Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension

Jérôme Leroux & Sylvain Schmitz

LICS 2019
vector addition systems (VAS)
 ▶ central model of computation

reachability problem
 ▶ hard conceptually and computationally
 ▶ decision via decomposition algorithm

this talk
 ▶ new complexity upper bounds
Outline

- vector addition systems (VAS)
 - central model of computation
- reachability problem
 - hard conceptually and computationally
 - decision via decomposition algorithm
- this talk
 - new complexity upper bounds
Outline

vector addition systems (VAS)
 ▶ central model of computation

reachability problem
 ▶ hard conceptually and computationally
 ▶ decision via decomposition algorithm

this talk
 ▶ new complexity upper bounds
Vector Addition Systems
VECTOR ADDITION SYSTEMS
Vector Addition Systems

Springfield Power Plant

(1,1) produce electricity

(0,1) uranium waste

(-1,-2) recycle uranium

electricity
Can we produce unbounded electricity with no left-over uranium waste?
Can we produce unbounded electricity with no left-over uranium waste? Yes, \((\infty, 0)\) is reachable.
IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM

- input: *a vector addition system and two configurations source and target*
- question: *source →* target?

- modelling of discrete resources (items, money, molecules, active threads, active data domain, …)
- many decision problems interreducible with reachability
IMPORTANCE OF THE PROBLEM

REACHABILITY PROBLEM

input: a vector addition system and two configurations source and target

question: source \rightarrow^* target?

- modelling of discrete resources (items, money, molecules, active threads, active data domain, ...)
- many decision problems interreducible with reachability
Importance of the Problem

- **1962**
 - R. J. Lipton: EXPSPACE lower bound

- **1976**
 - E. W. Mayr: decidability by decomposition
 - S. R. Kosaraju: decidability by decomposition

- **1981**
 - J.-L. Lambert: decidability by decomposition

- **1982**
 - J. Leroux: decidability by Presburger inductive invariants

- **1992**
 - J. Leroux & S.: cubic Ackermann upper bound (\mathcal{F}_{ω^3})

- **2011**
 - S.: quadratic Ackermann upper bound (\mathcal{F}_{ω^2})

- **2015, 2017, 2019**
 - W. Czerwinski, S. Lasota, R. Lazić, J. Leroux, F. Mazowiecki: Tower lower bound (\mathcal{F}_3)
NEW UPPER BOUNDS

\[F_0(x) = x + 1 \]
\[F_1(x) = F_0 \circ \cdots \circ F_0(x) = 2x + 1 \]
\[F_2(x) = F_1 \circ \cdots \circ F_1(x) \approx 2^x \]
\[F_3(x) = F_2 \circ \cdots \circ F_2(x) \approx \text{tower}(x) \]
\[\vdots \]
\[F_\omega(x) = F_{x+1}(x) \approx \text{ackermann}(x) \]

UPPER BOUND THEOREM
VAS Reachability is in \(F_\omega \), and in \(F_{d+4} \) in fixed dimension \(d \)
New Upper Bounds

\[
\begin{align*}
F_0(x) &= x + 1 \\
F_1(x) &= F_0 \circ \cdots \circ F_0(x) = 2x + 1 \\
F_2(x) &= F_1 \circ \cdots \circ F_1(x) \approx 2^x \\
F_3(x) &= F_2 \circ \cdots \circ F_2(x) \approx \text{tower}(x) \\
&\vdots \\
F_\omega(x) &= F_{x+1}(x) \approx \text{ackermann}(x)
\end{align*}
\]

Upper Bound Theorem

VAS Reachability is in \(F_\omega \), and in \(F_{d+4} \) in fixed dimension \(d \).
New Upper Bounds

\[F_0(x) = x + 1 \]
\[F_1(x) = F_0 \circ \cdots \circ F_0(x) = 2x + 1 \]
\[x+1 \text{ times} \]
\[F_2(x) = F_1 \circ \cdots \circ F_1(x) \approx 2^x \]
\[x+1 \text{ times} \]
\[F_3(x) = F_2 \circ \cdots \circ F_2(x) \approx \text{tower}(x) \]
\[\vdots \]
\[F_\omega(x) = F_{x+1}(x) \approx \text{ackermann}(x) \]

Upper Bound Theorem

VAS Reachability is in \(F_\omega \), and in \(F_{d+4} \) in fixed dimension \(d \)
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
“Simple Runs” (Θ Condition)

