Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension

Jérôme Leroux & Sylvain Schmitz

LICS 2019

OUTLINE

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this talk

new complexity upper bounds

OUTLINE

vector addition systems (VAS)

central model of computation

reachability problem

- hard conceptually and computationally
- decision via decomposition algorithm

this talk

new complexity upper bounds

OUTLINE

vector addition systems (VAS)

central model of computation

reachability problem

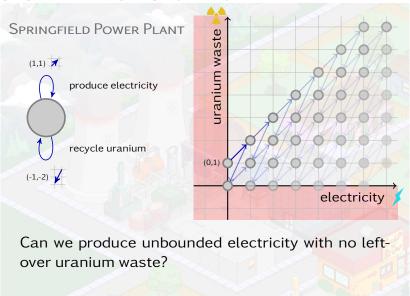
- hard conceptually and computationally
- decision via decomposition algorithm

this talk

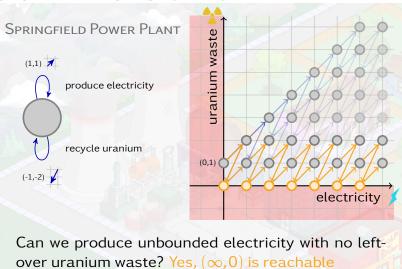
new complexity upper bounds

VECTOR ADDITION SYSTEMS

VECTOR ADDITION SYSTEMS



VECTOR ADDITION SYSTEMS



IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM

input: a vector addition system and two

configurations source and target

question: source \rightarrow * target?

- modelling of discrete resources (items, money, molecules, active threads, active data domain, . . .)
- many decision problems interreducible with reachability

IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM

input: a vector addition system and two

configurations source and target

question: **source** \rightarrow * **target**?

- modelling of discrete resources (items, money, molecules, active threads, active data domain,...)
- many decision problems interreducible with reachability

IMPORTANCE OF THE PROBLEM

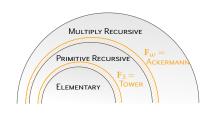
New Upper Bounds

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\omega}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$

Upper Bound Theorem VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

NEW UPPER BOUNDS

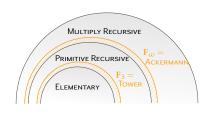
$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



Upper Bound Theorem VAS Reachability is in F_{ϖ} , and in F_{d+4} in fixed dimension d

NEW UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\omega}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



UPPER BOUND THEOREM

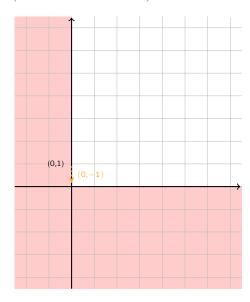
VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

[Mayr'81, Kosaraju'82, Lambert'92]

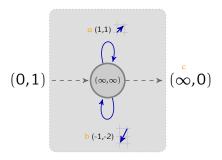
$$(0,1) \xrightarrow{(1,1)} (\infty,\infty) \xrightarrow{(0,\infty)} (\infty,0)$$

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]



[Mayr'81, Kosaraju'82, Lambert'92]



CHARACTERISTIC SYSTEM

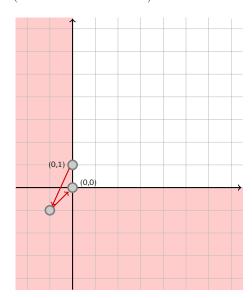
$$0+1 \cdot a - 1 \cdot b = c$$

$$1+1 \cdot a - 2 \cdot b = 0$$

SOLUTION PATH

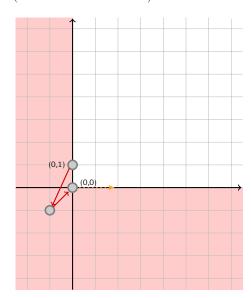
[Mayr'81, Kosaraju'82, Lambert'92]

solution path

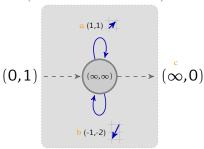


[Mayr'81, Kosaraju'82, Lambert'92]

solution path



[Mayr'81, Kosaraju'82, Lambert'92]

