Home Assignment 2: Simulations in Petri Nets (with some solutions)

To hand in before or on February 15, 2012. The penalty for delays is 2 points per day.

	23	24	25	26	27	28	29
	30	31					
ury			1	2	3	4	5
Pebruary			8				
Feb	13	14	(15)	16	17	18	19

Electronic versions (PDF only) can be sent by email to \langle schmitz@lsv.ens-cachan.fr \rangle , paper versions should be handed in on the 15th or put in my mailbox at LSV, ENS Cachan.

Recall that a marked *Petri net* is a tuple $\mathcal{N} = \langle P, T, \Sigma, W, m_0 \rangle$ where P is a finite set of *places*, T a finite set of *transitions*, Σ a finite alphabet, $W : (P \times T) \cup (T \times P) \to \mathbb{N}$ the *arc weight mapping*, and $m_0 : P \to \mathbb{N}$ is the *initial marking*.

A transition t in T is finable in a marking m in \mathbb{N}^P if $m(p) \ge W(p,t)$ for all $p \in P$, and results in a new marking m' defined by m'(p) = m(p) - W(p,t) + W(t,p) for all p in P; we note $m \stackrel{t}{\to} m'$ in this case.

Let us define some set AP of atomic propositions, which will always verify AP $\subseteq P$. A Petri net \mathcal{N} defines a (generally infinite) Kripke structure $\mathfrak{M}(\mathcal{N}) \stackrel{\text{def}}{=} \langle S, T', I, \text{AP}, \ell \rangle$ with state set $S = \mathbb{N}^P$, initial state set $I = \{m_0\}$, and transition relation $T' = \{m \to m' \in \mathbb{N}^P \times \mathbb{N}^P \mid \exists t \in T.m \stackrel{t}{\to} m'\}$. The set $\ell(m)$ of atomic propositions holding at a state m in \mathbb{N}^P is $\{p \in \text{AP} \mid m(p) > 0\}$.

These definitions lead to a "state-based" view of model-checking on Petri nets: a Petri net \mathcal{N} satisfies a CTL* formula φ in a marking m, written $\mathcal{N}, m \models \varphi$, if $\mathfrak{M}(\mathcal{N}), m \models \varphi$.

1 Simulations and Existential CTL

The idea behind the simulation preorder between two systems \mathfrak{M}_1 and \mathfrak{M}_2 is that any behaviour of the simulated system \mathfrak{M}_1 can be exhibited by the simulating system \mathfrak{M}_2 .

Definition 1 (Simulation). Let $\mathfrak{M}_1 = \langle S_1, T_1, I_1, AP, \ell_1 \rangle$ and $\mathfrak{M}_2 = \langle S_2, T_2, I_2, AP, \ell_2 \rangle$ be two Kripke structures. A binary relation $Z \subseteq S_1 \times S_2$ is called a (positive) *simulation* from \mathfrak{M}_1 to \mathfrak{M}_2 if the following conditions are satisfied: for every $s_1 Z s_2$,

- 1. $\ell_1(s_1) \subseteq \ell_2(s_2)$,
- 2. if $s_1 \to s'_1$ in T_1 , then there exists s'_2 in S_2 with $s_2 \to s'_2$ in T_2 and $s'_1 Z s'_2$.

We write $s_1 \leq s_2$ if there exists a simulation Z between \mathfrak{M}_1 and \mathfrak{M}_2 s.t. $s_1 Z s_2$. If, in addition,

3. for every s_1 in I_1 , there exists s_2 in I_2 s.t. $s_1 Z s_2$,

then we write $\mathfrak{M}_1 \preceq \mathfrak{M}_2$, and $\mathcal{N}_1 \preceq \mathcal{N}_2$ if $\mathfrak{M}(\mathcal{N}_1) \preceq \mathfrak{M}(\mathcal{N}_2)$.

Exercise 1 (Logical Characterization). Let us define *positive existential* CTL^* as the fragment of CTL^* defined by the following abstract syntax, where *p* ranges over the set of atomic propositions AP:

$$\varphi ::= \top \mid \perp \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathsf{E}\psi$$
 (state formulæ)
$$\psi ::= \varphi \mid \mathsf{X}\psi \mid \psi \land \psi \mid \psi \lor \psi \mid \psi \lor \psi \mid \psi \mathsf{R}\psi .$$
 (path formulæ)

Positive existential CTL* includes *positive existential CTL* (hereafter noted E^+CTL), which is defined by the following abstract syntax:

 $\varphi ::= \top \mid \perp \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathsf{EX}\varphi \mid \mathsf{E}(\varphi \cup \varphi) \mid \mathsf{E}(\varphi \cap \mathsf{R}\varphi) .$ (state formulæ)

We also write $E^+CTL(X)$ for the fragment of E^+CTL that only allows the "X" temporal modality.

