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Vector Addition Games
I two Players ^ and �:

partitioned state space
Q^ ]Q�

I dimension d ∈N:
transitions labeled with
vectors in Zd

I defines an infinite
arena in Q×Nd

I VASS semantics: a
transition is blocked if it
makes a value negative
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Asymmetric VASS Games
aka. vector games (Kanovich, 1995), B-games (Raskin et al., 2005), single-sided games (Abdulla et al., 2013)

Asymmetric VASS (AVASS) game:
I Q=Q^ ]Q�, resp. Controller and Environment

I T^ ⊆Q^×Zd×Q:

q^ q ′u

I T� ⊆Q�× {0}×Q:

q�

q1

q2
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The Importance of Asymmetry
(Raskin et al., 2005)

I VASS game: T⊆Q×Zd×Q

I coverability objective: fix q`, target {q`}×Nd

Minsky machine

q

q1

q2

c i
=
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ci --

Symmetric VASS Game

q
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0

−ei

0

−ei

Player � can simulate zero-tests!
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Alternating VASS
aka. “and-branching” (Lincoln et al., 1992; Urquhart, 1999)

Q finite set of states

qr initial state in Q

Tu finite set of unary transitions
⊆Q×Zd×Q:

q q ′u

Tf set of fork transitions ⊆Q3:

q

q1

q2
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Tree Semantics
run in T(Q×Nd):

Initial

qr,0

unary rule in Tu

q,v

q ′,v+u

blocking
transition:
v+u> 0

u

fork rule in Tf

q,v

q1,v q2,v

different possible acceptance conditions
(on branches)
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Some Applications of AVASS
I propositional linear logic (Lincoln et al., 1992; Kanovich, 1995)

I relevance logic (Urquhart, 1999)

I multidimensional energy games (Brázdil et al., 2010; Chatterjee

et al., 2012)

I multidimensional mean-payoff games (Chatterjee et al.,

2010)

I one-sided µ-calculus (Abdulla et al., 2013)

I regular simulation games (Jančar and Moller, 1995; Lasota, 2009; Abdulla

et al., 2013, 2014)
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Finite-state specifications

Required behaviours Implementation Safe behaviours
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Simulation Game
I two labeled transition

systems S1 and S2

I two players Spoiler and
Duplicator

I at each turn

1. Spoiler chooses a
successor state in S1

2. Duplicator must choose a
successor state in S2 with
the same action label

I any blocked player loses;
Duplicator wins if the play is
infinite
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VASS Regular Simulations

Simulation relations between
I a labeled VASS V (i.e. an AVASS with Q� = ∅)

I a finite-state system F

Theorem (Jančar and Moller, 1995)

V� F and F � V are decidable.

Theorem (Lasota, 2009)

V� F and F � V are ExpSpace-hard, already if
V is a BPP.
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VASS� FS
Coverability

input AVASS A and state q`
question can Controller win for the reachability

objective {q`}×Nd?
Proposition
V � F and AVASS Coverability are
LogSpace-equivalent (already holds for BPP).

Simulation Game AVASS

qV q ′
V

a,u qV ,qF q ′
V

,qF ,a
u

qF q ′
F

a
qV ,qF ,a

qV ,q ′
F

>
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FS� VASS
Non-termination

input AVASS A

question can Controller force an infinite play?

Proposition
F � V and AVASS Non-termination are
LogSpace-equivalent (already holds for BPP).

Simulation Game AVASS

qF q ′
F

a
qV ,qF

qV ,q ′
F

,a

qV q ′
V

a,u
qV ,qF ,a q ′

V
,qF

u
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Controller Synthesis
Property

F−1F p

⇓

Controller

Environment

⇐

Resources

⇐

must remain non-negative
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Multidimensional Energy Games (1/2)

I defines an infinite
arena in Q×Zd

I energy semantics:
transitions are
non-blocking

I non-termination +
energy objective:
Controller must keep
the values
non-negative along an
infinite play
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Multidimensional Energy Games (2/2)

Theorem (Abdulla et al., 2013)

AVASS Non-termination and multidimensional
energy games are LogSpace-equivalent.

Energy Games AVASS

q q ′ ⇒
q

q ′

⊥

u u
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Complexity Bounds
Theorem (Brázdil et al., 2010)

AVASS Non-termination is in Tower and
ExpSpace-hard.

