TD 8: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture notes:

1. How can you modify this Petri net so that it becomes 1-safe?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of processes:

- **producers** who can make the actions *produce* \((p)\) or *deliver* \((d)\), and
- **consumers** with the actions *receive* \((r)\) and *consume* \((c)\).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How can you modify this system to enforce a maximal capacity of ten simultaneous items in the channel?

2. An *inhibitor arc* between a place \(p\) and a transition \(t\) makes \(t\) firable only if the current marking at \(p\) is zero. In the following example, there is such an inhibitor arc between \(p_1\) and \(t\). A marking \((0, 2, 1)\) allows to fire \(t\) to reach \((0, 1, 2)\), but \((1, 1, 1)\) does not allow to fire \(t\).
Using inhibitor arcs, enforce a priority for the first producer and the first consumer on the channel: the other processes can use the channel only if it is empty it is not currently used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider as usual propositional LTL, with a set of atomic propositions AP equal to P the set of places of the Petri net. We define proposition p to hold in a marking m in \mathbb{N}^P if $m(p) > 0$.

The models of our LTL formulae are computations $m_0 m_1 \cdots$ in $(\mathbb{N}^P)^\omega$ such that, for all $i \in \mathbb{N}$, $m_i \xrightarrow{T} \mathcal{N} m_{i+1}$ is a transition step of the Petri net \mathcal{N}.

1. We want to prove that state-based LTL model checking can be performed in polynomial space for 1-safe Petri nets. For this, prove that one can construct an exponential-sized Büchi automaton $\mathcal{B}_\mathcal{N}$ from a 1-safe Petri net that recognizes all the infinite computations of \mathcal{N} starting in m_0.

2. In the general case, state-based LTL model checking is undecidable. Prove it for Petri nets with at least two unbounded places, by a reduction from the halting problem for 2-counter Minsky machines.

3. We consider now a different set of atomic propositions, such that $\Sigma = 2^\text{AP}$, and a labeled Petri net, with a labeling homomorphism $\lambda : T \to \Sigma$. The models of our LTL formulae are infinite words $a_0 a_1 \cdots$ in Σ^ω such that $m_0 \xrightarrow{t_0} \mathcal{N} m_1 \xrightarrow{t_1} \mathcal{N} m_2 \cdots$ is an execution of \mathcal{N} and $\lambda(t_i) = a_i$ for all i.

Prove that action-based LTL model checking can be performed in polynomial space for labeled 1-safe Petri nets.

Exercise 4 (Lower Bounds for 1-Safe Petri Nets). A linear bounded automaton (LBA) $\mathcal{M} = \langle Q, \Sigma \cup \{\dashv, \vdash\}, \Gamma, \delta, q_0, #, F \rangle$ is a Turing machine with a left endmarker \dashv and a right endmarker \vdash,

- that cannot move left from \dashv nor right from \vdash,
- that cannot print over \dashv or \vdash, and
that starts with input \(\vdash x \vdash \) for some \(x \) in \(\Sigma^* \).

A LBA is thus restricted to its initial tape contents. The membership problem for a LBA with input \(\vdash x \vdash \) is \(\text{PSPACE} \)-hard.

1. Show how to simulate a LBA with input \(\vdash x \vdash \) by a 1-safe Petri net of quadratic size.
2. Show that state-based LTL model checking is \(\text{PSPACE} \)-hard in the size of the Petri net for 1-safe Petri nets.
3. Show that action-based LTL model checking is \(\text{PSPACE} \)-hard in the size of the Petri net for labeled 1-safe Petri nets.

3 Coverability

The \textit{coverability problem} for Petri nets is the following decision problem:

\textbf{Instance:} A Petri net \(\mathcal{N} = \langle P, T, F, W, m_0 \rangle \) and a marking \(m_1 \) in \(\mathbb{N}^P \).

\textbf{Question:} Does there exist \(m_2 \) in \(\text{Reach}_{\mathcal{N}}(m_0) \) such that \(m_1 \leq m_2 \)?

