TD 8: Pushdown Systems

Exercise 1 (Regular Valuations). The course notes prove the decidability of LTL model checking with simple valuations $\nu: P \times \Gamma^{*} \rightarrow 2^{\text {AP }}$ satisfying $\nu(q Z \gamma)=\nu(q Z)$ for all q in P, Z in Γ and γ in Γ^{*}.

A regular valuation is defined through a collection of finite complete deterministic automata $\mathcal{A}_{p}=\left\langle Q_{p}, \Gamma \uplus P, \delta_{p}, q_{0, p}, F_{p}\right\rangle$ for each p in AP, s.t.

$$
\nu(q Z \gamma)=\left\{p \in \mathrm{AP} \mid \delta_{p}\left(q_{0, p}, \gamma^{R} Z q\right) \in F_{p}\right\}
$$

i.e. each \mathcal{A}_{p} is run bottom-to-top on the stack and pushdown state, and p holds if we reach a final state in F_{p}.

Show that the LTL model-checking problem with regular valuations for PDS can be reduced to the LTL model-checking problem with simple valuations.

Exercise 2 (CTL* Model Checking). Show that CTL* model checking with regular valuations can be reduced to LTL model checking with simple valuations.

Exercise 3 (Multi-Pushdown Systems). A n-dimensional multi-pushdown system is a tuple $\mathcal{M}=\left\langle P, \Gamma,\left(\Delta_{i}\right)_{0<i \leq n}\right\rangle$ where $n \geq 1$ is the number of stacks, P a finite set of states, Γ a finite stack alphabet, and each $\Delta_{i} \subseteq P \times \Gamma \times P \times \Gamma^{*}$ is a finite transition relation. A configuration of a n-MPDS is a tuple $c=\left(q, \gamma_{1}, \ldots, \gamma_{n}\right)$ in $P \times\left(\Gamma^{*}\right)^{n}$. The transition relation \Rightarrow on configurations is defined as $\Rightarrow=\bigcup_{0<i \leq n} \Rightarrow_{i}$, where

$$
\left(q, \gamma_{1}, \ldots, Z \gamma_{i}, \ldots, \gamma_{n}\right) \Rightarrow_{i}\left(q^{\prime}, \gamma_{1}, \ldots, \gamma_{i}^{\prime} \gamma_{i}, \ldots, \gamma_{n}\right)
$$

iff $q Z \hookrightarrow_{i} q^{\prime} \gamma_{i}^{\prime}$ is in Δ_{i}.

1. Show that the control state reachability problem, i.e. given an initial configuration c in $P \times \Gamma^{n}$ and a control state $p \in P$, whether there exist $\gamma_{1}, \ldots, \gamma_{n}$ s.t. $c \Rightarrow^{*}$ $\left(q, \gamma_{1}, \ldots, \gamma_{n}\right)$, is undecidable as soon as $n \geq 2$.
2. Let us consider a restriction on \Rightarrow^{*} : k-bounded runs between are defined as the k th iterates $c \rightarrow^{k} c^{\prime}$ of the relation

$$
c \rightarrow c^{\prime} \text { iff } \exists i . c \Rightarrow_{i}^{*} c^{\prime}
$$

i.e. a k-bounded run can be decomposed into k subruns where a single PDS is running.
Show that the k-bounded control-state reachability problem, i.e. given an initial configuration c in $P \times \Gamma^{n}$ and a control state $p \in P$, whether there exist $\gamma_{1}, \ldots, \gamma_{n}$ s.t. $c \rightarrow^{k}\left(q, \gamma_{1}, \ldots, \gamma_{n}\right)$, is decidable.

