Well-quasi-orders in Logic

Sylvain Schmitz

Logic Mentoring Workshop, June 22, 2019

Outline

well-quasi-orders (wqo):

robust notion

- selection of applications:
 - algorithm termination
 - relevance logic
 - preservation theorems
 - certain answers

research projects

Outline

well-quasi-orders (wqo):

- robust notion
- selection of applications:
 - algorithm termination
 - relevance logic
 - preservation theorems
 - certain answers

research projects

Outline

well-quasi-orders (wqo):

- robust notion
- selection of applications:
 - algorithm termination
 - relevance logic
 - preservation theorems
 - certain answers

research projects

Finite Model Theory

A One-Player Game

- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

A One-Player Game

- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

Finite Model Theory

A One-Player Game

- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

If $(x_0, y_0) \neq (0, 0)$, then choosing $(x_j, y_j) = (\frac{x_0}{2j}, \frac{y_0}{2j})$ wins.

A One-Player Game

- over $\mathbb{N} \times \mathbb{N}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 .

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i, j)

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i, j)

By the infinite Ramsey Theorem, there exists an infinite monochromatic subset of indices.

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i, j)

By the infinite Ramsey Theorem, there exists an infinite monochromatic subset of indices. In all cases, it implies the existence of an infinite decreasing sequence in \mathbb{N} , a contradiction.

Finite Model Theory

Research Projects

- multiple equivalent definitions
- algebraic constructions

- multiple equivalent definitions: (X, \leq) work iff
 - ▶ bad sequences are finite: $x_0, x_1, ...$ is bad if $\forall i < j, x_i \not\leq x_j$
 - \blacktriangleright \leqslant is well-founded and has no infinite antichains
 - ▶ finite basis property: $\emptyset \subseteq U \subseteq X$ has at least one and finitely many minimal elements
 - ▶ ascending chain condition: any chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upwards-closed sets is finite
 - ▶ etc.
- algebraic constructions

- ▶ multiple equivalent definitions: (X, \leqslant) wqo iff
 - ▶ bad sequences are finite: $x_0, x_1, ...$ is bad if $\forall i < j, x_i \not\leq x_j$
 - ${\scriptstyle \blacktriangleright}\,\leqslant$ is well-founded and has no infinite antichains
 - ▶ finite basis property: $\emptyset \subseteq U \subseteq X$ has at least one and finitely many minimal elements
 - ▶ ascending chain condition: any chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upwards-closed sets is finite
 - ► etc.
- algebraic constructions

- ▶ multiple equivalent definitions: (X, \leqslant) wqo iff
 - ▶ bad sequences are finite: $x_0, x_1, ...$ is bad if $\forall i < j, x_i \not\leq x_j$
 - ${\scriptstyle \blacktriangleright}\,\leqslant$ is well-founded and has no infinite antichains
 - ▶ finite basis property: $\emptyset \subsetneq U \subseteq X$ has at least one and finitely many minimal elements
 - ▶ ascending chain condition: any chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upwards-closed sets is finite
 - ▶ etc.
- algebraic constructions

- ▶ multiple equivalent definitions: (X, \leqslant) wqo iff
 - ▶ bad sequences are finite: $x_0, x_1, ...$ is bad if $\forall i < j, x_i \not\leq x_j$
 - ${\scriptstyle \blacktriangleright}\,\leqslant$ is well-founded and has no infinite antichains
 - Finite basis property: $\emptyset \subsetneq U \subseteq X$ has at least one and finitely many minimal elements
 - ▶ ascending chain condition: any chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upwards-closed sets is finite

▶ etc.

algebraic constructions

- ▶ multiple equivalent definitions: (X, \leqslant) wqo iff
 - ▶ bad sequences are finite: $x_0, x_1, ...$ is bad if $\forall i < j, x_i \not\leq x_j$
 - ${\scriptstyle \blacktriangleright}\,\leqslant$ is well-founded and has no infinite antichains
 - ▶ finite basis property: $\emptyset \subsetneq U \subseteq X$ has at least one and finitely many minimal elements
 - \blacktriangleright ascending chain condition: any chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upwards-closed sets is finite
 - ▶ etc.
- algebraic constructions

- multiple equivalent definitions
- algebraic constructions
 - Cartesian products (Dickson's Lemma),
 - finite sequences (Higman's Lemma),
 - disjoint sums,
 - finite sets with Hoare's quasi-ordering,
 - finite trees (Kruskal's Tree Theorem),
 - graphs with minors (Robertson and Seymour's Graph Minor Theorem),
 - etc.

