y \in V : x \leq y \]
FINITE-BASES CHARACTERIZATION

Defn. \((X, \leq)\) is a \(wqo\) if every non-empty subset \(V\) of \(X\) has at least one and at most finitely many (non-equivalent) minimal elements.

Say \(V \subseteq X\) is \text{upward-closed} if \(x \geq y \in V\) implies \(x \in V\). (There is a similar notion of \text{downward-closed} sets).

For \(B \subseteq X\), the \text{upward-closure} \(\uparrow B\) of \(B\) is \(\{x \mid x \geq b \text{ for some } b \in B\}\).

Note that \(\uparrow (\bigcup_i B_i) = \bigcup_i \uparrow B_i\), and that \(V\) is \text{upward-closed} iff \(V = \uparrow V\).

Cor1. Any \text{upward-closed} \(U \subseteq X\) has a \text{finite basis}, i.e., \(U\) is some \(\uparrow \{m_1, \ldots, m_k\}\).

Cor2. Any \text{downward-closed} \(V \subseteq X\) can be defined by a finite set of excluded minors:

\[x \in V \iff m_1 \not\preceq x \land \cdots \land m_k \not\preceq x \]
FINITE-BASIS CHARACTERIZATION

Defn. (X, \leq) is a wqo \iff every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is **upward-closed** if $x \geq y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the **upward-closure** $\uparrow B$ of B is $\{x \mid x \geq b \text{ for some } b \in B\}$.

Note that $\uparrow (\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a **finite basis**, i.e., U is some $\uparrow \{m_1, \ldots, m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \iff m_1 \not\preceq x \land \cdots \land m_k \not\preceq x$$
FINITE-BASIS CHARACTERIZATION

Defn. \((X, \leq)\) is a wqo \(\overset{\text{def}}{\iff}\) every non-empty subset \(V\) of \(X\) has at least one and at most finitely many (non-equivalent) minimal elements.

Say \(V \subseteq X\) is **upward-closed** if \(x \geq y \in V\) implies \(x \in V\). (There is a similar notion of downward-closed sets).

For \(B \subseteq X\), the **upward-closure** \(\uparrow B\) of \(B\) is \(\{x \mid x \geq b \text{ for some } b \in B\}\). Note that \(\uparrow (\bigcup_i B_i) = \bigcup_i \uparrow B_i\), and that \(V\) is upward-closed iff \(V = \uparrow V\).

Cor1. Any upward-closed \(U \subseteq X\) has a **finite basis**, i.e., \(U\) is some \(\uparrow\{m_1, \ldots, m_k\}\).

Cor2. Any downward-closed \(V \subseteq X\) can be defined by a finite set of excluded minors:

\[
x \in V \iff m_1 \not\leq x \land \cdots \land m_k \not\leq x
\]

E.g, **Kuratowski Theorem**: a graph is planar iff it does not contain \(K_5\) or \(K_{3,3}\).

Gives polynomial-time characterization of closed sets.
FINITE-BASIS CHARACTERIZATION

Defn. \((X, \leq)\) is a wqo \(\text{def} \) every non-empty subset \(V\) of \(X\) has at least one and at most finitely many (non-equivalent) minimal elements.

Say \(V \subseteq X\) is **upward-closed** if \(x \geq y \in V\) implies \(x \in V\). (There is a similar notion of downward-closed sets).

For \(B \subseteq X\), the **upward-closure** \(\uparrow B\) of \(B\) is \(\{x \mid x \geq b \text{ for some } b \in B\}\). Note that \(\uparrow (\bigcup_i B_i) = \bigcup_i \uparrow B_i\), and that \(V\) is upward-closed iff \(V = \uparrow V\).

Cor1. Any upward-closed \(U \subseteq X\) has a **finite basis**, i.e., \(U\) is some \(\uparrow \{m_1, \ldots, m_k\}\).