Let us consider two (not necessarily different) Kripke structures $\mathfrak{M}_1 = \langle S_1, T_1, I_1, AP, \ell_1 \rangle$ and $\mathfrak{M}_2 = \langle S_2, T_2, I_2, AP, \ell_2 \rangle$.

- [4] 1. Assume \mathfrak{M}_1 to be *total*, i.e. for any state s_1 there exists some state s'_1 such that $s_1 \to s'_1$ is a transition in T_1 . Prove the following two statements, for any two states s_1 and s_2 , and any two infinite paths π_1 and π_2 in \mathfrak{M}_1 and \mathfrak{M}_2 , resp.:
 - (a) if $s_1 \leq s_2$, then for any positive existential CTL* state formula φ , $s_1 \models \varphi$ implies $s_2 \models \varphi$,
 - (b) if $\pi_1 = s_{0,1}s_{1,1}\cdots$ and $\pi_2 = s_{0,2}s_{1,2}\cdots$ are two infinite paths with $s_{i,1} \leq s_{i,2}$ for all i in \mathbb{N} , then for any positive existential CTL* path formula ψ , $\pi_1 \models \psi$ implies $\pi_2 \models \psi$.
- [2] 2. Assume \mathfrak{M}_2 to be *image-finite*, i.e. for any state s_2 the set $T_2(s_2)$ is finite. Let us consider the following relation on $S_1 \times S_2$:

$$\mathcal{F} = \{(s_1, s_2) \in S_1 \times S_2 \mid \forall \varphi \in E^+ CTL(X), s_1 \models \varphi \text{ implies } s_2 \models \varphi\}.$$

Show that \mathcal{F} satisfies conditions 1 and 2 of Definition 1, i.e. that it is a simulation between \mathfrak{M}_1 and \mathfrak{M}_2 .

[1] 3. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let $\mathfrak{M}_1 = \langle S_1, T_1, I_1, AP, \ell_1 \rangle$ be a total Kripke structure, $\mathfrak{M}_2 = \langle S_2, T_2, I_2, AP, \ell_2 \rangle$ be an image-finite Kripke structure, and s_1 and s_2 be two states of S_1 and S_2 resp. The following three statements are equivalent:

1. $s_1 \leq s_2$,

2. for all positive existential CTL^* state formulæ φ : $s_1 \models \varphi$ implies $s_2 \models \varphi$,

3. for all $E^+CTL(X)$ formulæ φ : $s_1 \models \varphi$ implies $s_2 \models \varphi$.

Theorem 1 has interesting implications for model-checking problems: consider two systems \mathfrak{M}_1 and \mathfrak{M}_2 with $s_1 \leq s_2$ for some $(s_1, s_2) \in S_1 \times S_2$, and φ an E⁺CTL formula. Further assume that \mathfrak{M}_1 is a model with a small description, then $\mathfrak{M}_1, s_1 \models \varphi$ can be tested more efficiently and ensures $\mathfrak{M}_2, s_2 \models \varphi$.

2 Undecidability of Simulations

Consider now the case of Petri nets: $E^+CTL(U, X)$ model-checking of a net \mathcal{N}_2 is in general EXPSPACE-complete (the lower bound comes from the hardness of coverability; the upper bound from an extension of Rackoff's technique for small models seen in Exercise 8 of TD 6). Therefore, coming up with a suitably small \mathcal{N}_1 and testing for the existence of a simulation between \mathcal{N}_1 and \mathcal{N}_2 would seem like a nice way of avoiding some of that complexity. We are going to see that, unfortunately, the simulation problem, i.e. given $\langle \mathcal{N}_1, \mathcal{N}_2, AP \rangle$ to check whether $\mathcal{N}_1 \preceq \mathcal{N}_2$, is undecidable.

The proof relies on a reduction from an instance $\langle \mathcal{M} \rangle$ of the halting problem of a Minsky machine to an instance $\langle \mathcal{N}_1, \mathcal{N}_2, AP \rangle$ of the simulation problem, where \mathcal{N}_1 and \mathcal{N}_2 are two Petri nets with $\mathcal{N}_1 \preceq \mathcal{N}_2$ iff \mathcal{M} does not halt.