Example: Ordinals

ordinal: well-founded linear order

bad sequences are descending sequences:

 $\alpha \nleqslant \beta \text{ iff } \alpha > \beta$

Example: Dickson's Lemma

```
LEMMA (Dickson 1913)
```

If $(X, \leq X)$ and $(Y, \leq Y)$ are two wqos, then $(X \times Y, \leq X)$ is a wqo, where $\leq X$ is the product ordering:

$$\langle x,y\rangle \leqslant_{\times} \langle x',y'\rangle \stackrel{\text{def}}{\Leftrightarrow} x \leqslant_X x' \wedge y \leqslant_Y y'\,.$$

Example

- $(\mathbb{N}^d, \leqslant_{\times})$ using the product ordering
- ▶ $(\mathbb{M}(X), \leq_m)$ for finite multiset embedding over finite X

Example: Higman's Lemma

Lемма (Higman 1952)

If (X, \leq) is a wqo, then (X^*, \leq_*) is a wqo where \leq_* is the subword embedding ordering:

$$a_1 \cdots a_m \leqslant_* b_1 \cdots b_n \stackrel{\text{def}}{\Leftrightarrow} \begin{cases} \exists 1 \leqslant i_1 < \cdots < i_m \leqslant n, \\ \bigwedge_{j=1}^m a_j \leqslant_A b_{i_j} \end{cases}$$

Example

<mark>aba</mark> ≤_∗ baaacabbab

Example: Bounded Tree-Depth

Lемма (Ding 1992) For all k, (Graphs $\uparrow P_k, \subseteq$) is wqo.

Non-Examples

- in any execution, $\langle a_0, b_0 \rangle, \dots, \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2,\leqslant_{\times})$ is a wqo: all the runs are finite
- c.f. Podelski & Rybalchenko's transition invariants

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2,\leqslant_{\times})$ is a wqo: all the runs are finite
- c.f. Podelski & Rybalchenko's transition invariants

$$\begin{array}{lll} \mbox{SIMPLE}\left(a,b\right) & & \langle a_{0},b_{0},c_{0}\rangle \\ c \leftarrow 1 & & \langle a_{1},b_{1},c_{1}\rangle \\ \mbox{while} \ a > 0 \wedge b > 0 & & \vdots \\ & \langle a,b,c\rangle \leftarrow \langle a-1,b,2c\rangle & & \vdots \\ \ or & & \langle a,b,c\rangle \leftarrow \langle 2c,b-1,1\rangle & & \vdots \\ \ end & & \langle a_{j},b_{j},c_{j}\rangle \end{array}$$

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- c.f. Podelski & Rybalchenko's transition invariants

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- c.f. Podelski & Rybalchenko's transition invariants

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- c.f. Podelski & Rybalchenko's transition invariants

 $\mathsf{Example}\left(A \to (B \to A)\right)$

"if it's raining (A), then if your favorite color is green (B) then it's raining (A)"

A theorem in classical logic, not in relevance logic.

Gentzen-style sequent calculus

A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{L}) \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{R})$$

 $\mathsf{Example}\left(A \to (B \to A) \right)$

"if it's raining (A), then if your favorite color is green (B) then it's raining (A)"

A theorem in classical logic, not in relevance logic.

GENTZEN-STYLE SEQUENT CALCULUS

A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{L}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{R})$$

Gentzen-style sequent calculus A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{L}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{R})$$

PROBLEM (**PROVABILITY**) Given a sequent $\Gamma \vdash A$, is it provable?

THEOREM (KRIPKE 1959)

-

Provability is decidable in implicational relevance logic.

