TD 9: Partial Order Reductions

1 Ample Sets

Exercise 1 (Ample Sets). Consider the following transition system with state set $S = \{s_0, \ldots, s_7\}$ and transition alphabet $\Delta = \{a, b, c, d\}$:

1. Compute the independence set $I \subseteq \Delta^2$.
2. What is the set of invisible actions $U \subseteq \Delta$?
3. Propose an assignment $\text{red} : S \to 2^\Delta$ of ample sets satisfying conditions C_0–C_3 of the lecture notes.
4. Propose a stutter-equivalent system with a reduced set of states.

Exercise 2 (Alternate conditions).

1. Consider the alternate condition C'_1: for any s with $\text{red}(s) \neq \text{en}(s)$, any a in $\text{red}(s)$ is independent from every b in $\text{en}(s) \setminus \text{red}(s)$. Show that C_1 implies C'_1. Does the converse implication hold? Hint: consider the following system with $\text{red}: s_0 \mapsto \{a\}$, $s_2 \mapsto \{b\}$, and $s_3 \mapsto \{d\}$.
2. Consider the alternate condition C_3': any cycle in \mathcal{K}' contains at least one state s with $\text{red}(s) = \text{en}(s)$. Show that C_0-C_2 and C_3' together imply C_3. Do C_0-C_3 together imply C_3'?

2 CTL(∪) Model Checking

Exercise 3 (C_0-C_3 are not Sufficient). Consider the following system with $\Delta = \{a, b, c, d\}$:

1. Let $\text{red}(s_0) = \{b, c\}$ and $\text{red}(s) = \text{en}(s)$ for $s \neq s_0$; show that this ample set assignment is compatible with C_0-C_3.

2. Exhibit a CTL(∪) formula that distinguishes between the original system and its reduction.

3. Can you propose an assignment that also complies with C_4: if $\text{red}(s) \neq \text{en}(s)$, then $|\text{red}(s)| = 1$?

3 Nested DFS

Partial order reduction using ample sets is especially suited for on-the-fly algorithms for the emptiness of Büchi automata. The usual, linear-time algorithm for this task uses a
nested depth-first search.

Recall a DFS-based algorithm for cycle detection from a given state \(s \in S \) in a finite directed graph \((Q, T)\), with a global variable \(V \subseteq Q \) for the set of already visited vertices:

1. \(\text{found} \leftarrow \text{false} \) /* no cycle found yet */
2. \(P \leftarrow s \) /* a stack \(P \in Q^* \) of vertices to process */
3. \(V \leftarrow V \cup \{s\} \) /* the set of visited vertices */
4. repeat
5. \(s' \leftarrow \text{top}(P) \)
6. if \(s \in T(s') \) then
7. \(\text{found} \leftarrow \text{true} \)
8. else
9. if \(T(s') \setminus V \neq \emptyset \) then
10. \(s'' \leftarrow \text{some}(T(s') \setminus V) \) /* some vertex accessible from \(s' \) */
11. \(\text{push}(s'', P) \)
12. \(V \leftarrow V \cup \{s''\} \)
13. else
14. \(\text{pop}(P) \)
15. until \(P = \varepsilon \lor \text{found} \)
16. return \(\text{found} \)

Algorithm 1: \(\text{Cycle}(s) \)

One way to use this algorithm for Büchi automata emptiness is to first find the accepting states \(s \) in \(F \) of the automaton \(B = \langle Q, \Sigma, \delta, I, F \rangle \) that are reachable from \(I \) (also by an external DFS), and then call \(\text{Cycle}(s) \) with \(V = \emptyset \) for each such state—a quadratic time algorithm. The next exercise refines this approach:

Exercise 4 (Nested DFS). The idea of the nested DFS algorithm is to avoid states from previous cycle searches in later searches—hence the global \(V \) in \(\text{Cycle} \). Consider the following external DFS \(\text{ACycle} \) that uses a set of visited states \(U \), and calls \(\text{Cycle} \) on reachable accepting states \(s' \) of \(B \) once their reachable states have been processed (see line 12).

1. Consider a call to \(\text{ACycle}(s_0) \) with empty initial \(U \) and \(V \). Assume there exists a call to \(\text{Cycle}(s) \) performed by \(\text{ACycle} \) such that, before the call,

 \[
 \text{there is a cycle } q_0q_1\cdots q_k, \ q_0 = s = q_k \land \exists i, \ q_i \in V; \quad (\dagger)
 \]

 without loss of generality assume that \(s \) is the first state s.t. \((\dagger)\) occurs. Note that there has to be \(s' \in Q \) s.t. \(\text{Cycle}(s') \) was invoked before \(\text{Cycle}(s) \) and \(q_i \) was visited and added to \(V \) during this call to \(\text{Cycle}(s') \).

 (a) Consider the two cases: \(s \) was visited (i.e. pushed on \(P' \)) before or after \(s' \) in the run of \(\text{ACycle} \), and derive a contradiction in both cases.
1. \(P' \leftarrow s \) /* a stack \(P' \in Q^* \) of vertices to process */
2. \(U \leftarrow U \cup \{s\} \) /* the set of visited vertices */
3. repeat
4. \(s' \leftarrow \text{top}(P') \)
5. if \(T(s') \setminus U \neq \emptyset \) then
6. \(s'' \leftarrow \text{some}(T(s') \setminus U) \) /* some vertex accessible from \(s' \) */
7. \(\text{push}(s'', P') \)
8. \(U \leftarrow U \cup \{s''\} \)
9. else
10. \(\text{pop}(P') \) /* all the successors of \(s' \) have been processed */
11. if \(s' \in F \) then
12. \(\text{found} \leftarrow \text{Cycle}(s') \) /* call \text{Cycle} on \(s' \) */
13. until \(P' = \varepsilon \lor \text{found} \)

Algorithm 2: ACycle(s)

(b) Why does ACycle succeeds in finding acceptance cycles from \(s_0 \)?

2. Provide the missing invocation context for ACycle to solve Büchi automata emptiness.

3. Show that the algorithm works in linear time.

Exercise 5 (Ample Sets in Nested DFS).

1. Assume you are given ample sets for each reachable state (i.e. you can call \(\text{red}(s) \) for any reachable state \(s \) and obtain the ample set for \(s \)). Adapt the nested DFS algorithm to only explore the reduced system.

2. Assume now that you are only provided with a \(\text{red}'(s) \) function that provides ample sets verifying \(C_0 \sim C_2 \), but not necessarily \(C_3 \). Adapt your algorithm to enforce \(C_3' \) on the fly.