For 1-safe Petri nets, coverability coincides with reachability, and is thus \(\text{PSPACE} \)-complete according to the previous exercises.

\textbf{Exercise 5} (Inhibitor Arcs). Prove that the coverability problem is undecidable for Petri nets having two inhibitor arcs.
(Hint: start by proving its undecidability for Petri nets with two places that are the sources of inhibitor arcs.)

\textbf{Exercise 6} (Coverability Graph). One way to decide the coverability problem is to use Karp and Miller’s coverability graph (see the lecture notes). Indeed, we have the equivalence between the two statements:

\(i. \) there exists \(m_2 \) in \(\text{Reach}_{\mathcal{N}}(m_0) \) such that \(m_1 \leq m_2 \), and
\(ii. \) there exists \(m_3 \) in \(\text{CoverabilityGraph}_{\mathcal{N}}(m_0) \) such that \(m_1 \leq m_3 \).

1. Prove that \([i] \) implies \([ii] \).
(Hint: prove that if \(m \xrightarrow{\mathcal{N}} m_2 \) in the Petri net \(\mathcal{N} \) for some \(m \) in \(\mathbb{N}^P \) and \(u \) in \(T^* \), then there exists \(m_3 \) in \((\mathbb{N} \cup \{\omega\})^P \) such that \(m_2 \leq m_3 \) and \(m \xrightarrow{G} m_3 \) in the coverability graph.)
Let us prove that (ii) implies (i). The idea is that we can find reachable markings that agree with \(m_3 \) on its finite places, and that can be made arbitrarily high on its \(\omega \)-places. For this, we need to identify the graph nodes where new \(\omega \) values were introduced, which we call \(\omega \)-nodes. Moreover, for a marking \(m \) in \((\mathbb{N} \cup \{\omega\})^P\), we define \(\Omega(m) \) as the set of places \(p \) such that \(m(p) = \omega \).

(a) Recall that an \(\omega \) value is introduced in the coverability graph thanks to Algorithm 1.

```
1 repeat
2   saved ← \( m' \)
3 foreach \( m'' \in V \) s.t. \( \exists v \in T^+, m'' \xrightarrow{v} G m \) do
4     if \( m'' < m' \) then
5         \( m' \leftarrow m' + ((m' - m'') \cdot \omega) \)
6 end
7 until saved = \( m' \)
8 return \( m' \)
```

Algorithm 1: \textsc{AddOmegas}(\(m, t, m', V, E \))

Let \(\{v_1, \ldots, v_i\} \) be the set of \(v \) sequences found on line 3 of the algorithm that resulted in an \(\omega \) value for \(m' \) on line 5 during a call to \textsc{AddOmegas}(\(m, t, m', V, E \)). For each \(i \), let \(n_i \in \mathbb{N} \) be a value such that the sequence \(v_i \) can be fired from the marking \((n_i, n_i, \ldots, n_i)\).

Show that, for any \(j \in \mathbb{N} \), there exists a marking \(\nu_j \) such that \(\nu_j(p) = \frac{m(p) - W(p, t) + W(t, p)}{j \cdot \sum_{i=1}^{l} n_i} \) if \(p \in P \setminus \Omega(m) \) and \(\nu_j(p) = \frac{m(p)}{j} \) if \(p \in \Omega(m) \), that allows to fire the sequence \(v^1_j \cdots v^j_j \). How does the marking \(\nu^j_j \) with \(\nu_j(v^1_j \cdots v^j_j) \rightarrow_N \nu^j_j \) compare to \(\nu_j \)?

