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Outline

vector addition systems (VAS)
and their reachability problem

. . . solved by the KLMST algorithm
of Sacerdote and Tenney (1977), Mayr
(1981), Kosaraju (1982), and Lambert (1992)

decomposition theorem
the KLMST algorithm constructs an ideal
decomposition of the set of runs

upper bound theorem
VAS reachability is in cubic Ackermann

2/18



VAS Reachability KLMST Algorithm Ideal Decompositions Upper Bounds

Outline

vector addition systems (VAS)
and their reachability problem

. . . solved by the KLMST algorithm
of Sacerdote and Tenney (1977), Mayr
(1981), Kosaraju (1982), and Lambert (1992)

decomposition theorem
the KLMST algorithm constructs an ideal
decomposition of the set of runs

upper bound theorem
VAS reachability is in cubic Ackermann

2/18



VAS Reachability KLMST Algorithm Ideal Decompositions Upper Bounds

Outline

vector addition systems (VAS)
and their reachability problem

. . . solved by the KLMST algorithm
of Sacerdote and Tenney (1977), Mayr
(1981), Kosaraju (1982), and Lambert (1992)

decomposition theorem
the KLMST algorithm constructs an ideal
decomposition of the set of runs

upper bound theorem
VAS reachability is in cubic Ackermann

2/18



VAS Reachability KLMST Algorithm Ideal Decompositions Upper Bounds

Vector Addition Systems (VAS)
(Karp and Miller, 1969)

Syntax

I dimension d ∈N

I finite set A⊆fin Z
d of actions a ∈A

Semantics

I configurations u,v, . . . ∈N
d

I transitions u a−→ v ∈N
d×A×N

d with v= u+ a
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Example VAS

Example

d= 2 A=

{
,

}

x

y

x=(0,2)−−→(2,4)−−→(3,5)−−→(4,6)−−→(3,4)−−→(2,2)−−→(0,1)=y
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Runs and Preruns
Definition (Prerun)
A prerun is an element

(u, (u1,a1,v1) · · ·(uk,ak,vk), v)

from PreRunsA
def
=N

d× (Nd×A×N
d)∗×N

d

Definition (Run)
A prerun is connected (is a run) if

(source) u= u1

(transitions) ∀1 6 j6 k, uj+ aj = vj

(contiguity) ∀1< j6 k, vj−1 = uj

(target) vk = v
5/18
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The Reachability Problem
RunsA(x,y) def

= {ρ ∈ PreRunsA | ρ is a run with source x and target y}

VAS Reachability

input A⊆fin Z
d, x,y ∈N

d

question Is y reachable from x in A?
I.e., is RunsA(x,y) , ∅?

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992;
Leroux, 2011)
VAS Reachability is decidable.

I by the KLMST algorithm (Mayr, 1981; Kosaraju, 1982;
Lambert, 1992)

I by Presburger invariants (Leroux, 2011)
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Marked Graph
Example A= {a= (1,1,−1),b= (−1,0,1))

sin = (1,0,1) sout = (1,ω,1)

(2,ω,0) (1,ω,1) (0,ω,2)

b

b

a

a

Example (Initial graph)
x y

(ω, . . . ,ω) ∀a ∈A
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Marked Graph Sequence

x
σ=

M0

sout
0 sin

1

M1

sout
1 sin

k

Mk

y

a1

I associated set of runsΩσ ⊆ RunsA(x,y)

I perfectness condition (aka θ condition):
decidable semantic condition ensuringΩσ , ∅

I effective decomposition of imperfect sequences:
Ωσ =

⋃
σ ′∈decompose(σ)Ωσ ′
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KLMST Algorithm (Schematically)
Construct a sequence S0,S1, . . . of finite sets of marked
witness graph sequences with ∀n

Ωn
def
=
⋃
σ∈Sn

Ωσ = RunsA(x,y)

init S0 is s.t. RunsA(x,y) =Ω0

∀n I if Sn = {σ}]S and ¬perfect(σ)

Sn+1
def
= S∪ (decompose(σ))

I otherwise stop: RunsA(x,y) , ∅

terminates via a ranking function r
∀σ ′ ∈ decompose(σ) . r(σ)> r(σ ′)
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Mysteries

1. conceptual complexity
the complexity of the proofs (especially of Mayr, 1981)
wrap the result in mystery use of their original ideas
has been made

2. computational complexity
I ExpSpace-hard problem (Lipton, 1976),
I Ackermann lower bound on the KLMST algorithm (Müller,

1985)
I no known upper bound
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Mystery 1: Conceptual Complexity

Theorem (Decomposition Theorem)
The KLMST algorithm computes the ideal decomposition
of
↓RunsA(x,y)

def
= {ρ ′ ∈ PreRunsA | ∃ρ ∈ RunsA(x,y) . ρ ′ E ρ}

Deciphering the statement (upcoming slides)

I definition of a well quasi order (wqo) over preruns
(Jančar, 1990)

I wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)
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Mystery 1: Conceptual Complexity
Theorem (Decomposition Theorem)
The KLMST algorithm computes the ideal decomposition
of
↓RunsA(x,y)

def
= {ρ ′ ∈ PreRunsA | ∃ρ ∈ RunsA(x,y) . ρ ′ E ρ}

Significance

I entails decidability of VAS Reachability:

RunsA(x,y) = ∅ iff ↓RunsA(x,y) = ∅

I generalises Habermehl et al. (2010)’s result on the
computability of downward-closures of VAS languages

I template for decidability proofs in extensions (unordered
data nets, branching VAS, pushdown VAS, . . . )?
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Well quasi orders
I Downward closure
↓S def

= {x ∈ X | ∃s ∈ S . x6 s}

I Descending Chain Property
A quasi-order (X,6) is a well
quasi order if every descending
chainD0 )D1 ) · · · of
downwards-closed subsets of X
is finite.

