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TD 6: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture
notes:

r

y

g

r → ry y → r

ry → g g → y

1. How can you correct this Petri net to avert unwanted behaviours (like r → ry → rr)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and

consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition t makes t firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p1 and t. A marking (0, 2, 1) allows to fire t to reach (0, 1, 2), but
(1, 1, 1) does not allow to fire t.
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p1

p2

p3

t

Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net N = 〈P, T, F,W,m0〉. We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in NP if
m(p) > 0.

The models of our LTL formulæ are computations m0m1 · · · in (NP )ω such that, for
all i ∈ N, mi →N mi+1 is a transition step of the Petri net N .

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Büchi automaton BN from a 1-safe Petri net that recognizes all
the infinite computations of N starting in m0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting
problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that Σ = 2AP, and a
labeled Petri net, with a labeling homomorphism λ : T → Σ. The models of our

LTL formulæ are infinite words a0a1 · · · in Σω such that m0
t0−→N m1

t1−→N m2 · · ·
is an execution of N and λ(ti) = ai for all i.

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

3 Unfoldings

Exercise 4 (Adequate Partial Orders). A partial order ≺ between events is adequate if
the three following conditions are verified:

(a) ≺ is well-founded,

(b) Ct ( Ct′ implies t ≺ t′, and
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(c) ≺ is preserved by finite extensions: as in the lecture notes, if t ≺ t′ and B(t) =
B(t′), and E and E′ are two isomorphic extensions of Ct and Ct′ with Cu = Ct⊕E
and Cu′ = Ct′ ⊕ E′, then u ≺ u′.

As you can guess, adequate partial orders result in complete unfoldings.

1. Show that ≺s defined by t ≺s t
′ iff |Ct| < |Ct′ | is adequate.

2. Construct the finite unfolding of the following Petri net using ≺s; how does the
size of this unfolding relate to the number of reachable markings?

p0

p1

p2

t1 t2

t3 t4

3. Suppose we define an arbitrary total order� on the transitions T of the Petri net,
i.e. they are t1 � · · · � tn. Given a set S of events and conditions of Q, ϕ(S) is
the sequence ti11 · · · tinn in T ∗ where ij is the number of events labeled by tj in S.
We also note � for the lexicographic order on T ∗.

Show that ≺e defined by t ≺e t
′ iff |Ct| < |Ct′ | or |Ct| = |Ct′ | and ϕ(Ct)� ϕ(Ct′)

is adequate. Construct the finite unfolding for the previous Petri net using ≺e.

4. There might still be examples where ≺e performs poorly. One solution would be
to use a total adequate order; why? Give a 1-safe Petri net that shows that ≺e is
not total.

4 Coverability Graphs

Exercise 5 (Dickson’s Lemma). A quasi-order (A,≤) is a set A endowed with a reflexive
and transitive ordering relation ≤. A well quasi order (wqo) is a quasi order (A,≤) s.t.,
for any infinite sequence a0a1 · · · in Aω, there exist indices i < j with ai ≤ aj .

1. Let (A,≤) be a wqo and B ⊆ A. Show that (B,≤) is a wqo.

2. Show that (N ] {ω},≤) is a wqo.

3. Let (A,≤) be a wqo. Show that any infinite sequence a0a1 · · · in Aω embeds an
infinite increasing subsequence ai0 ≤ ai1 ≤ ai2 ≤ · · · with i0 < i1 < i2 < · · · .
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4. Let (A,≤A) and (B,≤B) be two wqo’s. Show that the cartesian product (A×B,≤×),
where the product ordering is defined by (a, b) ≤× (a′, b′) iff a ≤A a′ and b ≤B b′,
is a wqo.

Exercise 6 (Coverability Graph). The coverability problem for Petri nets is the following
decision problem:

Instance: A Petri net N = 〈P, T, F,W,m0〉 and a marking m1 in NP .

Question: Does there exist m2 in reachN (m0) such that m1 ≤ m2?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSpace-
complete.

One way to decide the general coverability problem is to use Karp and Miller’s
coverability graph (see the lecture notes). Indeed, we have the equivalence between the
two statements:

i. there exists m2 in reachN (m0) such that m1 ≤ m2, and

ii. there exists m3 in CoverabilityGraphN (m0) such that m1 ≤ m3.