Gentzen-style sequent calculus A, B, C formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{\mathsf{L}}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{\mathsf{R}})$$

subformula property

- irredundant proof searches
 - \blacktriangleright (C) and (\rightarrow_R) commute: (C)'s only below a (\rightarrow_L)
 - rewrite proofs to apply (C) whenever possible
- irredundant proof branches are bad sequences for contraction
- ... which is wqo over the subformulæ of $\Gamma \vdash A$

Gentzen-style sequent calculus A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash A} (\mathsf{Id}) \qquad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (\mathsf{C})$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \to B \vdash C} (\to_{\mathsf{L}}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to_{\mathsf{R}})$$

- subformula property
- irredundant proof searches

 - ▶ rewrite proofs to apply (C) whenever possible
- irredundant proof branches are bad sequences for contraction
- ... which is wqo over the subformulæ of $\Gamma \vdash A$

Gentzen-style sequent calculus A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{L}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{R})$$

- subformula property
- irredundant proof searches

 - ▶ rewrite proofs to apply (C) whenever possible
- irredundant proof branches are bad sequences for contraction
- ... which is wore over the subformulæ of $\Gamma \vdash A$

Gentzen-style sequent calculus A, B, C formulæ; Γ , Δ multisets of formulæ; no weakening

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} (C)$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} (\rightarrow_{L}) \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} (\rightarrow_{R})$$

- subformula property
- irredundant proof searches
 - ${\scriptstyle \triangleright \ }$ (C) and (\rightarrow_R) commute: (C)'s only below a (\rightarrow_L)
 - ▶ rewrite proofs to apply (C) whenever possible
- irredundant proof branches are bad sequences for contraction
- ... which is woo over the subformulæ of $\Gamma \vdash A$

logic $\mathcal L$	example	$\hom_{\mathcal{L}}$
∃FO	$\exists z. x \xrightarrow{G} y \land \neg (y \xrightarrow{R} z)$	strong injective
$\exists FO^+(\neq)$	$\exists yy'.x \xrightarrow{R} y \land y' \xrightarrow{B} z \land y \neq y'$	injective
$\exists FO^+$	$\exists y.x \xrightarrow{G} y$	all

Fact If $\psi \in \mathcal{L}$, $h \in hom_{\mathcal{L}}$, and $D \models \psi(\mathbf{x})$, then $h(D) \models \psi(h(\mathbf{x}))$.

logic $\mathcal L$	example	$\hom_{\mathcal{L}}$
∃FO	$\exists z. x \xrightarrow{G} y \land \neg (y \xrightarrow{R} z)$	strong injective
$\exists FO^+(\neq)$	$\exists yy'.x \xrightarrow{R} y \land y' \xrightarrow{B} z \land y \neq y'$	injective
$\exists FO^+$	$\exists y.x \xrightarrow{G} y$	all

DEFINITION $D \leq_{\mathcal{L}} D'$ if $\exists h \in hom_{\mathcal{L}} \text{ s.t. } D' = h(D).$

logic $\mathcal L$	example	$\hom_{\mathcal{L}}$
∃FO	$\exists z. x \xrightarrow{G} y \land \neg (y \xrightarrow{R} z)$	strong injective
$\exists FO^+(\neq)$	$\exists yy'.x \xrightarrow{R} y \land y' \xrightarrow{B} z \land y \neq y'$	injective
$\exists FO^+$	$\exists y.x \xrightarrow{G} y$	all

OVER ARBITRARY STRUCTURES

THEOREM (ŁOŚ, LYNDON, TARSKI) If φ is an FO-sentence s.t. $\llbracket \varphi \rrbracket$ is upwards-closed for $\leq_{\mathcal{L}}$, then there exists $\psi \in \mathcal{L}$ with $\llbracket \varphi \rrbracket = \llbracket \psi \rrbracket$.

logic $\mathcal L$	example	$hom_\mathcal{L}$
∃FO	$\exists z. x \xrightarrow{G} y \land \neg (y \xrightarrow{R} z)$	strong injective
$\exists FO^+(\neq)$	$\exists yy'.x \xrightarrow{R} y \land y' \xrightarrow{B} z \land y \neq y'$	injective
$\exists FO^+$	$\exists y.x \xrightarrow{G} y$	all
0	- (