[Mayr‘81, Kosaraju‘82, Lambert‘92]

Characteristic System

\[0 + 1 \cdot a - 1 \cdot b = c \]
\[1 + 1 \cdot a - 2 \cdot b = 0 \]

Solution Path

\[(0, -1) \]
“Simple Runs” (Θ Condition)

[Mayr‘81, Kosaraju‘82, Lambert‘92]
"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]

Homogeneous System

\[1 \cdot a - 1 \cdot b = c \]
\[1 \cdot a - 2 \cdot b = 0 \]
\[a, b, c > 0 \]

Unbounded Path

“Simple Runs” (Ω Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

- **pump up**
 - $(0,1)$
 - (∞, ∞)

- **pump down**
 - $(\infty, 0)$
 - (∞, ∞)
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
“Simple Runs” (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]
"Simple Runs" (Θ Condition)

[Mayr’81, Kosaraju’82, Lambert’92]

- Pump up: $\times 3$
- Solution path: $\times 1$
- Remainder: $\times 3$
- Pump down: $\times 3$
DECOMPOSITION ALGORITHM

[Mayr‘81, Kosaraju‘82, Lambert‘92]

can we build a “simple run”?

\[
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\end{array}
\]
Decomposition Algorithm

[Mayr’81, Kosaraju’82, Lambert’92]

can we build a “simple run”? yes

\[\{ \} \]

- ▶: no execution
 ⇝: empty decomposition

- ▶: no or no
 ▶: unfold and track bounded counter value

- ▶: bounded
 ▶: saturate with bounded value
 ▶: bounded transition use: unfold and track bounded transition count
DECOMPOSITION ALGORITHM

[Mayr‘81, Kosaraju‘82, Lambert‘92]

can we build a “simple run”? \(\text{no} \)

\[
\begin{align*}
\text{\rightarrow} & \quad \text{no} \\
\text{\rightarrow} & \quad \text{no}
\end{align*}
\]

\(\Rightarrow \) empty decomposition

\[
\begin{align*}
\text{\rightarrow} & \quad \text{bounded} \\
\infty & \quad \text{saturate with bounded value}
\end{align*}
\]

\[
\begin{align*}
\text{\rightarrow} & \quad \text{bounded transition use: unfold and track bounded transition count} \\
\text{\rightarrow} & \quad \text{no or no}
\end{align*}
\]

\(\Rightarrow \) unfold and track bounded counter value

\[
\begin{align*}
\{ & \quad \text{no}
\end{align*}
\]

decompose
DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju’82, Lambert’92]

Can we build a “simple run”? **No**

de decompose

{, , , }
DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju’82, Lambert’92]

Can we build a “simple run”? **no**

- **no**: no execution \(\mapsto\) empty decomposition
- **no**:
 - bounded \(\infty\): saturate with bounded value
 - bounded transition use: unfold and track bounded transition count
 - no \(\uparrow\) or no \(\downarrow\): unfold and track bounded counter value
Decomposition Algorithm

[Mayr’81, Kosaraju’82, Lambert’92]
DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju’82, Lambert’92]
DECOMPOSITION ALGORITHM

[Mayr’81, Kosaraju’82, Lambert’92]
Termination

Ranking Function

\[\alpha_0 \]
Termination

Ranking Function

\[\alpha_0 \lor \alpha_1 \]
TERMINATION

RANKING FUNCTION

\[\alpha_0 \lor \alpha_1 \lor \alpha_2 \]
Termination

Ranking Function

\[\alpha_0 \lor \alpha_1 \lor \alpha_2 \lor \ldots \]
TECHNICAL CONTRIBUTIONS

1. new ranking function:

order type ω^{d+1}

ω^3 in [Leroux & S. ’15]

$\omega^\omega \cdot (d + 1)$ in [S. ’17]

2. refined analysis of pumpable paths:

Rackoff-style analysis

improves complexity from F_{2d+2} to F_{d+4}
Technical Contributions

1. **new ranking function:**

 order type ω^{d+1}

 ω^{ω^3} in [Leroux & S. ’15]

 $\omega^\omega \cdot (d + 1)$ in [S. ’17]

2. **refined analysis of pumpable paths:**

 Rackoff-style analysis improves complexity from F_{2d+2} to F_{d+4}
Technical Contributions

1. **new ranking function:**

 order type ω^{d+1}

 ω^3 in [Leroux & S. ’15]
 $\omega \cdot (d + 1)$ in [S. ’17]

