TD 8: Pushdown Systems

Exercise 1 (Regular Valuations). The course notes prove the decidability of LTL model checking with *simple valuations* \(\nu : P \times \Gamma^* \rightarrow 2^{AP} \) satisfying \(\nu(qZ\gamma) = \nu(qZ) \) for all \(q \) in \(P \), \(Z \) in \(\Gamma \) and \(\gamma \) in \(\Gamma^* \).

A *regular valuation* is defined through a collection of finite complete deterministic automata \(A_p = \langle Q_p, \Gamma \sqcup P, \delta_p, q_{0,p}, F_p \rangle \) for each \(p \in AP \), s.t.

\[
\nu(qZ\gamma) = \{ p \in AP \mid \delta_p(q_{0,p}, \gamma^R Zq) \in F_p \},
\]

i.e. each \(A_p \) is run bottom-to-top on the stack and pushdown state, and \(p \) holds if we reach a final state in \(F_p \).

Show that the LTL model-checking problem with regular valuations for PDS can be reduced to the LTL model-checking problem with simple valuations.

Exercise 2 (CTL* Model Checking). Show that CTL* model checking with regular valuations can be reduced to LTL model checking with simple valuations.

Exercise 3 (Multi-Pushdown Systems). A \(n \)-dimensional *multi-pushdown system* is a tuple \(M = \langle P, \Gamma, (\Delta_i)_{0 \leq i \leq n} \rangle \) where \(n \geq 1 \) is the number of stacks, \(P \) a finite set of states, \(\Gamma \) a finite stack alphabet, and each \(\Delta_i \subseteq P \times \Gamma \times P \times \Gamma^* \) is a finite transition relation. A configuration of a \(n \)-MPDS is a tuple \(c = (q, \gamma_1, \ldots, \gamma_n) \) in \(P \times (\Gamma^*)^n \). The *transition* relation \(\Rightarrow \) on configurations is defined as \(\Rightarrow = \bigcup_{0 \leq i \leq n} \Rightarrow_i \), where

\[
(q, \gamma_1, \ldots, Z\gamma_i, \ldots, \gamma_n) \Rightarrow_i (q', \gamma_1, \ldots, \gamma'_i \gamma_i, \ldots, \gamma_n)
\]

iff \(qZ \hookrightarrow_i q' \gamma'_i \) is in \(\Delta_i \).

1. Show that the *control state reachability problem*, i.e. given an initial configuration \(c \) in \(P \times \Gamma^n \) and a control state \(p \in P \), whether there exist \(\gamma_1, \ldots, \gamma_n \) s.t. \(c \Rightarrow^* (q, \gamma_1, \ldots, \gamma_n) \), is undecidable as soon as \(n \geq 2 \).

2. Let us consider a restriction on \(\Rightarrow^* \): \(k \)-bounded runs between are defined as the \(k \)th iterates \(c \rightarrow^k c' \) of the relation

\[
c \rightarrow c' \text{ iff } \exists i.c \Rightarrow_i^* c'
\]

i.e. a \(k \)-bounded run can be decomposed into \(k \) subruns where a single PDS is running.

Show that the \(k \)-bounded control-state reachability problem, i.e. given an initial configuration \(c \) in \(P \times \Gamma^n \) and a control state \(p \in P \), whether there exist \(\gamma_1, \ldots, \gamma_n \) s.t. \(c \rightarrow^k (q, \gamma_1, \ldots, \gamma_n) \), is decidable.