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Preservation Theorems

Application: Certain Answers

APPLICATION: CERTAIN ANSWERS

APPLICATION: CERTAIN ANSWERS

 $\textcircled{P} CHASE \text{ of } x \xrightarrow{G} z \implies \exists y \, . \, x \xrightarrow{R} y \, \land y \xrightarrow{B} z \text{ for } \phi \in \exists FO^+(\neq)$

 $\textcircled{P} \mathsf{CHASE} \text{ of } x \xrightarrow{\mathsf{G}} z \Longrightarrow \exists y \, . \, x \xrightarrow{\mathsf{R}} y \, \land \, y \xrightarrow{\mathsf{B}} z \text{ for } \phi \in \exists \mathsf{FO}^+(\neq)$

 $\textcircled{P} \mathsf{CHASE} \text{ of } x \xrightarrow{\mathsf{G}} z \Longrightarrow \exists y \, . \, x \xrightarrow{\mathsf{R}} y \, \land y \xrightarrow{\mathsf{B}} z \text{ for } \phi \in \exists \mathsf{FO}^+(\neq)$

 $\textcircled{P} \mathsf{CHASE} \text{ of } x \xrightarrow{\mathsf{G}} z \Longrightarrow \exists y \, . \, x \xrightarrow{\mathsf{R}} y \, \land y \xrightarrow{\mathsf{B}} z \text{ for } \phi \in \exists \mathsf{FO}^+(\neq)$

 $\textcircled{P} CHASE \text{ of } x \xrightarrow{\mathsf{G}} z \Longrightarrow \exists y \, . \, x \xrightarrow{\mathsf{R}} y \, \land y \xrightarrow{\mathsf{B}} z \text{ for } \phi \in \exists \mathsf{FO}^+(\neq)$

• over a wqo: by ascending chain condition, $\uparrow S_0 \subseteq \uparrow S_1 \subseteq \cdots$ always stabilises to $\uparrow S_*$

► certain_I(ϕ) = (dom I)* $\cap \bigcap_{B \in S_*} \{ \mathbf{x} \mid B \models \phi(\mathbf{x}) \}$

 ${\uparrow} S_0 \subseteq {\uparrow} S_1 \subseteq \cdots$ always stabilises to ${\uparrow} S_{\star}$

• certain_I(ϕ) = (dom I)* $\cap \bigcap_{B \in S_{\star}} \{ \mathbf{x} \mid B \models \phi(\mathbf{x}) \}$

- Perspectives of a doctoral thesis
- Job applications
- Funding applications
- For yourselves

- Perspectives of a doctoral thesis
- Job applications
- Funding applications
- For yourselves

/erificatior

Proof Theory

Finite Model Theory

Research Projects

Research Drives

Verification

Proof Theory

Finite Model Theory

Research Projects

Research Drives

Problems

- attainable?
- specialised?

Verificatior

Proof Theory

Finite Model Theory

Research Projects

Research Drives

Problems

- attainable?
- specialised?

- applications?
- impact?

Verification

Proof Theory

Finite Model Theory

Research Projects

Research Drives

Problems

- attainable?
- specialised?

- applications?
- impact?

/erificatior

Proof Theory

Finite Model Theory

Research Projects

Research Drives

Problems

- attainable?
- specialised?

Foundations

- applications?
- impact?

CURIOSITY

misrepresentation?

Finite Model Theory

Human Dimension

Will you collaborate on your project?

locally at your institution?

- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally or at summer schools?

Will you collaborate on your project?

Iocally at your institution?

by supervising students?

by animating a local seminar?

by organising specialised workshops?

by giving lectures locally or at summer schools?

- Iocally at your institution?
- internationally?
- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally or at summer schools?

- Iocally at your institution?
- internationally?
- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally or at summer schools?

- locally at your institution?
- internationally?
- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally or at summer schools?

- Iocally at your institution?
- internationally?
- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally on at summer schools?

- Iocally at your institution?
- internationally?
- by supervising students?
- by animating a local seminar?
- by organising specialised workshops?
- by giving lectures locally or at summer schools?