Here is a set of simple exercises in preparation for the mid-semester exam. The first two exercises were in last year’s exam. There ought to be some time left for discussing the home assignment.

Exercise 1 (LTL and Automata). In the following, AP is a finite set of atomic propositions and \(\Sigma = 2^{\text{AP}} \) is the corresponding finite alphabet. Let \(\varphi \) be a LTL\((\text{AP, } X, U, Y, S)\) a formula. We define
\[
L(G \varphi) = \{ \sigma \in \Sigma^\omega \mid \forall n \in \mathbb{N}, \sigma, n \models \varphi \}.
\]
Consider the following formulae:
\[
\begin{align*}
\varphi_1 &= (\neg \text{lock} S \text{unlock}) \Rightarrow (\neg \text{use} W \text{lock}) \\
\varphi_2 &= (\neg \text{lock} S \text{unlock}) \Rightarrow (\neg \text{use} \lor \text{lock}) \\
\varphi_3 &= \text{unlock} \Rightarrow (\neg \text{use} W \text{lock})
\end{align*}
\]
on the set of atomic propositions \(\text{AP} = \{ \text{lock, unlock, use} \} \). For each \(1 \leq i \leq 3 \), we denote \(L(G \varphi_i) \) by \(L_i \).

1. Show that \(L_1 = L_2 \).
2. Show that \(L_1 \subseteq L_3 \) and \(L_1 \neq L_3 \).
3. Give a pure future formula \(\varphi_4 \) in LTL\((\text{AP, } X, U)\) such that \(L(G \varphi_4) = L_1 \). Of course, the equality has to be demonstrated.
4. Construct, using the method described in the lecture notes, the generalized Büchi automaton \(A_{G \varphi_3} \) that recognizes \(L_3 \). To make things easier, we note \(p = \text{unlock} \), \(q = \text{lock} \), and \(r = \text{use} \) such that \(\varphi_3 = \neg p \lor (G \neg r) \lor (\neg r U q) \).
5. Show how to obtain a deterministic Büchi automaton with all its states final for \(L_3 \).

Exercise 2 (CTL and CTL*). Let us consider the following model \(M \):

![Model Diagram]

\[
\begin{align*}
2 & \xrightarrow{0} \emptyset \\
4 & \xrightarrow{p} \{ p \} \\
6 & \xrightarrow{0} \emptyset \\
1 & \xrightarrow{p,q} \{ p,q \} \\
3 & \xrightarrow{q} \{ q \} \\
5 & \xrightarrow{q} \{ q \}
\end{align*}
\]
Let us recall that, if \(\varphi \) is a state formula, then \(\llbracket \varphi \rrbracket \) denotes the set of states of \(M \) that verify \(\varphi \).

1. Compute \(\llbracket EGFp \rrbracket \).
2. Compute \(\llbracket AGFq \rrbracket \).
3. Compute \(\llbracket \varphi_1 \rrbracket \) where \(\varphi_1 = Eq \cup (p \land \neg q) \).
4. Compute \(\llbracket \varphi_2 \rrbracket \) where \(\varphi_2 = A(GFp \land (GF(\neg p \land q) \land FG\neg \varphi_1)) \).
5. For each state \(i \) of \(M \), provide a CTL formula \(\xi_i \) such that \(\llbracket \xi_i \rrbracket = \{ i \} \).

Exercise 3 (Complexity of LTL(\(X \))). We want to show that LTL(\(X \)) existential model checking is NP-complete (instead of PSPACE-complete for the full LTL(\(X, U \))).

1. Show that \(MC^3(X) \) is in NP.
2. Reduce 3SAT to \(MC^3(X) \) in order to prove NP-hardness.