1. In order to prove that (i) implies (ii), we will prove a stronger statement: for a
marking m in (N]{ω})P , write Ω(m) = {p ∈ P | m(p) = ω} be the set of ω-places
of m.

Show that, if m0
u−→N m2 in the Petri net N for some u in T ∗, then there exists

m3 in (N] {ω})P such that m2(p) = m3(p) for all p in P \Ω(m3) and m0
u−→G m3

in the coverability graph.

2. Let us prove that (ii) implies (i). The idea is that we can find reachable markings
that agree with m3 on its finite places, and that can be made arbitrarily high on
its ω-places. For this, we need to identify the graph nodes where new ω values
were introduced, which we call ω-nodes.

(a) The threshold Θ(u) of a transition sequence u in T ∗ is the minimal marking
m in NP s.t. u is enabled from m. Show how to compute Θ(u). Show that
Θ(u · v) ≤ Θ(u) + Θ(v) for all u, v in T ∗.

(b) Recall that an ω value is introduced in the coverability graph thanks to Al-
gorithm 1.

Let {v1, . . . , v`} be the set of “v” sequences found on line 3 of the algorithm
that resulted in adding at least one ω value to m′ on line 5 during a single call
to AddOmegas(m,m′, V ) on line 8 of the CoverabilityGraph algorithm
from the course notes. Let w = v1 · · · v`. Show that, for any k in N, the
marking νk defined by

νk(p) =

{
m′(p) if p ∈ P \ Ω(m)

Θ(wk)(p) if p ∈ Ω(m)
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1 repeat
2 saved ← m′

3 foreach m′′ ∈ V s.t. ∃v ∈ T+,m′′
v−→G m do

4 if m′′ < m′ then
5 m′ ← m′ + ((m′ −m′′) · ω)
6 end

7 end

8 until saved = m′

9 return m′

Algorithm 1: AddOmegas(m,m′, V )

allows to fire wk. How does the marking ν ′k with νk
wk

−−→N ν ′k compare to νk?

(c) Prove that, if m0
u−→G m3 for some u in T ∗ in the coverability graph and m′

in NΩ(m3) is a partial marking on the places of Ω(m3), then there are

• n in N,

• a decomposition u = u1u2 · · ·un+1 with each ui in T ∗ (where the markings

µi reached by m
u1···ui−−−−→G µi for i ≤ n have new ω values),

• sequences w1, . . . , wn in T+,

• numbers k1, . . . , kn in N,

such that m0
u1w

k1
1 u2···unw

kn
n un+1−−−−−−−−−−−−−−→N m2 with m2(p) = m3(p) for all p in P \

Ω(m3) and m2(p) ≥ m′(p) for all p in Ω(m3).

Exercise 7 (Decidability of Model-checking Action-based LTL).

1. Let N be Petri net, G its coverability graph, and m some marking in NP . An
infinite computation is a sequence m0m1 · · · in (NP )ω where for all i ∈ N, mi →N
mi+1 is a transition step. The effect ∆(u) of a transition sequence u in T ∗ is
defined by ∆(ε) = 0P and ∆(ut) = ∆(u)−W (P, t) +W (t, P ).

Show that there exists an infinite computation s.t. m ≤ mi for infinitely many
indices i iff there exists an accessible loop m′

v−→G m′ in G s.t. m ≤ m′ and
∆(v) ≥ 0P .

2. Show that action-based LTL model-checking is decidable for labeled Petri nets.

Exercise 8 (Rackoff’s Algorithm). A rather severe issue with the coverability graph
construction is that it can generate a graph of Ackermannian size compared to that of
the original Petri net. We show here a much more decent ExpSpace upper bound,
which is matched by an ExpSpace hardness proof by Lipton.
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Let us fix a Petri net N = 〈P, T, F,W,m0〉. We consider generalized markings in ZP .
A generalized computation is a sequence µ1 · · ·µn in (ZP )∗ such that, for all 1 ≤ i < n,
there is a transition t in T with µi+1(p) = µi(p) −W (p, t) + W (t, p) for all p ∈ P (i.e.
we do not enforce enabling conditions). For a subset I of P , a generalized sequence is
I-admissible if furthermore µi(p) ≥ W (p, t) for all p in I at each step 1 ≤ i < n. For
a value B in N, it is I–B-bounded if furthermore µi(p) < B for all p in I at each step
1 ≤ i ≤ n. A generalized sequence is an I-covering for m1 if µ1 = m0 and µn(p) ≥ m1(p)
for all p in I.

