TD 7: Simulation & Bisimulation

Exercise 1 (Bisimulations). Consider the following Kripke structures:

For each couple of structures, exhibit a bisimulation relation if they are bisimilar, or a CTL* formula allowing to distinguish between them if they are not bisimilar.

Exercise 2 (Computing the Coarsest Bisimulation). Computing \equiv on a single Kripke structure is very similar to the computation of a minimal DFA.

1. Design a partition refinement algorithm for computing \equiv, i.e. an algorithm that computes an initial relation \equiv_0 and refines it successively until $\equiv_k = \equiv$ for some k. Prove that your algorithm terminates and computes \equiv.

2. Apply your algorithm to the union of two bisimilar systems from the previous exercise and draw the quotiented system.

Exercise 3 (Simulations). Consider the following two systems:
1. Exhibit a simulation to prove $t_0 \preceq s_0$.

2. Show that $s_0 \not\preceq t_0$.

3. Let $M = \langle S, T, I, AP, l \rangle$ be a single Kripke structure. Show that \preceq is reflexive and transitive on S. Is it symmetric?

4. Propose an algorithm for computing \preceq on a single structure M.

Exercise 4 (Simulation Quotienting). Two Kripke structures M_1 and M_2 are *simulation equivalent*, noted $M_1 \simeq M_2$ if $M_1 \preceq M_2$ and $M_2 \preceq M_1$. The lecture notes provide an example of two simulation equivalent but not bisimilar structures. Consider now the two following structures M_s and M_t:

1. Which of the following relations hold: $M_s \preceq M_t$, $M_t \preceq M_s$, $M_s \simeq M_t$?

2. Construct the quotient of $(M_s \cup M_t)$ by \simeq. Is the resulting system bisimilar to $(M_s \cup M_t)$?

3. Prove that if M/\simeq is the quotient of M by \simeq, then $M/\simeq \preceq M$ and $M \preceq M/\simeq$.

4. Call a Kripke structure $M = \langle S, T, I, AP, l \rangle$ *AP-deterministic* if
Let us consider two (not necessarily different) Kripke structures M and \mathcal{M} such that there exists some state $s \in S$ such that $l(s) = a$. Let

$$\exists \psi \in \mathcal{M} \exists s \in S \lnot l(s) = a.$$

(b) for each state s, if there exist two transitions (s, s_1) and (s, s_2) in T with $l(s_1) = l(s_2)$, then $s_1 = s_2$.

Show that, if two Kripke structures M_1 and M_2 are AP-deterministic, then they are bisimilar iff they are simulation equivalent.

Exercise 5 (Logical Characterization). Let us define existential CTL^* as the fragment of CTL^* defined by the following abstract syntax, where p ranges over the set of atomic propositions AP:

$$\varphi ::= T \mid \bot \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \text{E}\psi \mid \text{EX}\varphi \mid \text{E}(\varphi \land \psi) \mid \text{E}(\varphi \lor \psi) \mid \text{F}\varphi \mid \text{F}(\varphi \land \psi) \mid \text{F}(\varphi \lor \psi) \mid \text{U}\psi \mid \text{U}\varphi \mid \text{U}(\varphi \land \psi) \mid \text{U}(\varphi \lor \psi) \mid \text{R}\psi \mid \text{R}\varphi \mid \text{R}(\varphi \land \psi) \mid \text{R}(\varphi \lor \psi).$$

Existential CTL^* includes both LTL and existential CTL (hereafter noted ECTL), which is defined by the following abstract syntax:

$$\varphi ::= T \mid \bot \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \text{E}\varphi \mid \text{EX}\varphi \mid \text{E}(\varphi \land \psi) \mid \text{E}(\varphi \lor \psi) \mid \text{F}\varphi \mid \text{F}(\varphi \land \psi) \mid \text{F}(\varphi \lor \psi) \mid \text{U}\psi \mid \text{U}\varphi \mid \text{U}(\varphi \land \psi) \mid \text{U}(\varphi \lor \psi) \mid \text{R}\psi \mid \text{R}\varphi \mid \text{R}(\varphi \land \psi) \mid \text{R}(\varphi \lor \psi).$$

Let us consider two (not necessarily different) Kripke structures $M_1 = \langle S_1, T_1, I_1, AP, l_1 \rangle$ and $M_2 = \langle S_2, T_2, I_2, AP, l_2 \rangle$. We assume these structures to be total, where for any state s there exists some state s' such that (s, s') is a transition.

1. Prove the following two statements, for any two states s_1 and s_2, and any two infinite paths π_1 and π_2 in M_1 and M_2, resp.:

 (a) if $s_1 \leq s_2$, then for any existential CTL^* state formula φ, $s_1 \models \varphi$ implies $s_2 \models \varphi$,

 (b) if $\pi_1 = s_{0,1}s_{1,1}\cdots$ and $\pi_2 = s_{0,2}s_{1,2}\cdots$ with $s_{i,1} \leq s_{i,2}$ for all i in \mathbb{N}, then for any existential CTL^* path formula ψ, $\pi_1 \models \psi$ implies $\pi_2 \models \psi$.

2. Let us consider the following relation on $S_1 \times S_2$:

 $$\mathcal{F} = \{(s_1, s_2) \in S_1 \times S_2 \mid \forall \varphi \in \text{ECTL}, s_1 \models \varphi \Rightarrow s_2 \models \varphi \}.$$

 Assuming that for all initial states s in I_1, $\mathcal{F}(s) \cap I_2$ is not empty, show that \mathcal{F} is a simulation between M_1 and M_2.

3. Conclude by proving the following theorem:

Theorem 1 (Logical Characterization of Simulation). Let $M_1 = \langle S_1, T_1, I_1, AP, l_1 \rangle$ and $M_2 = \langle S_2, T_2, I_2, AP, l_2 \rangle$ be two total Kripke structures and s_1 and s_2 be two states of S_1 and S_2 resp. The following three statements are equivalent:

1. $s_1 \leq s_2$,

2. for all existential CTL^* formulae φ: $s_1 \models \varphi$ implies $s_2 \models \varphi$,

3. for all existential CTL formulae φ: $s_1 \models \varphi$ implies $s_2 \models \varphi$.

3