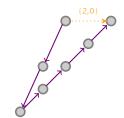


HOMOGENEOUS SYSTEM

$$1 \cdot \mathbf{a} - 1 \cdot \mathbf{b} = \mathbf{c}$$
$$1 \cdot \mathbf{a} - 2 \cdot \mathbf{b} = 0$$

a,b,c>0

Unbounded Path

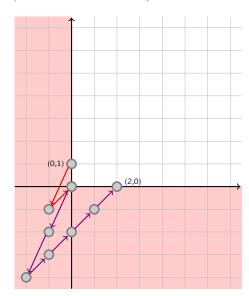


[Mayr'81, Kosaraju'82, Lambert'92]

solution path

unbounded path

×:

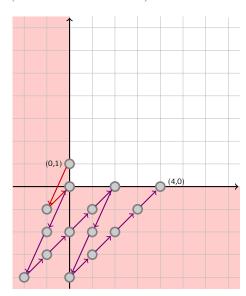


[Mayr'81, Kosaraju'82, Lambert'92]

solution path

 $\times 1$

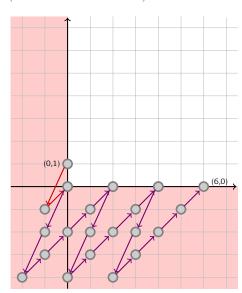
unbounded path



[Mayr'81, Kosaraju'82, Lambert'92]

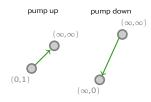
solution path

unbounded path



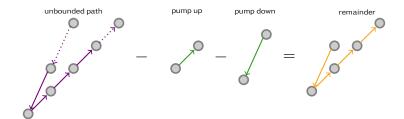
[Mayr'81, Kosaraju'82, Lambert'92]

PUMPABLE PATHS



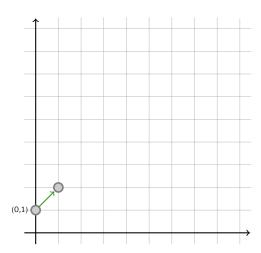
[Mayr'81, Kosaraju'82, Lambert'92]

PUMPABLE PATHS



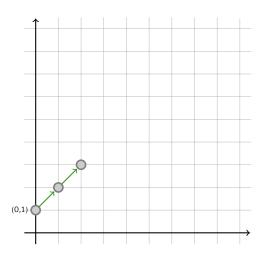
[Mayr'81, Kosaraju'82, Lambert'92]

pump up ×1



[Mayr'81, Kosaraju'82, Lambert'92]

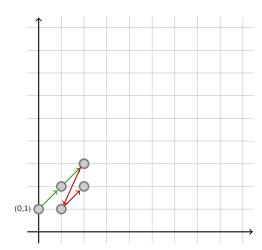
pump up ×2



[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

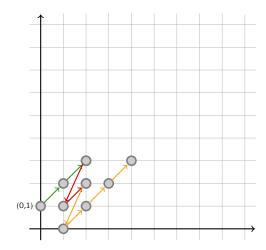


[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

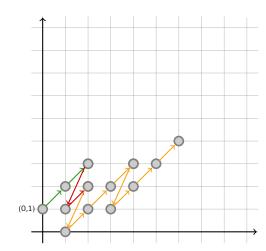


[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder



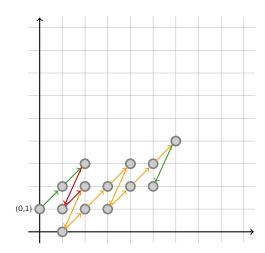
[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

pump down



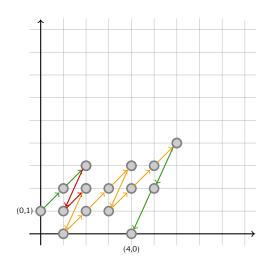
[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

pump down



"Simple Runs" (Θ Condition)

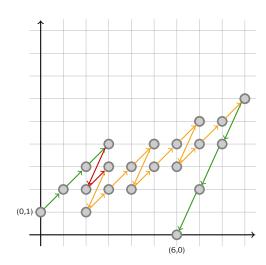
[Mayr'81, Kosaraju'82, Lambert'92]

pump up

solution path

remainder

pump down



DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"?

