
MPRI 1-22 Introduction to Verification September 21, 2011

TD 1: Models

Exercise 1 (Mutual Exclusion).

1. The following program is a mutual exclusion protocol for two processes due to
Pnueli. There is a shared boolean variable s, initialized to 1, and two shared
boolean variables yi, i in {0, 1}, initialized to 0. Each process Pi can read the
values of s, y0, and y1, but only write a new value in s and yi. Here is the code of
process Pi in C-like syntax:

while (true)
{
/∗ 1: Noncritical section . ∗/
atomic { yi = 1; s = i; };
/∗ 2: Wait for turn. ∗/
wait until ((y1−i == 0) || (s != i));
/∗ 3: Critical section . ∗/
yi = 0;
}

Draw the transition system of each process, and construct their parallel compo-
sition. Label the states appropriately using the atomic propositions wi and ci,
holding when process Pi is waiting or in the critical section, respectively.

2. Does the algorithm ensure mutual exclusion, i.e. that the two processes can never
be simultaneously inside the critical section?

3. Does the algorithm ensure starvation freedom, i.e. that every waiting process will
eventually access the critical section, provided that the other process does not stay
forever inside the critical section?

4. Recall Peterson’s mutual exclusion algorithm from the lecture notes: two processes
0 and 1 execute a program to access a critical section (where they can safely modify
other shared resources). In order to do so, they share three boolean variables: y0,
y1, and s. Here is the algorithm for Pi with the first two assignments swapped:

while (true)
{
/∗ 1: Noncritical section . ∗/
s = 1 − i;
yi = 1;
/∗ 2: Wait for turn. ∗/
wait until ((y1−i == 0) || (s == i));
/∗ 3: Critical section . ∗/
yi = 0;
}

1

MPRI 1-22 Introduction to Verification September 21, 2011

Show that this modified algorithm is incorrect, i.e. that the two processes can
simultaneously be in the critical section. More precisely, compute the part of the
low-level transition system that leads to the error.

Exercise 2 (Rendez-vous with Data). Consider the synchronization of transition sys-
tems with variables through a rendez-vous mechanism. Such a system is of form M =
(S,Σ,V, (Dv)v∈V , T, I,AP, l) where V the set of (typed) variables v, each with domain
Dv.

We want to extend the rendez-vous mechanism between systems with variables with
the ability to exchange data values. For instance, a system Mi may transmit a value m
by performing

si
!m−→ s′i ,

only if some system Mj is ready to receive the message, i.e. to perform

sj
?v−→ s′j ,

where v is a variable of Mj and m is in Dv. Of course the synchronization is also possible
if Mj performs instead

sj
?m−−→ s′j .

Propose Structural Operational Semantics for the rendez-vous with data synchro-
nization.

Exercise 3 (Needham-Schroeder Protocol). We consider the analysis of a public-key
authentication protocol proposed by Needham and Schroeder in 1978. The protocol
relies on

• the generation of nounces NC : random numbers that should only be used in a
single session, and

• on public key encryption: we denote the encryption of message M using C’s public
key by 〈M〉C .

A(lice) and B(ob) try to make sure of each other’s identity by the following (very sim-
plified) exchange:

2

MPRI 1-22 Introduction to Verification September 21, 2011

A B

1.〈A,NA〉B

2.〈NA, NB〉A

3.〈NB 〉B

1. Alice first presents herself (the A part of the message) and challenges Bob with
her nounce NA. Assuming both cryptography and random number generation to
be perfect, only Bob can decrypt 〈A,NA〉B and find the correct number NA.

2. Bob responds by proving his identity (the NA part) and challenges Alice with his
own nounce NB.

3. Finally, Alice proves her identity by sending NB.

The nounces NA and NB are used by Alice and Bob as secret keys for their communi-
cations.

In order to account for the insecure channel, we have to add an intruder I to the
model, who has his own nounce NI , and can read and send any message it fancies, but
can only decrypt 〈M〉I messages and cannot guess the nounces generated by Alice and
Bob.

We can model the behaviour of Alice as a transition system MA with variables and
rendez-vous with data, using a single variable N ranging over DN = {NA, NB, NI}.

0N := NA

1B

1I

2B

2I

3B

3I

!1.〈A,NA〉B

!1.〈A,NA〉I

?2.〈NA, N〉A

?2.〈NA, N〉A

!3.〈N〉B

!3.〈N〉I

1. Provide a model MB for Bob.

2. Provide a model MI the intruder.

3. Unfold an execution path in the synchronized product of MA, MB, and MI that
unveils a flaw in the protocol.

3

MPRI 1-22 Introduction to Verification September 21, 2011

Exercise 4 (Channel Systems). The course notes present the semantics of FIFO chan-
nels. We consider here the case of a single finite system M = 〈S,Σ, T, I,AP, `〉 along
with n unbounded channels over a finite set Γ (i.e. each channel is declared as ci:
channel[∞] of Γ for each 1 ≤ i ≤ n). Configurations of the full system M̂ are thus in
S × (Γ∗)n, i.e. of form (s, γ1, . . . , γn) where s is a state of S and channel i contains γi.
Without loss of generality, we consider the channels to be empty in the initial configu-
rations, i.e. Î = {(si, ε, . . . , ε) | si ∈ I}.

We are interested in the control-state reachability problem, i.e. given an n-channel
system M̂ and a state s, does there exist an initial state si in I and n strings γ1, . . . , γn
in Γ∗ s.t. (si, ε, . . . , ε)→∗ (s, γ1, . . . , γn)?

1. Consider the case Γ = {a} and n = 1. Show that the control-state reachability
problem is decidable in PTime.

2. Show that it becomes undecidable for n ≥ 2 even if |Γ| = 1. Hint: reduce from the
control state reachability in 2-counters Minsky machines.

4