Definition 2 (Minsky Machines). A 2-counter Minsky machine is a tuple $\mathcal{M} = \langle Q, C, \delta, q_0, q_f \rangle$ where Q is a finite set of states with distinguished initial state q_0 and halting state q_f , $C = \{c_1, c_2\}$ are two counter names, and δ associates to each state q except q_f a unique transition instruction, which is either

$$q \mapsto c^{++}; \text{ goto } q'$$
, (inc)

or

 $q \mapsto \text{if } (c == 0) \{ \text{goto } q' \} \text{ else } \{ c --; \text{ goto } q'' \}, \quad (\text{dec})$

for some $c \in C$ and $q', q'' \in Q$; we can view the halting state q_f as associated to the instruction

$$q_f \mapsto \texttt{halt}$$
 . (halt)

The (unique) run of a 2-counter Minsky machine is the finite or infinite sequence $\rho = ((q_i, c_{i,1}, c_{i,2}))_{i\geq 0}$ of configurations in $Q \times \mathbb{N}^2$ holding the current state and the current values of the two counters, where $(q_0, c_{0,1}, c_{0,2}) = (q_0, 0, 0)$, and respecting the transition instructions for all $i \geq 0$. The run ρ halts if $q_n = q_f$ for some $n \in \mathbb{N}$ (regardless of the counter values).¹ It is undecidable, given $\langle \mathcal{M} \rangle$, whether its run halts.

¹As q_f does not allow any further transition, the run ρ is then finite.

Exercise 2 (Undecidability of the Simulation Problem). Let us explain a possible reduction from the halting problem to the simulation problem. Given an instance $\langle \mathcal{M} \rangle$, we define

$$\begin{aligned} \operatorname{AP} \stackrel{\operatorname{def}}{=} C & \uplus \ Q \uplus \{h\} \ , \\ P \stackrel{\operatorname{def}}{=} \operatorname{AP} & \uplus \ \{p_1, p_2\} \ , \\ T \stackrel{\operatorname{def}}{=} \left\{ t_q \mid q \in Q \setminus \{q_f\} \land \delta(q) \text{ of form (inc)} \right\} \\ & \uplus \ \left\{ t_q, t_q^p, t_q' \mid q \in Q \setminus \{q_f\} \land \delta(q) \text{ of form (dec)} \right\} \\ & \uplus \ \left\{ t_{q_f} \right\} \ , \end{aligned}$$

and the weights W defined by the following:

Note that t_q^p witnesses an incorrect simulation of a transition of type (dec) (indeed, it checks the presence of at least one token in c but goes to q' instead of q''), and furthermore moves a token from p_2 to p_1 .

Define $\mu_1: Q \times \mathbb{N}^2 \to \mathbb{N}^P$ and $\mu_2: Q \times \mathbb{N}^2 \to \mathbb{N}^P$ by

$$\mu_1((q,c,c'))(p) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } p = q, \\ c & \text{if } p = c_1, \\ c' & \text{if } p = c_2, \\ 1 & \text{if } p = p_1, \\ 0 & \text{otherwise} \end{cases} \quad \mu_2((q,c,c'))(p) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } p = q, \\ c & \text{if } p = c_1, \\ c' & \text{if } p = c_2, \\ 1 & \text{if } p = p_2, \\ 0 & \text{otherwise} \end{cases}$$

for all $p \in P$. We lift μ_1 and μ_2 to be homomorphisms from $(Q \times \mathbb{N}^2)^*$ to $(\mathbb{N}^P)^*$, i.e. mappings from runs of \mathcal{M} to Petri nets executions.

- [2] 1. Consider the Petri net $\mathcal{N}_1 \stackrel{\text{def}}{=} \langle P, T, W, \mu_1((q_0, 0, 0)) \rangle$. Show that, if ρ is the run of \mathcal{M} , then
 - (a) $\mu_1(\rho)$ is a possible execution of \mathcal{N}_1 , and
 - (b) if \mathcal{M} halts, then the last marking in $\mu_1(\rho)$ can fire t_{q_f} .
- [2] 2. Let $\mathcal{N}_2 \stackrel{\text{def}}{=} \langle P, T, W, \mu_2((q_0, 0, 0)) \rangle$. Show that, if \mathcal{M} halts, then $\mathcal{N}_1 \not\preceq \mathcal{N}_2$.

Hint: define an E⁺CTL formula φ over AP s.t. $\mathcal{N}_1, \mu_1((q_0, 0, 0)) \models \varphi$ but $\mathcal{N}_2, \mu_2((q_0, 0, 0)) \not\models \varphi$ and conclude by Theorem 1. It can be helpful to assume wlog. that $q' \neq q''$ in (dec).

[3] 3. Show that, if \mathcal{M} does not halt, then $\mathcal{N}_1 \preceq \mathcal{N}_2$.