2. **refined analysis of pumpable paths:**

 Rackoff-style analysis
 improves complexity from F_{2d+2} to F_{d+4}
TECHNICAL CONTRIBUTIONS

1. **new ranking function:**

 order type ω^{d+1}

 ω^3 in [Leroux & S. ’15]
 $\omega^\omega \cdot (d + 1)$ in [S. ’17]

2. **refined analysis of pumpable paths:**

 Rackoff-style analysis
 improves complexity from F_{2d+2} to F_{d+4}
Rank of a Transition

For a transition t in $(0, 1) \rightarrow (\infty, \infty) \rightarrow (\infty, 0)$

\[\{\text{effects of cycles } C \mid t \in C\}\]
Rank of a Transition

For a transition t in $(0,1) \rightarrow (\infty,0)$, the rank is given by:

$$\{ m \cdot \vec{\alpha} + n \cdot \sqrt{\Box} \mid m \geq 0, n > 0 \}$$
Rank of a Transition

For a transition \(t \) in \((0,1)\) to \((\infty,0)\), we have:

\[
\text{span}_Q \left(\{ m \cdot \uparrow + n \cdot \sqrt{} \mid m \geq 0, n > 0 \} \right) = Q^2
\]
Rank of a Transition

For a transition \(t \) in \((0,1) \rightarrow (\infty,0)\)

\[
\dim\left(\text{span}_Q\left(\{ m \cdot \begin{array}{c} 1 \\ 0 \end{array} + n \cdot \begin{array}{c} 1 \\ 1 \end{array} \mid m \geq 0, n > 0 \} \right) \right) = \mathbb{Q}^2 = 2
\]
Rank of a Transition

For a transition t in $(0,1)$ to $(\infty,0)$

$$\dim \left(\text{span}_Q \left(\{ m \cdot (1,1) + n \cdot (0,1) \mid m \geq 0, n > 0 \} \right) = Q^2 \right) = 2$$

Here, $\text{rank}(t) = (1,0,0) \in \mathbb{N}^{d+1}$

Definition

$$\text{rank}(G) \overset{\text{def}}{=} \sum_{t \in G} \text{rank}(t) \in \mathbb{N}^{d+1}$$

ordered lexicographically
Rank of a VAS

For a transition t in $\langle 0,1 \rangle$ to $\langle \infty,0 \rangle$,

$$\dim \left(\text{span}_Q \left(\{ m \cdot \mathbf{1} + n \cdot \mathbf{2} \mid m \geq 0, n > 0 \} \right) \right) = Q^2 = 2$$

here, $\text{rank}(t) = (1,0,0) \in \mathbb{N}^{d+1}$

Definition

$$\text{rank}(G) \overset{\text{def}}{=} \sum_{t \in G} \text{rank}(t) \in \mathbb{N}^{d+1}$$ ordered lexicographically
Decreasing Ranks

Recall:

- no \implies no execution \leadsto empty decomposition

- bounded ∞: saturate with bounded value
- bounded transition use: unfold and track bounded transition count

- no \rightarrow or no \downarrow: unfold and track bounded counter value
Decreasing Ranks

Recall:

- no \bigtriangleup: no execution \rightarrow empty decomposition

- no \blacklozenge:
 - bounded ∞: saturate with bounded value
 - bounded transition use: unfold and track bounded transition count

- no \triangledown or no \bigtriangledown: unfold and track bounded counter value
DECREASING RANKS

Proof Idea

Consider a strongly connected VAS G:

Claim: if $T' \subset T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\text{dim}(V') < \text{dim}(V)$
- as $V' \subset V$, it suffices to show that $V' = V$ implies $T' = T$

 - pick cycle using every transition: effect $x + z + u + v \in V$
 - $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda (x + u + v)$
 - pick $p \in \mathbb{N}_{>0}$ s.t. $p \lambda \in \mathbb{Z}$
 - $\exists q \in \mathbb{N}$ s.t. $q a, q b, q c \geq p \lambda$
 - $[(p + qa - p \lambda)x, pz, (p + qb - p \lambda)u, (p + qc - p \lambda)v]$ also hom. sol
Decreasing Ranks

Proof Idea

Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subsetneq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(V') < \dim(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$
 - pick cycle using every transition: effect $x + z + u + v \in V$
 - $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
 - $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
 - $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol.
Proof Idea

Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subsetneq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(V') < \dim(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$
 - pick cycle using every transition: effect $x + z + u + v \in V$
 - $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
 - $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
 - $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol
Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subset T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\text{dim}(V') < \text{dim}(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$

- pick cycle using every transition: effect $x + z + u + v \in V$
- $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
- $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
- $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol
Decreasing Ranks

Proof Idea
Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subsetneq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\text{dim}(V') < \text{dim}(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$

- pick cycle using every transition: effect $x + z + u + v \in V$
- $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
- $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
- $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol
DECREASING RANKS

Proof Idea
Consider a strongly connected VAS \(G \):

- \(T \setminus T' \): not in any hom. sol.
- \(T' \): in an homogeneous solution \([ax, bu, cv]\)

Claim: if \(T' \subseteq T \), then \(\text{rank}(G') < \text{rank}(G) \)

- let \(V \), resp. \(V' \) be the vector space associated to cycles of \(T \), resp. \(T' \)
- we want to show \(\text{dim}(V') < \text{dim}(V) \)
- as \(V' \subseteq V \), it suffices to show that \(V' = V \) implies \(T' = T \)

- pick cycle using every transition: effect \(x + z + u + v \in V \)
- \(V = V' \) thus \(\exists \lambda \in \mathbb{Q} \) s.t. \(x + z + u + v = \lambda(x + u + v) \)
- \(\text{pick } p \in \mathbb{N}_{>0} \) s.t. \(p\lambda \in \mathbb{Z} \)
- \(\exists q \in \mathbb{N} \) s.t. \(qa, qb, qc \geq p\lambda \)
- \([(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v] \) also hom. sol
Decreasing Ranks

Proof Idea

Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subseteq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\text{dim}(V') < \text{dim}(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$

- pick cycle using every transition: effect $x + z + u + v \in V$
- $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
- $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
- $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol.
Proof Idea

Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subsetneq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(V') < \dim(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$
 - pick cycle using every transition: effect $x + z + u + v \in V$
 - $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
 - pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
 - $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
 - $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol.
DECREASING RANKS

PROOF IDEA

Consider a strongly connected VAS G:

- $T \setminus T'$: not in any hom. sol.
- T': in an homogeneous solution $[ax, bu, cv]$

Claim: if $T' \subsetneq T$, then $\text{rank}(G') < \text{rank}(G)$

- let V, resp. V' be the vector space associated to cycles of T, resp. T'
- we want to show $\dim(V') < \dim(V)$
- as $V' \subseteq V$, it suffices to show that $V' = V$ implies $T' = T$

- pick cycle using every transition: effect $x + z + u + v \in V$
- $V = V'$ thus $\exists \lambda \in \mathbb{Q}$ s.t. $x + z + u + v = \lambda(x + u + v)$
- pick $p \in \mathbb{N}_{>0}$ s.t. $p\lambda \in \mathbb{Z}$
- $\exists q \in \mathbb{N}$ s.t. $qa, qb, qc \geq p\lambda$
- $[(p + qa - p\lambda)x, pz, (p + qb - p\lambda)u, (p + qc - p\lambda)v]$ also hom. sol
The Length of Decomposition Branches

Consequence of (S. ‘14)

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.
The length of decomposition branches

\[\omega^{d+1} \]
\[\lor \]
\[\alpha_0 \]
\[\lor \]
\[\alpha_1 \]
\[\lor \]
\[\alpha_2 \]
\[\lor \]
\[\vdots \]

Consequence of (S. ’14)

The decomposition tree is of size at most \(F_{d+4}(e(n)) \) for some elementary function \(e \).
The Length of Decomposition Branches

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function e.

Consequence of (S. ’14)

The decomposition tree is of size at most $F_{d+4}(e(n))$ for some elementary function $e.
New Upper Bounds

\[F_0(x) = x + 1 \]
\[F_1(x) = F_0 \circ \cdots \circ F_0(x) = (x + 1)^{x+1 \text{ times}} \]
\[F_2(x) = F_1 \circ \cdots \circ F_1(x) \approx 2^x \]
\[F_3(x) = F_2 \circ \cdots \circ F_2(x) \approx \text{tower}(x) \]
\[\vdots \]
\[F_\omega(x) = F_{x+1}(x) \approx \text{ackermann}(x) \]