I Examples
I finite sets with equality
I N with the naturals ordering
I A×B with the product ordering

(Dickson’s Lemma)
I A∗ with scattered subword

ordering (Higman’s Lemma)

over a quasi-order (X,6)

D0

Dn
Dn+1

S

↓S
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Prerun Embedding
Construct the ordering E over preruns inductively; recall

PreRunsA
def
=N

d× (Nd×A×N
d)∗×N

d

Example (Run Embedding E)

(3,3) (2,1) (3,2) (2,0) (3,1)

(1,0) (2,1)

>

6

> 6=

Lemma (Jančar, 1990)
(PreRunsA,E) is a wqo.
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Ideals as Canonical Bases

Lemma (Canonical Ideal Decomposition; Bonnet, 1975)
Every downward-closed subsetD⊆ X of a wqo (X,6) is
the union of a unique finite family of incomparable (for
the inclusion) ideals.

Finkel and Goubault-Larrecq (2009, 2012): effective
representations of wqo ideals
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Marked Graph Sequence (Ideal View)

x
σ=

M0

sout
0 sin

1

M1

sout
1 sin

k

Mk

y

a1

A representation for (particular) prerun ideals with

Iσ ⊇ ↓Ωσ

Theorem (Perfectness as Ideal Adherence)
If σ is perfect then Iσ = ↓Ωσ.

15/18
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KLMST Algorithm (Ideal View)
Construct a sequenceD0,D1, . . . of downwards-closed
sets, represented as finite sets of ideals, with ∀n

Dn
def
=
⋃
σ∈Sn

Iσ ⊇ ↓RunsA(x,y)

init D0
def
= PreRunsA

∀n I ifDn = ItD and
¬perfect(I),

Dn+1
def
=

D∪decompose(I)

I otherwise stop:

Dn = ↓RunsA(x,y)

D0

Dn

I

Dn+1
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Mystery 2: Computational Complexity
Theorem (Upper Bound Theorem)
VAS Reachability is in Fω3 .

I uses a length function theorem for ranking functions (S.,
2014)

I . . . which provides bounds in fast-growing complexity
classes (Fα)α

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ack

Fωω
= HAck

Fω3
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Concluding Remarks

I ideals as an algorithmic tool to work with
downward-closed sets

I new understanding of the KLMST decomposition
extension to other models (BVASS, PDVAS,. . . )?

I immense complexity gap: ExpSpace vs. Fω3

I only known tight case: PSpace-complete d= 2 + control
states (as presented by Blondin et al., 2015, this morning)
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A Bit of Magic...

Theorem (Length Function Theorem, S., 2014)
(g,n)-controlled decreasing sequences α0,α1, . . . of
ordinals < α with n> |α| are of length bounded by gα(n)
in the Hardy hierarchy.

Claim (KLMST control, using Figueira et al., 2011)
In the KLMST algorithm, the sequence of ranks along any
branch is controlled by (Hω

d+1
, |A|).

As a result, the KLMST algorithm runs in space(
Hω

d+1
)ωω3

(|A|), which is in Fω3 .
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A Bit of Magic: Controlled Sequences
Definition (Ordinal Norm)
For an ordinal α < ε0, define the norm |α| as the maximal
coefficient appearing in its Cantor normal form
α=ωα1 · c1 + · · ·+ωαn · cn:

|α|
def
= max

16j6n
(cj, |αj|) .

Definition (Controlled Sequence)
Let g:N→N strictly monotone and n ∈N. A sequence
of ordinals α0,α1, . . . is (g,n)-controlled if

∀i . |αi|6 g
i(n) .

In particular, |α0|6 n.
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A Bit of Magic: Hardy Functions
Ordinal-indexed hierarchy of functions hα:N→N

Definition
Fix h:N→N strictly monotone:

h0(x)
def
= x hα+1(x)

def
= hα(h(x)) hλ(x)

def
= hλ(x)(x)

where λ(0)< λ(1)< · · ·< λ is the standard fundamental
sequence for the limit ordinal λ, e.g.ω(x) = x+1,
ω2(x) =ω · (x+1),ωω(x) =ωx+1.

Example
For instance for H(x) def

= x+1:

Hω(x) = 2x+1 Hω
2
(x) = 2x+1(x+1)−1

Hω
3
(x)≈ 2. .

.2}
x times Hω

ω
(x)≈ ackermann(x)
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A Bit of Magic: Fast-Growing Complexity

For α> 3:

F<α
def
=
⋃
β<ωα

FDTime(Hβ(n)) , Fα
def
=

⋃
p∈F<α

DTime(Hω
α
(p(n)))

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ack

Fωω
= HAck

Fω3
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