DECOMPOSITION ALGORITHM

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? yes

[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? no

decompose

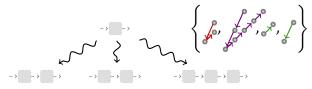
[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? no

decompose

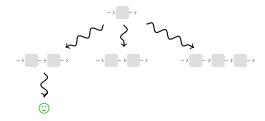
[Mayr'81, Kosaraju'82, Lambert'92]

can we build a "simple run"? no

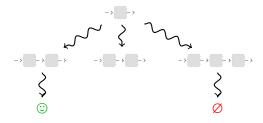


- ▶ no \(\sqrt{\text{:}}\): no execution \(\sqrt{\text{:}}\) empty decomposition
- ▶ no 🖟 :
 - ▶ bounded ∞: saturate with bounded value
 - bounded transition use: unfold and track bounded transition count
- ▶ no ¬ or no ¬: unfold and track bounded counter value

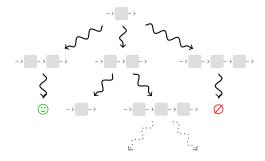
[Mayr'81, Kosaraju'82, Lambert'92]



[Mayr'81, Kosaraju'82, Lambert'92]



[Mayr'81, Kosaraju'82, Lambert'92]

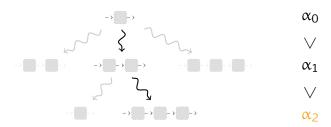


RANKING FUNCTION

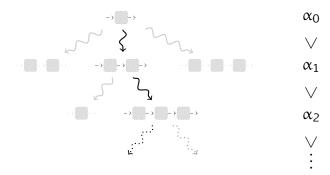
 α_0

RANKING FUNCTION

RANKING FUNCTION



RANKING FUNCTION



1. new ranking function:

order type $\omega^{\mathrm{d}+1}$

$$\omega^{\omega^3}$$
 in [Leroux & S. '15] $\omega^{\omega} \cdot (d+1)$ in [S. '17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+2}

1. new ranking function:

order type ω^{d+1}

$$\omega^{\omega^3}$$
 in [Leroux & S. '15] $\omega^{\omega} \cdot (d+1)$ in [S. '17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

1. new ranking function:

order type ω^{d+1}

$$\omega^{\omega^3}$$
 in [Leroux & S. ′15] $\omega^{\omega} \cdot (d+1)$ in [S. ′17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

1. new ranking function:

order type ω^{d+1}

$$\omega^{\omega^3}$$
 in [Leroux & S. '15] $\omega^{\omega} \cdot (d+1)$ in [S. '17]

2. refined analysis of pumpable paths:

Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}

 $\big\{ \text{effects of cycles } C \,|\, t \in C \big\}$

$$\{m \cdot \not > + n \cdot \not \neq \mid m \geqslant 0, n > 0\}$$

$$\operatorname{span}_{\mathbb{Q}}\Big(\big\{m\cdot \times + n\cdot \checkmark \mid m\geqslant 0, n>0\big\}\Big) = \mathbb{Q}^2$$

$$\dim\left(\operatorname{span}_{\mathbb{Q}}\left(\left\{m\cdot \times + n\cdot \times \mid m\geqslant 0, n>0\right\}\right) = \mathbb{Q}^2\right) = 2$$

here,

rank(t) = (1,0,0)

 $\in \mathbb{N}^{d+1}$

$$rank(G) \stackrel{\text{def}}{=} \sum_{t \in G} rank(t) \quad \in \mathbb{N}^{d+1}$$
 ordered lexicographically