3 Simulation of a Finite System

Back to the consequences of Theorem 1: if the system \mathfrak{M}_1 is *finite* of size n, then $\mathfrak{M}_1, s_1 \models \varphi$ can be tested in polynomial time $O(n \cdot |\varphi|)$. Unlike the case of simulations between Petri nets, the existence of a simulation between a given finite-state system and a given Petri net can be checked.

Exercise 3. We want to prove that, given $\mathfrak{M}_1 = \langle S_1, T_1, I_1, \operatorname{AP}, \ell_1 \rangle$ a finite Kripke structure and $\mathcal{N} = \langle P, T, W, m_0 \rangle$ a Petri net with $\operatorname{AP} \subseteq P$, one can decide whether $\mathfrak{M}_1 \preceq \mathfrak{M}(\mathcal{N})$, where $\mathfrak{M}(\mathcal{N}) = \langle \mathbb{N}^P, T', \{m_0\}, \operatorname{AP}, \ell \rangle$.

Suppose we want to decide whether $s_0 \leq m_0$ for some s_0 in I_1 s.t. $\ell_1(s_0) \subseteq \ell(m_0)$ (otherwise there is no point trying!). We construct a tree $t(s_0, m_0)$ with labels of form $\wedge(s, m)$ ("universal nodes") or $\vee(s, m)$ ("existential nodes") where s and m range over S_1 and \mathbb{N}^P resp. The tree root is labeled by $\wedge(s_0, m_0)$.

- A node labeled $\wedge(s,m)$
 - either is a leaf if $T_1(s) = \emptyset$ or if there exists an ancestor in the tree labeled $\wedge(s, m')$ for some $m' \leq m$,
 - or is an internal node with $r = |T_1(s)|$ children with labels $(\lor(s', m))_{s \to s'}$.
- A node labeled $\lor(s,m)$
 - either is a leaf if $T'(m) = \emptyset$, i.e. if no transition can be fired from m in \mathcal{N} ,
 - or is an internal node with $r \leq |T'(m)|$ children labeled $(\wedge(s, m'))_{m \to m' \land \ell_1(s) \subset \ell(m')}$.

[2] 1. Show that $t(s_0, m_0)$ is always finite.

Assume $t(s_0, m_0)$ is infinite. As it is of finite branching degree (bounded by the cardinality of $T_1(s)$ for universal nodes $\wedge(s, m)$ and of T(m) for existential nodes $\vee(s, m)$), it must contain an infinite branch by Kőnig's Lemma. Consider the sequence of universal nodes along this branch; as existential and universal nodes are alternating, this is an infinite sequence $\wedge(s_0, m_0) \wedge (s_1, m_1) \cdots$ of elements in $S_1 \times \mathbb{N}^P$.

Now, by the pigeon-hole principle, $(S_1, =)$ is a wqo, and by Dickson's Lemma, (\mathbb{N}, \leq) is also a wqo, thus $(S_1 \times \mathbb{N}, \leq_{\times})$ is a also wqo (again by Dickson's Lemma) for the product ordering defined by $(s, m) \leq_{\times} (s', m')$ iff s = s' and $m \leq m'$. Thus there exist two indices i < j s.t. $s_i = s_j$ and $m_i \leq m_j$. But by definition of $t(s_0, m_0)$, this entails that $\wedge(s_j, m_j)$ is a leaf, in contradiction with the branch being infinite.

- [1] 2. Let $s \in S_1$ and $m, m' \in \mathbb{N}^P$. Show that, if $s \leq m'$ and $m' \leq m$, then $s \leq m$.
- [4] 3. Define inductively the *interpretation* of a tree by

$$\llbracket \wedge (s,m)(t_1,\ldots,t_r) \rrbracket \stackrel{\text{def}}{=} \bigwedge_{i=1}^r \llbracket t_i \rrbracket \qquad \llbracket \vee (s,m)(t_1,\ldots,t_r) \rrbracket \stackrel{\text{def}}{=} \bigvee_{i=1}^r \llbracket t_i \rrbracket$$

Prove that $s_0 \leq m_0$ iff $\llbracket t(s_0, m_0) \rrbracket = \top$.

⇒ Let us show that, if $[[\land(s,m)(t_1,\ldots,t_r)]] = \bot$, then there exists an E⁺CTL(X) formula φ s.t. $s \models \varphi$ but $m \not\models \varphi$, which by Theorem 1 entails $s \not\preceq m$. In game-theoretic terms, φ describes a winning strategy for Spoiler (i.e. the universal player) starting from (s,m).