(b) Prove that, if \(m \xrightarrow{u} G m_3 \) for some \(u \) in \(T^* \) in the coverability graph and \(m' \) in \(\mathbb{N}^{\Omega(m_3)} \) is a partial marking on the places of \(\Omega(m_3) \), then there are

- a decomposition \(u = u_1 u_2 \cdots u_{n+1} \) with each \(u_i \) in \(T^* \) (where the markings \(\mu_i \) reached by \(m \xrightarrow{u_1 \cdots u_i} G \mu_i \) are \(\omega \)-nodes),
- sequences \(w_1, \ldots, w_n \) in \(T^+ \),
- numbers \(k_1, \ldots, k_n \) in \(\mathbb{N} \),

such that \(m \xrightarrow{u_1 u_2 \cdots u_n w_n} G m_2 \rightarrow_N m_2 \) with \(m_2(p) = m_3(p) \) for all \(p \) in \(P \setminus \Omega(m_3) \) and \(m_2(p) \geq m'(p) \) for all \(p \) in \(\Omega(m_3) \).
Exercise 7 (Rackoff’s Algorithm). A rather severe issue with the coverability graph construction (see Exercise 6) is that it can generate a graph of non primitive recursive size compared to that of the original Petri net. We show here a much more decent ExpSpace upper bound, which is matched by an ExpSpace hardness proof by Lipton.

Let us fix a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$. We consider *generalized markings* in \mathbb{Z}^P. A *generalized computation* is a sequence $\mu_1 \cdots \mu_n$ in $(\mathbb{Z}^P)^*$ such that, for all $1 \leq i < n$, there is a transition t in T with $\mu_{i+1}(p) = \mu_i(p) - W(p, t) + W(t, p)$ for all $p \in P$ (i.e. we do not enforce enabling conditions). For a subset I of P, a generalized sequence is I-*admissible* if furthermore $\mu_i(p) \geq W(p, t)$ for all p in I at each step $1 \leq i < n$. For a value B in \mathbb{N}, it is I–B-*bounded* if furthermore $\mu_i(p) < B$ for all p in I at each step $1 \leq i \leq n$. A generalized sequence is an I-*covering* for m_1 if $\mu_1 = m_0$ and $\mu_n(p) \geq m_1(p)$ for all p in I.

Thus a computation is a P-admissible generalized computation, and a P-admissible P-covering for m_1 answers the coverability problem.

For a Petri net $\mathcal{N} = \langle P, T, F, W, m_0 \rangle$ and a marking m_1 in \mathbb{N}^P, let $\ell(\mathcal{N}, m_1)$ be the length of the shortest P-admissible P-covering for m_1 in \mathcal{N} if one exists, and otherwise $\ell(\mathcal{N}, m_1) = 0$. For L, k in \mathbb{N}, define

$$M_L(k) = \sup \{ \ell(\mathcal{N}, m_1) \mid |P| = k, \max\{W(p, t) \mid p \in P, t \in T\} + \max\{m_1(p) \mid p \in P\} \leq L \} .$$

1. Show that $M_L(0) \leq 1$.

2. We want to show that

$$M_L(k) \leq (L \cdot M_L(k-1))^k + M_L(k-1)$$

for all $k \geq 1$. To this end, we prove that, for every marking m_1 in \mathbb{N}^P for a Petri net \mathcal{N} with $|P| = k$,\n
$$\ell(\mathcal{N}, m_1) \leq (L \cdot M_L(k-1))^k + M_L(k-1) .$$

(*)

Let

$$B = M_L(k-1) \cdot \max\{W(p, t) \mid p \in P, t \in T\} + \max\{m_1(p) \mid p \in P\} .$$

and suppose that there exists a P-admissible P-covering $w = \mu_1 \cdots \mu_n$ for m_1 in \mathcal{N}.

(a) Show that, if w is P–B-bounded, then (*) holds.

(b) Assume the contrary: we can split w as w_1w_2 such that w_1 is P–B-bounded and w_2 starts with a marking μ_j with a place p such that $\mu_j(p) \geq B$. Show that (*) also holds.

3. Show that $M_L(|P|) \leq L^{(3(|P|)!}$ for $L = 2 + \max\{W(p, t) \mid p \in P, t \in T\} + \max\{m_1(p) \mid p \in P\}$.
4. Assuming that the size n of the instance (N, m_1) of the coverability problem is more than
\[\max\{ \log L, |P|, \max \{ \log W(t, p) | t \in T, p \in P \} \} , \]
deduce that we can guess a P-admissible P-covering for m_1 of length at most $2^{c \cdot n \log n}$ for some constant c. Conclude.