RANK OF A VAS

For a transition t in (0,1) $(\infty,0)$

$$\dim\left(\operatorname{span}_{\mathbb{Q}}\left(\left\{m\cdot \times + n\cdot \times \mid m\geqslant 0, n>0\right\}\right) = \mathbb{Q}^2\right) = 2$$

here,

$$rank(t) = (1,0,0)$$

$$\in \mathbb{N}^{d+1}$$

DEFINITION

$$rank(G) \stackrel{\text{\tiny def}}{=} \sum_{t \in G} rank(t) \quad \in \mathbb{N}^{d+1} \\ \quad \text{ordered lexicographically}$$

RECALL:

- ▶ no \(\frac{1}{2} \): no execution \(\simes \) empty decomposition
- ► no 🖟 :
 - ▶ bounded ∞: saturate with bounded value
 - bounded transition use: unfold and track bounded transition count
- ▶ no ¾ or no ½: unfold and track bounded counter value

RECALL:

- ▶ no ¼: no execution ~> empty decomposition
- ► no 🖟:
 - ▶ bounded ∞: saturate with bounded value
 - bounded transition use: unfold and track bounded transition count
 - no a or no f: unfold and track bounded counter value

PROOF IDEA

Consider a strongly connected VAS G:

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- as $V' \subseteq V$, it suffices to show that V' = V implies T' = T

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

u T': in an homogeneous solution [ax, bu, cv]

- as $V' \subseteq V$, it suffices to show that V' = V implies T' = T

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

T': in an homogeneous solution [ax, bu, cv]

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- as $V' \subseteq V$, it suffices to show that V' = V implies T' = T

PROOF IDEA

Consider a strongly connected VAS G:

T \ T′: not in any hom, sol.

T': in an homogeneous solution [ax, bu, cv]

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - \triangleright pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

x u T': in an homogeneous solution [ax, bu, cv]

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom. sol.

x u T': in an homogeneous solution [ax, bu, cv]

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

T': in an homogeneous solution [ax, bu, cv]

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - ▶ pick $\mathfrak{p} \in \mathbb{N}_{>0}$ s.t. $\mathfrak{p}\lambda \in \mathbb{Z}$

PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - ▶ pick $\mathfrak{p} \in \mathbb{N}_{>0}$ s.t. $\mathfrak{p}\lambda \in \mathbb{Z}$
 - ► $\exists q \in \mathbb{N} \text{ s.t. } qa, qb, qc \geqslant p\lambda$

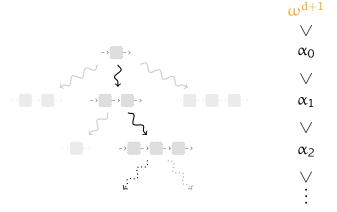
PROOF IDEA

Consider a strongly connected VAS G:

 $T \setminus T'$: not in any hom, sol.

- \triangleright let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(\mathbf{V}') < \dim(\mathbf{V})$
- ▶ as $V' \subseteq V$, it suffices to show that V' = V implies T' = T
 - ▶ pick cycle using every transition: effect $\mathbf{x} + \mathbf{z} + \mathbf{u} + \mathbf{v} \in \mathbf{V}$
 - ▶ V = V' thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - ▶ pick $\mathfrak{p} \in \mathbb{N}_{>0}$ s.t. $\mathfrak{p}\lambda \in \mathbb{Z}$
 - ► $\exists q \in \mathbb{N} \text{ s.t. } qa, qb, qc \geqslant p\lambda$
 - $[(p+qa-p\lambda)x,pz,(p+qb-p\lambda)u,(p+qc-p\lambda)v]$ also hom. sol

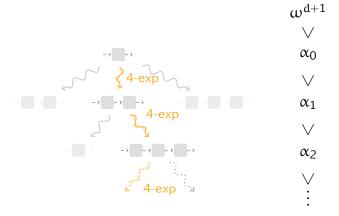
THE LENGTH OF DECOMPOSITION BRANCHES



Consequence of (S. '14)