Proposition (Lower Bounds)
AVASS Coverability and Non-termination are
2ExpTime-hard, and ExpTime-hard in fixed
dimension d> 4.

Proposition (Upper Bound)
AVASS Coverability is in 2ExpTime, and in
ExpTime in fixed dimension (more precisely
pseudo-polynomial).
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Complexity Bounds

upper bound Rackoff (1978)’s technique: small
witness property

lower bounds Lipton (1976)’s technique:
reduction from alternating Minsky
machines
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Proof Plan for Coverability
I if coverable, then there exists a small witness of

double exponential height
I alternating TM can check the existence of a witness in
AExpSpace=2ExpTime

I induction on dimension: i-witness for (q,v)
I root label q,v

I enforces coverability: every leaf labeled by q`

I allows negative values on coordinates i< j6 d

I Hi: bound on supq,v of the heights of minimal
i-witnesses for (q,v)

18/21



Alternating VASS Regular Simulations Energy Games Complexity Bounds

Proof Plan for Coverability
I if coverable, then there exists a small witness of

double exponential height
I alternating TM can check the existence of a witness in
AExpSpace=2ExpTime

I induction on dimension: i-witness for (q,v)
I root label q,v

I enforces coverability: every leaf labeled by q`

I allows negative values on coordinates i< j6 d

I Hi: bound on supq,v of the heights of minimal
i-witnesses for (q,v)

18/21



Alternating VASS Regular Simulations Energy Games Complexity Bounds

Proof Plan for Coverability
I if coverable, then there exists a small witness of

double exponential height
I alternating TM can check the existence of a witness in
AExpSpace=2ExpTime

I induction on dimension: i-witness for (q,v)
I root label q,v

I enforces coverability: every leaf labeled by q`

I allows negative values on coordinates i< j6 d

I Hi: bound on supq,v of the heights of minimal
i-witnesses for (q,v)

18/21



Alternating VASS Regular Simulations Energy Games Complexity Bounds

Small Witnesses: Base Case

q,v

q` · · · · · · · · ·q` · · · · · · · · ·q`

No state can appear twice along a branch of a
minimal 0-witness:

H0 = |Q|
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Small Witnesses: Induction Step

Bi
def
= ‖Tu‖∞ ·Hi

q,v

< Bi
C

q1 ,v1

t1

qn ,vn

tn. . .

{

an (i+ 1)-witness t = C[t1, . . . , tn]
∀16 j6 n.∃16 k6 d.vj(k)> Bi

q,v

C

q1 ,v1

t ′1

qn ,vn

t ′n. . .

t ′ = C[t ′1, . . . , t ′n]

h
(C

)
6

|Q
|·B

i+
1

i

h(
t′ j
)
6

H
i

h
(t ′)

6
|Q

|·B
i+

1
i

+
H
i

Hi+1 6 |Q| ·Bi+1
i +Hi
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Concluding Remarks

I alternating VASS / asymmetric VASS games as
a sensible model for counter games

I forgotten connections with substructural logics

I importance of Rackoff (1978)’s techniques

I open problem: gap 2ExpTime-hard/Tower-easy
for AVASS Non-termination and F � V
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Substructural Logics
I Restrict the use of structural rules: e.g.

Γ ,A,A ` B
Γ ,A ` B

(C)
Γ ` B
Γ ,A ` B

(W)

I track resource usage in logic

I example: relevance logic
I in A→ B, A should be relevant to the proof of B

I forbids weakening (W) but allows contraction (C)

I cannot prove e.g. A→ (B→ A) and (A&¬A)→ B
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(Intuitionistic) Linear Logic

A ` A
(I)

Γ , !A, !A ` B
Γ , !A ` B

(C!)
Γ ,A ` B
Γ , !A ` B

(L!)

