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Outline

alternating VASS and asymmetric vector
addition games

applications
I substructural logics

I regular simulations

I energy games

complexity
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Recap: Parity Games
I two Players ^ and �:

partitioned state space
Q=Q^ ]Q�

I colour in {1, . . . ,k} on
each state

I parity objective: Player
^ wins iff the smallest
colour seen infinitely
often is even

q0 2

q13 q2 1

q32

q43
q5 0
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Vector Addition Games
I two Players ^ and �:

partitioned state space
Q=Q^ ]Q�

I dimension d ∈N:
transitions labelled
with vectors in Zd

I defines an infinite
arena in Q×Nd

I VASS semantics: a
transition is blocked if it
makes a value negative

q0 2

q13 q2 1

q32

q43
q5 0

−1,1

0,2

0,1

0,0

1,−1

−2,1

0,−1

2,0
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I dimension d ∈N:
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I VASS semantics: a
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q3 ,2,22

q4 ,3,1

3

q5 ,0,4 0

q0 ,4,0 2
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Game Objectives
Monotone objectives:
coverability given q` ∈Q, ^ wins if any

configuration in {q`}×Nd is visited

non-termination ^ wins if the play is infinite

parity given a colouring c:Q→ {1, . . . ,k},
^ wins if the least colour seen
infinitely often is even

Non-monotone objective:
reachability given q` ∈Q, ^ wins if the

configuration (q`,0) is visited
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Initial Credit

Given qr ∈Q:
fixed start from the configuration (qr,0)

unknown ^ chooses an initial vector vr ∈Nd

start from the configuration (qr,vr)

6/36
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Coverability VASS Games
(Raskin, Samuelides, and Van Begin, 2005)

Player � can enforce zero-tests:

Minsky machine

q

q1

q2

c i
=
0

ci --

⇒

Symmetric VASS Game

q

⊥

q1

q2

0

−ei

0

−ei

Theorem (Raskin et al., 2005)

Coverability VASS games with fixed initial credit
are undecidable.
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Asymmetric VASS Games
aka. vector games (Kanovich, 1995), B-games (Raskin et al., 2005), single-sided games (Abdulla et al., 2013)

I Q=Q^ ]Q�, resp. Controller and Environment

I T^ ⊆Q^×Zd×Q:

q^ q ′u

I T� ⊆Q�× {0}×Q:

q�

q1

q2
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Alternating VASS
aka. “and-branching” (Lincoln et al., 1992; Urquhart, 1999)

Q finite set of states

qr initial state in Q

Tu finite set of unary transitions
⊆Q×Zd×Q:

q q ′u

Tf set of fork transitions ⊆Q3:

q

q1

q2
9/36
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Tree Semantics �Winning Strategies

run in T(Q×Nd):

Initial

qr,0

unary rule in Tu

q,v

q ′,v+u

blocking
transition:
v+u> 0

u

fork rule in Tf

q,v

q1,v q2,v
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Monotone Games
Lemma
If Controller wins a monotone AVASS game from
some configuration (q,v) and v ′ > v, then he
also wins from (q,v ′).

Corollary (using Dickson’s Lemma)
I finite-memory strategies suffice for Controller
I coverability and non-termination AVASS games

are decidable
I Ackermann upper bounds from Figueira et al.

(2011) apply
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Reachability Objective (1/2)
(Lincoln, Mitchell, Scedrov, and Shankar, 1992)

Player � can enforce zero-tests using the
reachability objective (q`,0):

Minsky machine

q

q1

q2

c i
=
0

ci --

⇒

AVASS

q

q`

q1

q2−ei

∀j , i : −ej

Theorem (Lincoln et al., 1992)

Reachability AVASS games with fixed initial
credit are undecidable.
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Reachability Objective (2/2)
(Urquhart, 1999)

Unknown initial credit � gainy game
where ∀q ∈Q.∀16 i6 d.q

ei−→ q ∈ Tu

Theorem (Urquhart, 1999; Lazić and S., 2014)

Reachability AVASS games with unknown initial
credit are Ackermann-complete.

13/36



VASS Games AVASS Substructural Logics Energy Games Regular Simulations Complexity

Complexity Preview

initial credit

objective fixed unknown

coverability 2Exp P
(Courtois and S., 2014) (trivial)

non-termination 2Exp6 ? 6 Tower coNP
(Brázdil et al., 2010) (Chatterjee et al., 2010)

parity 2Exp6 ? 6 ∆0
1 coNP

(Abdulla et al., 2013) (Chatterjee et al., 2012)

reachability Σ0
1 Ack

(Lincoln et al., 1992) (Urquhart, 1999)
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Some Applications of AVASS

I substructural logics
(Lincoln et al., 1992; Kanovich, 1995; Urquhart, 1999; Lazić and S., 2014)

I energy games (Brázdil et al., 2010; Chatterjee et al., 2012)

I mean-payoff games (Chatterjee et al., 2010)

I one-sided µ-calculus (Abdulla et al., 2013)

I regular simulation games
(Jančar and Moller, 1995; Lasota, 2009; Abdulla et al., 2013, 2014; Courtois and S., 2014)
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Substructural Logics
I Restrict the use of structural rules: e.g.

