TD 2: LTL

1 Specification

Exercise 1. We would like to verify the properties of a boolean circuit with input x, output y, and two registers r_1 and r_2 . We define accordingly $AP = \{x, y, r_1, r_2\}$ as our set of atomic propositions and consider the time flow $(\mathbb{N}, <)$ where the runs of the circuit can be seen as temporal structures.

Translate the following properties (a) in TL(AP) and (b) in FO(<):

- 1. "it is impossible to get two consecutive 1 as output"
- 2. "each time the input is 1, at most two ticks later the output will be 1"
- 3. "each time the input is 1, the register contents remains the same over the next tick"
- 4. "register r_1 is infinitely often 1"

Note that there might be several, non-equivalent formal specifications matching these informal descriptions—that's the whole point of writing specifications!—but your (a) and (b) should be equivalent.

2 LTL

Exercise 2. We fix a set AP of atomic propositions including $\{p, q, r\}$ and some discrete linear time flow $(\mathbb{T}, <)$.

- 1. Consider the formulæ $\varphi_1 = \mathsf{G}(p \to \mathsf{X}q)$ and $\varphi_2 = \mathsf{G}(p \to ((\neg q) \mathsf{R} q))$.
 - (a) Does φ_2 imply φ_1 ?
 - (b) Does φ_1 imply φ_2 ?
- 2. Simplify the following formula:

$$\mathsf{F}(((\mathsf{G}r)\;\mathsf{U}'\;p)\wedge (\neg q\;\mathsf{U}'\;p))\vee \mathsf{F}(\neg p\vee \mathsf{F}'q)\;.$$

Exercise 3 (Expressiveness). We fix the set $AP = \{p\}$ of atomic propositions, with an associated alphabet $\Sigma = \{\{p\}, \emptyset\}$, and consider the $(\mathbb{N}, <)$ flow of time, where temporal structures can be seen as infinite words over Σ , i.e. words in Σ^{ω} .

1. Show that the following subsets of Σ^{ω} are expressible in $\mathrm{TL}(\mathrm{AP},\mathsf{U}',\mathsf{X})$:

- (a) $\{p\}^* \cdot \emptyset^{\omega}$, and
- (b) $\{p\}^n \cdot \emptyset^{\omega}$ for each fixed $n \geq 0$.
- 2. Is the language $(\{p\} \cdot \emptyset)^{\omega}$ expressible in $\mathrm{TL}(\mathrm{AP},\mathsf{U}',\mathsf{X})$?
- 3. Consider the infinite sequence $\sigma_i = \{p\}^i \cdot \emptyset \cdot \{p\}^\omega$ for $i \geq 0$. Show by induction on $\mathrm{TL}(\mathrm{AP}, \mathsf{U}', \mathsf{X})$ formulæ φ that, for all $n \geq 0$, if φ has less than $n \mathsf{X}$ modalities, then for all i, i' > n, $\sigma_i \models \varphi$ iff $\sigma_{i'} \models \varphi$. (Hint: For the case of U' , show that $\sigma_i \models \varphi$ iff $\sigma_{n+1} \models \varphi$.)
- 4. Using the previous question, show that the set $(\{p\} \cdot \Sigma)^{\omega}$ is not expressible in TL(AP) over $(\mathbb{N}, <)$.

3 LTL with Past

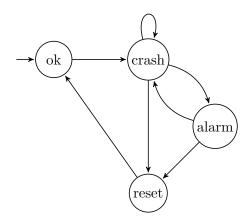
Exercise 4 (Specifying with Past). Provide TL formulæ over AP = {ok, crash, alarm, reset} with and without past modalities for the following properties:

- 1. "Whenever the alarm rings, there has been a crash immediately before."
- 2. "Whenever the alarm rings, there has been a crash some time before, and no reset in the meantime."

Exercise 5 (History Variables). Consider the time flow $(\mathbb{N}, <)$. One way of getting rid of *pure* past modalities is to tweak both the model and the formula, by adding *history* variables to the model and by replacing pure past subformulæ by atomic propositions on these variables, i.e. from a pair $\langle M, \varphi \rangle$ where M is a Kripke model and φ a LTL formula with past modalities, construct $\langle M', \varphi' \rangle$ where M' is a modified version of M with extra atomic propositions, and φ' is a pure future LTL formula, such that $M \models \varphi$ iff $M' \models \varphi'$.

For instance, a subformula $Y\psi$ will be replaced by a boolean variable $h_{Y\psi}$ in the specification, and the model will update this variable according to whether or not ψ holds in the previous state. Two new atomic propositions are introduced, corresponding to $h_{Y\psi}$ = true and $h_{Y\psi}$ = false.

1. Apply this technique to the specification of the previous exercise and the following alarm system:



2. What is the cost of the model transformation?

Exercise 6 (Succinctness of Past Formulæ). Consider the time flow $(\mathbb{N}, <)$. Let $AP_{n+1} = \{p_0, \ldots, p_n\} = AP_n \cup \{p_n\}$ be a set of atomic propositions, defining the alphabet $\Sigma_{n+1} = 2^{AP_{n+1}}$. We want to show the existence of an O(n)-sized LTL formula with past such that any equivalent pure future LTL formula is of size $\Omega(2^n)$.

First consider the following LTL formula of exponential size:

$$\bigwedge_{S \subseteq AP_n} \left(\left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \wedge p_n \right) \Rightarrow \mathsf{G}(\left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \right) \Rightarrow p_n \right) \\
\wedge \left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \wedge \neg p_n \right) \Rightarrow \mathsf{G}(\left(\bigwedge_{p_i \in S} p_i \wedge \bigwedge_{p_j \notin S} \neg p_j \right) \Rightarrow \neg p_n \right) \\
(\varphi_n)$$

- 1. Describe which words of Σ_{n+1}^{ω} are the models of φ_n .
- 2. Can an LTL formula with past modalities check whether it is at the initial position of a word?
- 3. Provide an LTL formula with past ψ_n of size O(n) initially equivalent to φ_n .
- 4. Consider the language $L_n = \{ \sigma \in \Sigma_{n+1}^{\omega} \mid \sigma \models \mathsf{G}'\varphi_n \}$. We want to prove that any generalized Büchi automaton that recognizes L_n requires at least 2^{2^n} states.

For this we fix a permutation $a_0 \cdots a_{2^n-1}$ of the symbols in Σ_n and we consider all the different subsets $K \subseteq \{0, \dots, 2^n-1\}$. For each K we consider the word

$$w_K = b_0 \cdots b_{2^n - 1}$$

in $\Sigma_{n+1}^{2^n}$, defined for each i in $\{0,\ldots,2^n-1\}$ by

$$b_i = a_i$$
 if $i \in K$
 $b_i = a_i \cup \{p_n\}$ otherwise.

Thus K is the set of positions of w_K where p_n does not hold.

Using the w_K for different values of K, prove that any generalized Büchi automaton for $G'\varphi_n$ requires at least 2^{2^n} states.

5. Conclude using the fact that any pure future LTL formula φ can be given a generalized Büchi automaton with at most $2^{|\varphi|}$ states.