We proceed by induction on the height of the tree rooted at $\wedge(s, m)$. By definition, if $[\![\wedge(s, m)(t_1, \ldots, t_r)]\!] = \bot$, then there exists a child labeled $\vee(s', m)$ with $s \to_{T_1} s'$ and $[\![t_i = \vee(s', m)(t'_1, \ldots, t'_r)]\!] = \bot$. For all m' with $m \to m'$, we are going to define a formula $\varphi_{m'}$ s.t. $s' \models \varphi_{m'}$ but $m' \not\models \varphi_{m'}$. By definition of $[\![\vee(s', m)(t'_1, \ldots, t'_r)]\!]$,

- if $\ell_1(s') \subseteq \ell(m')$, then there is a child labeled $\wedge (s', m')$ with $[t'_j = \wedge (s', m')(t''_1, \ldots, t''_r)] = \bot$, and thus $\varphi_{m'}$ is provided by the induction hypothesis, and otherwise,
- if $\ell_1(s') \not\subseteq \ell(m')$, then choosing $\varphi_{m'} \stackrel{\text{def}}{=} p$ an atomic proposition in $\ell_1(s') \setminus \ell(m)$ fits (note that this encompasses the base case of $\vee(s', m)$ being a leaf).

Then, defining $\varphi \stackrel{\text{def}}{=} \mathsf{EX} \bigwedge_{m \to m'} \varphi_{m'}$ fits.

 $\Leftarrow \text{Assume } \llbracket t(s_0, m_0) \rrbracket = \top. \text{ We define } \sigma \text{ to be a tree rooted in } \land (s_0, m_0) \text{ obtained} \\ \text{from } t(s_0, m_0) \text{ by removing subtrees: if a universal node } \land (s, m) \text{ is a node of} \\ \sigma \text{ then all its children in } t(s_0, m_0) \text{ are nodes of } \sigma, \text{ and if an existential } \lor (s, m) \\ \text{ is a node of } \sigma, \text{ then exactly one of its children } \land (s, m') \text{ in } t(s_0, m_0), \text{ rooting a} \\ \text{tree that evaluates to } \top, \text{ i.e. } \llbracket \land (s, m')(t_1, \ldots, t_r) \rrbracket = \top, \text{ is a node of } \sigma. \text{ Thanks} \\ \text{ to the definition of } \llbracket \cdot \rrbracket, \text{ at least one such } \sigma \text{ exists. In game-theoretic terms, } \sigma \\ \text{ defines a winning strategy for Duplicator (i.e. the existential player) starting} \\ \text{ from } (s_0, m_0). \\ \end{cases}$

Let us show that

$$Z \stackrel{\text{def}}{=} \{(s,m) \mid \exists m' \le m, \land (s,m') \text{ is a node of } \sigma\}$$

is a simulation between \mathfrak{M}_1 and $\mathfrak{M}(\mathcal{N})$. Let $s \mathbb{Z} m$ and select some $m' \leq m$ with $\wedge (s, m')$ a node of σ :

Condition 1: by a trivial induction on $t(s_0, m_0)$, every universal node $\wedge (s, m')$ in $t(s_0, m_0)$ (and thus in σ) verifies $\ell_1(s) \subseteq \ell(m')$, and $\ell(m') \subseteq \ell(m)$ since $m' \leq m$. **Condition 2:** Assume $s \to_{T_1} s'$. We can then assume that $\wedge(s, m')$ is not a leaf in σ (otherwise it would also be a leaf in $t(s_0, m_0)$ and we could instead select its ancestor $\wedge(s, m_1)$ with $m_1 \leq m' \leq m$ instead, which would still be in σ) and has an existential child $\vee(s', m')$, which is by definition in σ . Still by definition of σ , there exists a single universal child $\wedge(s', m'')$ in σ of $\vee(s', m')$. By definition of a child of an existential node, $m' \stackrel{t}{\to} m''$ for some $t \in T$ and $\ell(s') \subseteq \ell(m'')$. Consider now the marking m''' obtained by $m \stackrel{t}{\to} m'''$: by monotonicity of $\mathcal{N}, m'' \leq m'''$. Thus we have found a successor marking m''' of m with s' Z m'''.

To conclude, observe that Z contains (s_0, m_0) by definition, thus proving that $s_0 \leq m_0$.

[1] 4. Conclude that the simulation of a given finite Kripke structure by a given Petri net is decidable.

We have that $\mathfrak{M}_1 \preceq \mathfrak{M}(\mathcal{N})$ iff, for every $s_0 \in I_1$, $\ell_1(s_0) \subseteq \ell(m_0)$ and $\llbracket t(s_0, m_0) \rrbracket = \top$, the latter being the decidable evaluation of a finite Boolean circuit. As I_1 is finite this is clearly decidable.