Γ ,A,A ` B
Γ ,A ` B

(C)
Γ ` B
Γ ,A ` B

(W)

I track resource usage in logic

I example: relevance logic
I in A→ B, A should be relevant to the proof of B

I forbids weakening (W) but allows contraction (C)

I cannot prove e.g. A→ (B→ A) and (A&¬A)→ B
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(Intuitionistic) Linear Logic

A ` A
(I)

Γ , !A, !A ` B
Γ , !A ` B

(C!)
Γ ,A ` B
Γ , !A ` B

(L!)

Γ ` A ∆,B ` C
Γ ,∆,A( B ` C

(L()
Γ ,A ` B
Γ ` A( B

(R()

Γ ,A ` C
Γ ,A&B ` C

Γ ,B ` C
Γ ,A&B ` C

(L&)
Γ ` A Γ ` B
Γ ` A&B

(R&)

Γ ,A ` C Γ ,B ` C
Γ ,A⊕B ` C

(L⊕)
Γ ` A

Γ ` A⊕B
Γ ` B

Γ ` A⊕B
(R⊕)

Γ ,A,B ` C
Γ ,A⊗B ` C

(L⊗)
Γ ` A ∆ ` B
Γ ,∆ ` A⊗B

(R⊗)

. . .
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(!,⊕)-Horn Programs (1/3)
(Kanovich, 1995)

connectives {⊗,(,⊕, !}

simple products W,X,Y,Z ::= p1⊗ p2⊗ ·· ·⊗ pm
for atomic pi’s

Horn implications X( Y

⊕-Horn implications X( (Y1⊕ ·· ·⊕Yn)

(!,⊕)-Horn sequents W, !Γ ` Z where Γ contains
Horn and ⊕-Horn implications

18/36



VASS Games AVASS Substructural Logics Energy Games Regular Simulations Complexity

(!,⊕)-Horn Programs (2/3)

Horn programs AVASS

X( Y ⇒ −X +Y

X( (Y1⊕ ·· ·⊕Yn) ⇒
...−X

+
Y
1

+
Yn

q⊗u−( q ′⊗u+ ⇐ q q ′u

q0( (q1⊕ q2) ⇐ q0

q1

q2
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(!,⊕)-Horn Programs (3/3)

Theorem (Kanovich, 1995)

Provability of (!,⊕)-Horn sequents and AVASS
reachability are PSpace equivalent.

Corollary (Lincoln et al., 1992)

Provability in propositional linear logic is
undecidable.
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Controller Synthesis
Property

F−1F p

⇓

Controller

Environment

⇐

Resources

⇐

must remain non-negative
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Multidimensional Energy Games (1/2)
(Brázdil, Jančar, and Kučera, 2010; Chatterjee, Doyen, Henzinger, and Raskin, 2010)

I defines an infinite
arena in Q×Zd

I energy semantics:
transitions are
non-blocking

I non-termination +
energy objective:
Controller must keep
the values
non-negative along an
infinite play

q0

q1 q2

q3

q4 q5

−1,1

0,2

0,1

0,0

1,−1

−2,1

0,−1

2,0
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Multidimensional Energy Games (1/2)
(Brázdil, Jančar, and Kučera, 2010; Chatterjee, Doyen, Henzinger, and Raskin, 2010)

I defines an infinite
arena in Q×Zd

I energy semantics:
transitions are
non-blocking

I non-termination +
energy objective:
Controller must keep
the values
non-negative along an
infinite play

q0 ,0,0

q1 ,−1,1 q2 ,0,2

q3 ,0,2

q4 ,1,1 q5 ,−2,3

q0 ,1,0

q1 ,0,1 q2 ,1,2

q3 ,1,2

q3 ,−1,2

q4 ,0,1 q5 ,−3,3

q3 ,−1,3

q4 ,0,2 q5 ,−3,4

−1,1

0,2

0,0

1,−1

−2,1

0,−1

−1,1

0,2

0,1

0,0

0,1

1,−1

−2,1

0,−1

2,0

1,−1

−2,1
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Multidimensional Energy Games (2/2)
(Abdulla, Mayr, Sangnier, and Sproston, 2013)

Energy Games AVASS

q q ′ ⇒
q

q ′

⊥

u u

Theorem (Abdulla et al., 2013)

Non-termination AVASS games and
multidimensional energy games are
LogSpace-equivalent.
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Multidimensional Mean-Payoff Games
(Chatterjee, Doyen, Henzinger, and Raskin, 2010)