Thus a computation is a P -admissible generalized computation, and a P -admissible
P -covering for m1 answers the coverability problem.

For a Petri net N = 〈P, T, F,W,m0〉 and a marking m1 in NP , let `(N ,m1) be the
length of the shortest P -admissible P -covering for m1 in N if one exists, and otherwise
`(N ,m1) = 0. For L, k in N, define

ML(k) = sup{`(N ,m1) | |P | = k, max
p∈P,t∈T

W (p, t) + max
p∈P

m1(p) ≤ L}

the maximal `(N ,m1) over all Petri nets N of dimension k and all markings m1 to
cover, under some restrictions on incoming weights W (p, t) in N and values in m1.

1. Show that ML(0) ≤ 1.

2. We want to show that

ML(k) ≤ (L ·ML(k − 1))k +ML(k − 1)

for all k ≥ 1. To this end, we prove that, for every marking m1 in NP for a Petri
net N with |P | = k,

`(N ,m1) ≤ (L ·ML(k − 1))k +ML(k − 1) . (∗)

Let
B = ML(k − 1) · max

p∈P,t∈T
W (p, t) + max

p∈P
m1(p) .

and suppose that there exists a P -admissible P -covering w = µ1 · · ·µn for m1 in
N .

(a) Show that, if w is P–B-bounded, then (∗) holds.

(b) Assume the contrary: we can split w as w1w2 such that w1 is P–B-bounded
and w2 starts with a marking µj with a place p such that µj(p) ≥ B. Show
that (∗) also holds.

3. Show that ML(|P |) ≤ L(3·|P |)! for L ≥ 2.

4. Given a Petri netN = 〈P, T,W,m0〉 and a markingm1, set L = 2+maxp∈P,t∈T W (p, t)+
maxp∈P m1(p). Assuming that the size n of the instance (N ,m1) of the coverability
problem is more than

max(logL, |P |, max
p∈P,t∈T

logW (t, p)) ,
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deduce that we can guess a P -admissible P -covering for m1 of length at most
22c·n logn

for some constant c. Conclude that coverability can be solved in Ex-
pSpace.

5 Vector Addition Systems

Exercise 9 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = 〈Q, δ, q0〉 where Q is a finite set of states, q0 ∈ Q the initial state, and
δ ⊆ Q× Zn ×Q the transition relation. A configuration of V is a pair (q, v) in Q× Nn.
An execution of V is a sequence of configurations (q0, v0)(q1, v1) · · · (qm, vm) such that
v0 = 0̄, and for 0 < i ≤ m, (qi−1, vi − vi−1, qi) is in δ.

1. Show that any VASS can be simulated by a Petri net.

2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 10 (VAS). An n-dimensional vector addition system (VAS) is a pair (v0,W )
where v0 ∈ Nn is the initial vector and W ⊆ Zn is the set of transition vectors. An
execution of (v0,W ) is a sequence v0v1 · · · vm where vi ∈ N for all 0 ≤ i ≤ m and
vi − vi−1 ∈W for all 0 < i ≤ m.

We want to show that any n-dimensional VASS V can be simulated by an (n + 3)-
dimensional VAS (v0,W ).
Hint: Let k = |Q|, and define the two functions a(i) = i + 1 and b(i) = (k + 1)(k − i).
Encode a configuration (qi, v) of V as the vector (v(1), . . . , v(n), a(i), b(i), 0). For every
state qi, 0 ≤ i < k, we add two transition vectors to W :

ti = (0, . . . , 0,−a(i), a(k − i)− b(i), b(k − i))
t′i = (0, . . . , 0, b(i),−a(k − i), a(i)− b(k − i))

For every transition d = (qi, w, qj) of V, we add one transition vector to W :

td = (w(1), . . . , w(n), a(j)− b(i), b(j),−a(i))

1. Show that any execution of V can be simulated by (v0,W ) for a suitable v0.

2. Conversely, show that this VAS (v0,W ) simulates V faithfully.
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