Upper Bound Theorem

VAS Reachability is in \(F_\omega \), and in \(F_{d+4} \) in fixed dimension \(d \)
New Upper Bounds

\[F_0(x) = x + 1 \]
\[F_1(x) = F_0 \circ \cdots \circ F_0(x) = 2x + 1 \]
\[F_2(x) = F_1 \circ \cdots \circ F_1(x) \approx 2^x \]
\[F_3(x) = F_2 \circ \cdots \circ F_2(x) \approx \text{tower}(x) \]
\[\vdots \]
\[F_\omega(x) = F_{x+1}(x) \approx \text{ackermann}(x) \]

Upper Bound Theorem

VAS Reachability is in \(F_\omega \), and in \(F_{d+4} \) in fixed dimension \(d \)

Theorem

VAS Reachability reduces to bounded VAS Reachability
A Related Problem

labelled VAS transitions carry labels from some alphabet $L(V, source, target)$ the language of labels in runs from source to target

$\downarrow L$ the set of scattered subwords of the words in the language L

Example

aba $\leq^* baaacabbbab$
A Related Problem

labelled VAS transitions carry labels from some alphabet $L(\mathcal{V}, \text{source}, \text{target})$ the language of labels in runs from source to target

$\downarrow L$ the set of scattered subwords of the words in the language L

Downwards Language Inclusion Problem

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target'

question: $\downarrow L(\mathcal{V}, \text{source}, \text{target}) \subseteq \downarrow L(\mathcal{V}', \text{source}', \text{target}')$?
A RELATED PROBLEM

Downwards Language Inclusion Problem

input: two labelled VAS \(V \) and \(V' \) and configurations

source, target, source', target'

question: \(\downarrow L(V, \text{source, target}) \subseteq \downarrow L(V', \text{source'}, \text{target'}) \) ?

Theorem (Habermehl, Meyer & Wimmel’10)

Given a labelled VAS \(V \) and configurations source and target and its decomposition, one can construct a finite automaton for \(\downarrow L(V, \text{source, target}) \) in polynomial time.

Corollary

The Downwards Language Inclusion is in \textbf{Ackermann}.
A Related Problem

Downwards Language Inclusion Problem

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target'

question: $\downarrow L(\mathcal{V}, \text{source}, \text{target}) \subseteq \downarrow L(\mathcal{V}', \text{source}', \text{target}')$?

Theorem (Habermehl, Meyer & Wimmel’10)

Given a labelled VAS \mathcal{V} and configurations source and target and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, \text{source}, \text{target})$ in polynomial time.

Corollary

The Downwards Language Inclusion is in Ackermann.
A RELATED PROBLEM

DOWNWARDS LANGUAGE INCLUSION PROBLEM

input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target'

question: $\downarrow L(\mathcal{V}, \text{source}, \text{target}) \subseteq \downarrow L(\mathcal{V}', \text{source}', \text{target}')$?

COROLLARY

The Downwards Language Inclusion is in ACKERMANN.

THEOREM (Zetzsche’16)

The Downwards Language Inclusion is ACKERMANN-hard.
PERSPECTIVES

1. complexity gap for VAS reachability
 ▶ **TOWER-hard** [Czerwinski et al.'19]
 ▶ decomposition algorithm: requires $F_\omega = \text{Ackermann}$ time,
 because downward language inclusion is F_ω-hard [Zetzsche’16]

2. reachability in VAS extensions?
 ▶ decidable in VAS with hierarchical zero tests [Reinhardt’08]
 ▶ what about
 ▶ branching VAS
 ▶ unordered data Petri nets
 ▶ pushdown VAS
1. complexity gap for VAS reachability
 ▶ **TOWER-hard** [Czerwinski et al.’19]
 ▶ decomposition algorithm: requires $F_\omega = \text{ACKERMANN}$ time, because downward language inclusion is F_ω-hard [Zetzsche’16]

2. reachability in VAS extensions?
 ▶ decidable in VAS with hierarchical zero tests [Reinhardt’08]
 ▶ what about
 ▶ branching VAS
 ▶ unordered data Petri nets
 ▶ pushdown VAS
1. complexity gap for VAS reachability
 ▶ **TOWER-hard** [Czerwinski et al.’19]
 ▶ decomposition algorithm: requires $F_{\omega} = \text{Ackermann}$ time, because downward language inclusion is F_{ω}-hard [Zetzsche’16]

2. reachability in VAS extensions?
 ▶ decidable in VAS with hierarchical zero tests [Reinhardt’08]
 ▶ what about
 ▶ branching VAS
 ▶ unordered data Petri nets
 ▶ pushdown VAS