Γ ` A ∆,B ` C
Γ ,∆,A( B ` C

(L()
Γ ,A ` B
Γ ` A( B

(R()

Γ ,A ` C
Γ ,A&B ` C

Γ ,B ` C
Γ ,A&B ` C

(L&)
Γ ` A Γ ` B
Γ ` A&B

(R&)

Γ ,A ` C Γ ,B ` C
Γ ,A⊕B ` C

(L⊕)
Γ ` A

Γ ` A⊕B
Γ ` B

Γ ` A⊕B
(R⊕)

Γ ,A,B ` C
Γ ,A⊗B ` C

(L⊗)
Γ ` A ∆ ` B
Γ ,∆ ` A⊗B

(R⊗)

. . .
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Γ ` A ∆ ` B
Γ ,∆ ` A⊗B

(R⊗)

. . .
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(Intuitionistic) Linear Logic

A ` A
(I)

Γ , !A, !A ` B
Γ , !A ` B

(C!)
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(!,⊕)-Horn Programs (1/3)

connectives {⊗,(,⊕, !}

simple products W,X,Y,Z ::= p1⊗ p2⊗ ·· ·⊗ pm
for atomic pi’s

Horn implications X( Y

⊕-Horn implications X( (Y1⊕ ·· ·⊕Yn)

(!,⊕)-Horn sequents W, !Γ ` Z where Γ contains
Horn and ⊕-Horn implications
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(!,⊕)-Horn Programs (2/3)

Horn programs AVASS

X( Y ⇒ −X +Y

X( (Y1⊕ ·· ·⊕Yn) ⇒
...−X

+
Y
1

+
Yn

q⊗u−( q ′⊗u+ ⇐ q q ′u

q0( (q1⊕ q2) ⇐ q0

q1

q2
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(!,⊕)-Horn Programs (3/3)

AVASS Reachability
input AVASS A, configuration q`,v ∈Q×Nd

question can Controller win for the reachability
objective {(q`,v)}?

Theorem (Lincoln et al., 1992; Kanovich, 1995; Raskin et al., 2005)

AVASS Reachability is undecidable.

Corollary (Lincoln et al., 1992)

Provability in propositional linear logic is
undecidable.

Corollary (Kanovich, 1995)

Provability of (!,⊕)-Horn sequents is
undecidable.

27/21



References Substructural Logics Initial Credit

(!,⊕)-Horn Programs (3/3)

AVASS Reachability
input AVASS A, configuration q`,v ∈Q×Nd

question can Controller win for the reachability
objective {(q`,v)}?

Theorem (Lincoln et al., 1992; Kanovich, 1995; Raskin et al., 2005)

AVASS Reachability is undecidable.

Corollary (Lincoln et al., 1992)

Provability in propositional linear logic is
undecidable.

Corollary (Kanovich, 1995)

Provability of (!,⊕)-Horn sequents is
undecidable.

27/21



References Substructural Logics Initial Credit

Relevance Logic R&,( (1/2)

connectives {⊕,⊗,&,(}

rules with contraction (C)

Γ ,A,A ` B
Γ ,A ` B

(C)

but without weakening (W)
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Relevance Logic R&,( (2/2)

add increasing transitions to account for (C):
∀q ∈Q^,∀i6 d.q

ei−→ q

AVASS “Bottom-up” Coverability
input increasing AVASS A and

configuration q,v ∈Q^×Nd

question can Controller win for the reachability
objective {(q,v)}?

Theorem (Urquhart, 1999)

Bottom-up Coverability is Ackermann-complete.

Corollary (Urquhart, 1999)

Provability in R&,( is Ackermann-complete.
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Reachability Objective
AVASS Reachability

input AVASS A, configuration q`,v ∈Q×Nd

question can Controller win for the reachability
objective {(q`,v)}?
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Unknown Initial Credit

Unknown Initial Credit
input AVASS A with an objective

(reachability, coverability, etc.)
question ∃v ∈Nd s.t. Controller wins when

starting from qr,v?

Theorem (Chatterjee et al., 2012)

AVASS Non-termination with unknown initial
credit is coNP-complete.

Theorem (Urquhart, 1999)

AVASS Reachability with unknown initial credit
is Ackermann-complete.
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Multidimensional Mean-Payoff Games

I integer vector game over Q×Zd

I payoff : liminfn→∞ 1
nvn if vn is the nth vector of

the play

I threshold vector r ∈Qd: a payoff > r is seeked

Theorem (Chatterjee et al., 2010)

Finite-memory strategies for multidimensional
mean-payoff games with unknown initial credit
are coNP-complete.
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