I integer vector game over Q×Zd

I payoff: liminfn→∞ 1
nvn if vn is the nth vector of

the play

I threshold vector r ∈Qd: a payoff > r is sought

Theorem (Chatterjee et al., 2010)

There exists a finite-memory winning strategy
for a multidimensional mean-payoff game iff
there is a winning strategy in the corresponding
multidimensional energy game.
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Finite-state specifications

Required behaviours Implementation Safe behaviours

r

a

|=ϕ ∈ ECTL∗

ra

e
i

Σ

Σ

|=ψ ∈ ACTL∗

� �
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Simulation Game
I two labelled transition

systems S1 and S2

I two players Spoiler and
Duplicator

I at each turn

1. Spoiler chooses a
successor state in S1

2. Duplicator must choose a
successor state in S2 with
the same action label

I any blocked player loses;
Duplicator wins if the play is
infinite

S1

S2

r

a

ra

e
i

Σ

Σ
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VASS Regular Simulations

Simulation relations between
I a labelled VASS V (i.e. an AVASS with Q� = ∅)

I a finite-state system F

Theorem (Jančar and Moller, 1995)

Both V� F and F � V are decidable.

Theorem (Lasota, 2009)

Both V� F and F � V are ExpSpace-hard,
already if V is a BPP.

27/36
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VASS� FS

Simulation Game

⇒
AVASS

q q ′a,u
q,p q ′,p,au

p p ′a
q,p,a

q,p ′

q`

Theorem (Courtois and S., 2014)

V � F and coverability AVASS games are
LogSpace-equivalent (already holds for BPP).
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FS� VASS

Simulation Game AVASS

p p ′a
q,p q,p ′,a

q q ′a,u q,p,a q ′,pu

Theorem (Abdulla et al., 2013; Courtois and S., 2014)

F � V and non-termination AVASS games are
LogSpace-equivalent (already holds for BPP).
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Complexity

initial credit

objective fixed unknown

coverability 2Exp P
(Courtois and S., 2014) (trivial)

non-termination 2Exp6 ? 6 Tower coNP
(Brázdil et al., 2010) (Chatterjee et al., 2010)

parity 2Exp6 ? 6 ∆0
1 coNP

(Abdulla et al., 2013) (Chatterjee et al., 2012)

reachability Σ0
1 Ack

(Lincoln et al., 1992) (Urquhart, 1999)
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Coverability with Fixed Initial Credit
(Courtois and S., 2014)

Proposition (Lower Bounds)
AVASS Coverability and Non-termination are
2Exp-hard, and Exp-hard in fixed dimension
d> 4.

Proposition (Upper Bound)
AVASS Coverability is in 2Exp, and in Exp in fixed
dimension (more precisely pseudo-polynomial).
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Coverability with Fixed Initial Credit
(Courtois and S., 2014)

upper bound Rackoff (1978)’s technique: small
witness property

lower bounds Lipton (1976)’s technique:
reduction from alternating Minsky
machines
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Proof Plan for Upper Bound
I if coverable, then there exists a small witness of

double exponential height
I alternating TM can check the existence of a witness in
AExpSpace=2Exp

I induction on dimension: i-witness for (q,v)
I root label q,v

I enforces coverability: every leaf labelled by q`

I allows negative values on coordinates i< j6 d

I Hi: bound on supq,v of the heights of minimal
i-witnesses for (q,v)
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Small Witnesses: Base Case

q,v

q` · · · · · · · · ·q` · · · · · · · · ·q`

No state can appear twice along a branch of a
minimal 0-witness:

H0 = |Q|
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Small Witnesses: Induction Step

Bi
def
= ‖Tu‖∞ ·Hi

q,v

< Bi
C

q1 ,v1

t1

qn ,vn

tn. . .

{

an (i+ 1)-witness t = C[t1, . . . , tn]
∀16 j6 n.∃16 k6 d.vj(k)> Bi

q,v

C

q1 ,v1

t ′1

qn ,vn

t ′n. . .

t ′ = C[t ′1, . . . , t ′n]

h
(C

)
6

|Q
|·B

i+
1

i

h(
t′ j
)
6

H
i

h
(t ′)

6
|Q

|·B
i+

1
i

+
H
i

Hi+1 6 |Q| ·Bi+1
i +Hi
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Complexity of Non-Termination

Marcin Jurdziński and Ranko Lazić:

Claim
Non-termination AVASS games with fixed initial
credit are in 2Exp.

This relies on a new bound:

Claim
Non-termination AVASS games with unknown
initial credit and fixed dimension d are
pseudo-polynomial.
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Concluding Remarks

I alternating VASS / asymmetric VASS games as
a sensible model for counter games

I forgotten connections with substructural logics

I upcoming 2Exp-completeness for
non-termination AVASS games and FS� VASS

I open gap for parity AVASS games
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