TD 3: Ehrenfeucht-Fraïssé Games

Exercise 1 (Non-Strict Until).

1. Show that U is not expressible in $T L\left(A P, S^{\prime}, U^{\prime}\right)$ over $(\mathbb{R},<)$.
2. Show that U is not expressible in $\operatorname{TL}\left(\mathrm{AP}, \mathrm{S}^{\prime}, \mathrm{U}^{\prime}\right)$ over $(\mathbb{N},<)$.

Exercise 2 (Periodic Properties).

1. Show that the fact that a finite temporal time flow is of "even length" cannot be expressed in TL(AP, S, U).
2. Recall Exercise 3 of TD 2: Show that the set $(\{p\} \Sigma)^{\omega}$ cannot be expressed in $\mathrm{TL}(\{p\}, \mathrm{S}, \mathrm{U})$ over $(\mathbb{N},<)$.

Exercise 3 (Linear Orders with Gaps). In this exercise we assume ($\mathbb{T},<$) to be a linear time flow.

1. Let us define a new unary "gap" modality gap:

$$
\begin{aligned}
& w, i \models \operatorname{gap} \varphi \text { iff } \forall k . k>i \rightarrow(\exists \ell . k<\ell \wedge \forall j . i<j<\ell \rightarrow w, j \models \varphi) \\
& \vee(\exists j . i<j<k \wedge w, j \models \neg \varphi) \\
& \wedge \exists k_{1} \cdot k_{1}>i \wedge \forall j . i<j \leq k_{1} \rightarrow w, j \models \varphi \\
& \wedge \exists k_{2} \cdot k_{2}>i \wedge w, k_{2} \models \neg \varphi .
\end{aligned}
$$

The intuition behind gap is that φ should hold for some time until a gap occurs in the time flow, after which $\neg \varphi$ holds at points arbitrarily close to the gap.
(a) Show that, if $(\mathbb{T},<)$ is Dedekind-complete, then gapp for $p \in \mathrm{AP}$ cannot be satisfied.
(b) Express gap φ using the standard U modality.
2. Consider the temporal flow ($\{0\} \times \mathbb{Z}_{<0} \times \mathbb{Z} \cup\{1\} \times \mathbb{Z} \times \mathbb{Z},<$) where $<$ is the lexicographic ordering and $\mathrm{AP}=\{p\}$. Let n be an even integer in \mathbb{Z}, and define

$$
\begin{aligned}
& h_{0}(p)=\{(0, i, j) \in \mathbb{T} \mid i \text { is odd }\} \cup\{(1, i, j) \in \mathbb{T} \mid i \text { is odd }\} \\
& h_{1}(p)=\{(0, i, j) \in \mathbb{T} \mid i \text { is odd }\} \cup\{(1, i, j) \in \mathbb{T} \mid i>n \text { is odd }\} .
\end{aligned}
$$

(a) Show that $w_{0},(x, i, j) \models$ gap p for any $x \in\{0,1\}$, odd i, and j.
(b) Show that no $\mathrm{TL}(\{p\}, \mathrm{S}, \mathrm{U})$ formula can distinguish between $\left(w_{0},(0,-1,0)\right)$ and $\left(w_{1},(0,-1,0)\right)$.
(c) Here is the definition of the Stavi "until" modality:

$$
\begin{aligned}
& w, i \models \varphi \bar{U} \psi \text { iff } \exists \ell . i<\ell \\
& \wedge \forall k . i<k<\ell \rightarrow {\left[\exists j_{1} \cdot k<j_{1} \wedge \forall j . i<j<j_{1} \rightarrow w, j \models \varphi\right] } \\
& \vee\left[\left(\forall j_{2} \cdot k<j_{2}<\ell \rightarrow w, j_{2} \models \psi\right)\right. \\
&\left.\wedge\left(\exists j_{3} \cdot i<j_{3}<k \wedge w, j_{3} \models \neg \varphi\right)\right] \\
& \wedge \exists k_{1} \cdot i<k_{1}<\ell \wedge w, k_{1} \models \neg \varphi \\
& \wedge \exists k_{2} \cdot i<k_{2}<\ell \wedge \forall j . i<j<k_{2} \rightarrow w, j \models \varphi
\end{aligned}
$$

This modality is quite similar to gap φ, but further requires ψ to hold for some time after the gap (the " j_{2} " condition above).
Show that $w_{1},(0,-1,0) \vDash p \overline{\mathrm{U}} \neg \operatorname{gap} p$ but $w_{0},(0,-1,0) \not \vDash p \overline{\mathrm{U}} \neg \operatorname{gap} p$.

Exercise 4 (Stuttering and LTL $\left(U^{\prime}\right)$). In the time flow $(\mathbb{N},<)$, i.e. when working with words σ in Σ^{ω}, stuttering denotes the existence of consecutive symbols, like aaaa and $b b$ in baaaabb. Concrete systems tend to stutter, and thus some argue that verification properties should be stutter invariant.

A stuttering function $f: \mathbb{N} \rightarrow \mathbb{N}_{+}$from the positive integers to the strictly positive integers. Let $\sigma=a_{0} a_{1} \cdots$ be an infinite word of Σ^{ω} and f a stuttering function, we denote by $\sigma[f]$ the infinite word $a_{0}^{f(0)} a_{1}^{f(1)} \cdots$, i.e. where the i-th symbol of σ is repeated $f(i)$ times. A language $L \subseteq \Sigma^{\omega}$ is stutter invariant if, for all words σ in Σ^{ω} and all stuttering functions f,

$$
\sigma \in L \text { iff } \sigma[f] \in L
$$

1. Prove that if φ is a $\mathrm{TL}\left(\mathrm{AP}, \mathrm{U}^{\prime}\right)$ formula, then $L(\varphi)$ is stutter-invariant.
2. A word $\sigma=a_{0} a_{1} \cdots$ in Σ^{ω} is stutter-free if, for all i in \mathbb{N}, either $a_{i} \neq a_{i+1}$, or $a_{i}=a_{j}$ for all $j \geq i$. We note $\operatorname{sf}(L)$ for the set of stutter-free words in a language L.

Show that, if L and L^{\prime} are two stutter invariant languages, then $\operatorname{sf}(L)=\operatorname{sf}\left(L^{\prime}\right)$ iff $L=L^{\prime}$.
3. Let φ be a $\mathrm{TL}\left(\mathrm{AP}, \mathrm{X}, \mathrm{U}^{\prime}\right)$ formula such that $L(\varphi)$ is stutter invariant. Construct inductively a formula $\tau(\varphi)$ of $\mathrm{TL}\left(\mathrm{AP}, \mathrm{U}^{\prime}\right)$ such that $\operatorname{sf}(L(\varphi))=\operatorname{sf}(L(\tau(\varphi)))$, and thus such that $L(\varphi)=L(\tau(\varphi))$ according to the previous question. What is the size of $\tau(\varphi)$ (there exists a solution of size $O\left(|\varphi| \cdot 2^{|\varphi|}\right)$)?