Cor2. Any downward-closed \(V \subseteq X\) can be defined by a finite set of excluded minors:

\[
x \in V \iff m_1 \not\succeq x \land \cdots \land m_k \not\succeq x
\]

Cor3. Any sequence \(\uparrow V_0 \subseteq \uparrow V_1 \subseteq \uparrow V_2 \subseteq \cdots\) of upward-closed subsets converges in finite-time: \(\exists m : (\bigcup_i \uparrow V_i) = \uparrow V_m = \uparrow V_{m+1} = \cdots\)
Beyond wqo’s

For \((X, \leq)\), we consider \((\mathcal{P}(X), \subseteq_S)\) defined with

\[
U \subseteq_S V \iff \forall y \in V : \exists x \in U : x \leq y \quad (\iff \uparrow U \supseteq \uparrow V)
\]

Fact. \(\mathcal{P}(X)\) is well-founded iff \(X\) is wqo

---Defn’

NB. \(X\) well-founded \(\not\Rightarrow\) \(\mathcal{P}(X)\) well-founded

Question. Does \(X\) wqo \(\Rightarrow\) \(\mathcal{P}(X)\) wqo? (Equivalently \(\mathcal{P}_f(X)\) wqo?)
Beyond WQO’s

For \((X, \leq)\), we consider \((\mathcal{P}(X), \subseteq_s)\) defined with

\[
U \subseteq_s V \iff \forall y \in V : \exists x \in U : x \leq y
\]

\(\iff \uparrow U \supseteq \uparrow V\)

Fact. \(\mathcal{P}(X)\) is well-founded iff \(X\) is wqo

NB. \(X\) well-founded \(\not\Rightarrow\) \(\mathcal{P}(X)\) well-founded

Question. Does \(X\) wqo \(\Rightarrow\) \(\mathcal{P}(X)\) wqo? (Equivalently \(\mathcal{P}_f(X)\) wqo?)
Beyond wqo’s

For \((X, \leq)\), we consider \((\mathcal{P}(X), \subseteq_S)\) defined with

\[
U \subseteq_S V \iff \forall y \in V : \exists x \in U : x \leq y \quad (\text{def} \iff \uparrow U \supseteq \uparrow V)
\]

Fact. \(\mathcal{P}(X)\) is well-founded iff \(X\) is wqo

NB. \(X\) well-founded \(\not\Rightarrow\) \(\mathcal{P}(X)\) well-founded

Question. Does \(X\) wqo \(\Rightarrow\) \(\mathcal{P}(X)\) wqo? (Equivalently \(\mathcal{P}_f(X)\) wqo?)
BEYOND WQO’S

For \((X, \leq)\), we consider \((\mathcal{P}(X), \subseteq_S)\) defined with

\[
U \subseteq_S V \iff \forall y \in V : \exists x \in U : x \leq y \quad (\text{def} \iff \uparrow U \supseteq \uparrow V)
\]

Fact. \(\mathcal{P}(X)\) is well-founded iff \(X\) is wqo —Defn’

NB. \(X\) well-founded \(\not\Rightarrow\) \(\mathcal{P}(X)\) well-founded

Question. Does \(X\) wqo \(\Rightarrow\) \(\mathcal{P}(X)\) wqo? (Equivalently \(\mathcal{P}_f(X)\) wqo?)

\[
X \overset{\text{def}}{=} \{(a, b) \in \mathbb{N}^2 | a < b\}
\]

\[(a, b) < (a', b') \overset{\text{def}}{\iff} \begin{cases} a = a' \text{ and } b < b' \\ \text{or } b < a' \end{cases} \]

Fact. \((X, \leq)\) is WQO
BEYOND WQO’S

For \((X, \leq)\), we consider \((\mathcal{P}(X), \subseteq_S)\) defined with

\[U \subseteq_S V \iff \forall y \in V : \exists x \in U : x \leq y \quad (\iff \uparrow U \supseteq \uparrow V) \]

Fact. \(\mathcal{P}(X)\) is well-founded iff \(X\) is wqo

---Defn’

NB. \(X\) well-founded \(\not\Rightarrow\) \(\mathcal{P}(X)\) well-founded

Question. Does \(X\) wqo \(\Rightarrow\) \(\mathcal{P}(X)\) wqo? (Equivalently \(\mathcal{P}_f(X)\) wqo?)

Thm. 1. \((\mathcal{P}_f(X), \subseteq_S)\) is not wqo: rows are incomparable

Thm. 2. \((\mathcal{P}(Y), \subseteq_S)\) is wqo iff \(Y\) does not contain \(X\)