TD 9: Partial Order Reductions

1 Ample Sets

Exercise 1 (Ample Sets). Consider the following transition system with state set $S = \{s_0, \ldots, s_7\}$ and transition alphabet $\Delta = \{a, b, c, d\}$:

- 1. Compute the independence set $I \subseteq \Delta^2$.
- 2. What is the set of invisible actions $U \subseteq \Delta$?
- 3. Propose an assignment $red: S \to 2^{\Delta}$ of ample sets satisfying conditions C_0-C_3 of the lecture notes.
- 4. Propose a stutter-equivalent system with a reduced set of states.

Exercise 2 (Alternate conditions).

Consider the alternate condition C'₁: for any s with red(s) ≠ en(s), any a in red(s) is independent from every b in en(s)\red(s). Show that C₁ implies C'₁. Does the converse implication hold? Hint: consider the following system with red: s₀ → {a}, s₂ → {b}, and s₃ → {d}.

2. Consider the alternate condition C'_3 : any cycle in \mathcal{K}' contains at least one state s with red(s) = en(s). Show that C_0-C_2 and C'_3 together imply C_3 . Do C_0-C_3 together imply C'_3 ?

2 CTL(U) Model Checking

Exercise 3 (C_0 – C_3 are not Sufficient). Consider the following system with $\Delta = \{a, b, c, d\}$:

- 1. Let $red(s_0) = \{b, c\}$ and red(s) = en(s) for $s \neq s_0$; show that this ample set assignment is compatible with C_0-C_3 .
- 2. Exhibit a CTL(U) formula that distinguishes between the original system and its reduction.
- 3. Can you propose an assignment that also complies with C_4 : if $red(s) \neq en(s)$, then |red(s)| = 1?

3 Nested DFS

Partial order reduction using ample sets is especially suited for on-the-fly algorithms for the emptiness of Büchi automata. The usual, linear-time algorithm for this task uses a nested depth-first search.

Recall a DFS-based algorithm for cycle detection from a given state $s \in S$ in a finite directed graph (Q, T), with a global variable $V \subseteq Q$ for the set of already visited vertices:

/* no cycle found yet */ 1 found \leftarrow false **2** $P \leftarrow s$ /* a stack $P \in Q^*$ of vertices to process */ **3** $V \leftarrow V \cup \{s\}$ /* the set of visited vertices */ 4 repeat $s' \leftarrow top(P)$ $\mathbf{5}$ if $s \in T(s')$ then 6 7 found \leftarrow true 8 else if $T(s') \setminus V \neq \emptyset$ then 9 $s'' \leftarrow some(T(s') \setminus V)$ /* some vertice accessible from s' */ 10 push(s'', P)11 $V \leftarrow V \cup \{s''\}$ 12else13 pop(P)14 15 until $P = \varepsilon \lor found$ 16 return found

Algorithm 1: CYCLE(s)

One way to use this algorithm for Büchi automata emptiness is to first find the accepting states s in F of the automaton $\mathcal{B} = \langle Q, \Sigma, \delta, I, F \rangle$ that are reachable from I (also by an *external* DFS), and then call CYCLE(s) with $V = \emptyset$ for each such state—a quadratic time algorithm. The next exercise refines this approach:

Exercise 4 (Nested DFS). The idea of the nested DFS algorithm is to avoid states from previous cycle searches in later searches—hence the global V in CYCLE. Consider the following external DFS ACYCLE that uses a set of visited states U, and calls CYCLE on reachable accepting states s' of \mathcal{B} once their reachable states have been processed (see line 12).

1. Consider a call to $ACYCLE(s_0)$ with empty initial U and V. Assume there exists a call to CYCLE(s) performed by ACYCLE such that, before the call,

there is a cycle
$$q_0q_1 \cdots q_k, q_0 = s = q_k \land \exists i, q_i \in V$$
; (†)

without loss of generality assume that s is the first state s.t. (†) occurs. Note that there has to be $s' \in Q$ s.t. CYCLE(s') was invoked before CYCLE(s) and q_i was visited and added to V during this call to CYCLE(s').

(a) Consider the two cases: s was visited (i.e. pushed on P') before or after s' in the run of ACYCLE, and derive a contradiction in both cases.

1 $P' \leftarrow s$ /* a stack $P' \in Q^*$ of vertices to process */ 2 $U \leftarrow U \cup \{s\}$ /* the set of visited vertices */ 3 repeat $s' \leftarrow top(P')$ 4 if $T(s') \setminus U \neq \emptyset$ then $\mathbf{5}$ $s'' \leftarrow some(T(s') \setminus U)$ /* some vertice accessible from s^\prime */ 6 push(s'', P')7 $U \leftarrow U \cup \{s''\}$ 8 else 9 /* all the successors of s' have been processed */ pop(P')10 if $s' \in F$ then 11 $found \leftarrow CYCLE(s')$ /* call CYCLE on s' */ $\mathbf{12}$ 13 until $P' = \varepsilon \lor found$

Algorithm 2: ACYCLE(s)

- (b) Why does ACYCLE succeeds in finding acceptance cycles from s_0 ?
- 2. Provide the missing invocation context for ACYCLE to solve Büchi automata emptiness.
- 3. Show that the algorithm works in linear time.

Exercise 5 (Ample Sets in Nested DFS).

- 1. Assume you are given ample sets for each reachable state (i.e. you can call red(s) for any reachable state s and obtain the ample set for s). Adapt the nested DFS algorithm to only explore the reduced system.
- 2. Assume now that you are only provided with a red'(s) function that provides ample sets verifying C_0-C_2 , but not necessarily C_3 . Adapt your algorithm to enforce C'_3 on the fly.