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

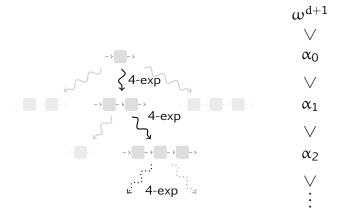
THE LENGTH OF DECOMPOSITION BRANCHES



Consequence of (S. '14)

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

THE LENGTH OF DECOMPOSITION BRANCHES

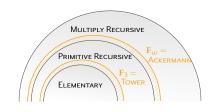


CONSEQUENCE OF (S. '14)

The decomposition tree is of size at most $F_{d+4}(e(\mathfrak{n}))$ for some elementary function e.

New Upper Bounds

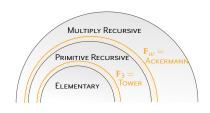
$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



Upper Bound Theorem VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

NEW UPPER BOUNDS

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \overbrace{F_0 \circ \cdots \circ F_0}^{x+1 \text{ times}}(x) = 2x+1 \\ F_2(x) &= \overbrace{F_1 \circ \cdots \circ F_1}^{x+1 \text{ times}}(x) \approx 2^x \\ F_3(x) &= \overbrace{F_2 \circ \cdots \circ F_2}^{x+1 \text{ times}}(x) \approx \text{tower}(x) \\ &\vdots \\ F_{\mathfrak{W}}(x) &= F_{x+1}(x) &\approx \text{ackermann}(x) \end{split}$$



UPPER BOUND THEOREM

VAS Reachability is in F_{ω} , and in F_{d+4} in fixed dimension d

THEOREM

VAS Reachability reduces to bounded VAS Reachability

labelled VAS transitions carry labels from some alphabet

L(V, source, target) the language of labels in runs from source to target

 $\downarrow L$ the set of scattered subwords of the words in the language L

EXAMPLE

aba ≤* baaacabbab

labelled VAS transitions carry labels from some alphabet

 $L(\mathcal{V}, \mathbf{source}, \mathbf{target})$ the language of labels in runs from source to target

> L the set of scattered subwords of the words in the language L

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS $\mathcal V$ and $\mathcal V'$ and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS V and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(V, \mathbf{source}, \mathbf{target})$ in polynomial time.

COROLLARY

The Downwards Language Inclusion is in Ackermann

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS $\mathcal V$ and $\mathcal V'$ and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS V and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(V, \mathbf{source}, \mathbf{target})$ in polynomial time.

COROLLARY

The Downwards Language Inclusion is in Ackermann.

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS $\mathcal V$ and $\mathcal V'$ and configurations

source, target, source', target'

question: $\downarrow L(\mathcal{V}, \mathbf{source}, \mathbf{target}) \subseteq \downarrow L(\mathcal{V}', \mathbf{source}', \mathbf{target}')$?

COROLLARY

The Downwards Language Inclusion is in Ackermann.

THEOREM (Zetzsche'16)

The Downwards Language Inclusion is Ackermann-hard.

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- ullet decomposition algorithm: requires $F_{\omega}=$ Ackermann time, because downward language inclusion is F_{ω} -hard [Zetzsche'16]
- reachability in VAS extensions
 - decidable in VAS with hierarchical zero tests [Reinhardt'08
 - what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- because downward language inclusion is $F_{\omega}=$ Ackermann time, because downward language inclusion is F_{ω} -hard [Zetzsche'16]
- reachability in VAS extensions
 - decidable in VAS with hierarchical zero tests [Reinhardt'08
 - what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS

Perspectives

1. complexity gap for VAS reachability

- ► Tower-hard [Czerwinski et al.'19]
- decomposition algorithm: requires $F_{\omega}=$ Ackermann time, because downward language inclusion is F_{ω} -hard [Zetzsche'16]
- 2. reachability in VAS extensions?
 - decidable in VAS with hierarchical zero tests [Reinhardt'08]
 - what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS