Games with Discrete Resources

Sylvain Schmitz
with Th. Colcombet, J.-B. Courtois, M. Jurdziński, and R. Lazić

LSV, ENS Paris-Saclay & CNRS

IBISC, October 19, 2017
Outline

multi-dimensional energy parity games

complexity through perfect half-space games
 (Colcombet et al., LICS ’17)

related problems:

- multi-dimensional mean-payoff parity games
 (Chatterjee et al., Concur ’12)
- VASS games (too many references!)
- regular VASS simulations (Courtois and S., MFCS ’14)
- $(!,\oplus)$-Horn linear logic (Kanovich, APAL ’95)
- μ-calculus on VASS (Abdulla et al., Concur ’13)
- resource-bounded agent temporal logic $\text{RB}\pm\text{ATL}^*$
 (Alechina et al., RP ’16)
WHERE TO TRECK IN ICELAND?
WHERE TO TRECK IN ICELAND?

- Reykjavik
- Hrútafjördur
- Landmannalaugar
- Thórmörk
- Vatnajökull
- Mývatn
WHERE TO TRECK IN ICELAND?

MAXIMAL DRY TEMPERATURE
WHERE TO TRECK IN ICELAND?

MAXIMAL DRY TEMPERATURE
as a parity objective

Multi-Energy Parity Games

Perfect Half-Space Games
WHERE TO TRECK IN ICELAND?

MAXIMAL DRY TEMPERATURE
as a parity objective
WHERE TO TRECK IN ICELAND?

UNCONTROLLED EVENTS
WHERE TO TRECK IN ICELAND?

MAXIMAL DRY TEMPERATURE as a parity objective
UNCONTROLLED EVENTS as a two-players game

Maximal dry temperature as a parity objective
Uncontrolled events as a two-players game
WHERE TO TRECK IN ICELAND?

Maximal dry temperature as a parity objective
Uncontrolled events as a two-players game

Multi-Energy Parity Games

Perfect Half-Space Games
WHERE TO TRECK IN ICELAND?

DIScrete resources
WHERE TO TRECK IN ICELAND?

Maximal dry temperature
as a parity objective

Uncontrolled events
as a two-players game

Discrete resources
as a multi-energy objective

Diagram showing the transitions and states for the game with labels and positions of points indicating transitions and values.
WHERE TO TRECK IN ICELAND?

Maximal dry temperature
as a parity objective

Uncontrolled events
as a two-players game

Discrete resources
as a multi-energy objective

Maps of Iceland.

- **Reykjavik**
- **Landmannalaugar**
- **Thòrsmörk**
- **Hvítafjördur**
- **Vatnajökull**
- **Mývatn**

Maps of Iceland.

Maximal dry temperature as a parity objective

Uncontrolled events as a two-players game

Discrete resources as a multi-energy objective
Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- **energy** objective: no component goes negative
- **parity** objective: the maximal priority is odd

Example

\[
R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \cdots
\]

Decision problems: Does Player 1 have a winning strategy

- **given** initial credit as part of the input
- **existential**: for some initial credit
Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- energy objective: no component goes negative
- parity objective: the maximal priority is odd

Example

\[
R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \cdots
\]

Decision problems: Does Player 1 have a winning strategy

- given initial credit as part of the input
- existential: for some initial credit
Multi-Dimensional Energy Parity Games

Player 1 wins a play if both

- **energy** objective: no component goes negative
- **parity** objective: the maximal priority is odd

Example

\[
R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \ldots
\]

Decision problems: Does Player 1 have a winning strategy

- **given** initial credit as part of the input
- **existential**: for some initial credit
Multi-Dimensional Energy Games

Complexity

lower bound upper bound

w. initial credit

∃ initial credit
Multi-Dimensional Energy Games

Complexity

lower bound

upper bound

w. initial credit

EXPSPACE

(Lasota, IPL ’09)

∃ initial credit
Multi-Dimensional Energy Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXPSPACE</td>
<td>TOWER</td>
</tr>
<tr>
<td></td>
<td>(Lasota, IPL ’09)</td>
<td>(Brázdil et al., ICALP ’10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>coNP</th>
<th>coNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Games

Complexity

<table>
<thead>
<tr>
<th>Initial Credit</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP ((\text{Courtois and S., MFCS '14}))</td>
<td>TOWER ((\text{Brázdil et al., ICALP '10}))</td>
</tr>
<tr>
<td>∃ initial credit</td>
<td>coNP ((\text{Chatterjee et al., FSTTCS '10}))</td>
<td>coNP ((\text{Chatterjee et al., FSTTCS '10}))</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Games

Complexity

<table>
<thead>
<tr>
<th></th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP (Courtois and S., MFCS ’14)</td>
<td>2-EXP (Jurdziński et al., ICALP ’15)</td>
</tr>
<tr>
<td>(\exists) initial credit</td>
<td>coNP (Chatterjee et al., FSTTCS ’10)</td>
<td>coNP (Chatterjee et al., FSTTCS ’10)</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP</td>
</tr>
<tr>
<td>∃ initial credit</td>
<td>coNP</td>
</tr>
</tbody>
</table>

(Courtois and S., MFCS ’14)

(Chatterjee et al., Concur ’12)
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-EXP</td>
<td>decidable</td>
<td></td>
</tr>
<tr>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Abdulla et al., Concur ’13)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>coNP</th>
<th>coNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chatterjee et al., Concur ’12)</td>
<td>(Chatterjee et al., Concur ’12)</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>with initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-EXP</td>
<td>(Courtois and S., MFCS ’14)</td>
<td>TOWER (Jančar, RP ’15)</td>
</tr>
<tr>
<td>exists initial credit</td>
<td>coNP (Chatterjee et al., Concur ’12)</td>
<td>coNP (Chatterjee et al., Concur ’12)</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th></th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP (Courtois and S., MFCS ’14)</td>
<td>2-EXP (Colcombet et al., LICS ’17)</td>
</tr>
<tr>
<td>∃ initial credit</td>
<td>coNP (Chatterjee et al., Concur ’12)</td>
<td>coNP (Chatterjee et al., Concur ’12)</td>
</tr>
</tbody>
</table>
Fixed-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP for $d \geq 2$</td>
<td>(Jurdziński et al., LMCS ’08)</td>
<td>pseudoP</td>
</tr>
</tbody>
</table>

| \exists initial credit | pseudoP | (Colcombet et al., LICS ’17) |
Complexity of Multi-Energy Parity Games

Theorem (Colcombet et al., LICS ’17)

1. The given initial credit problem for multi-dimensional energy parity games is in 2-EXP.

2. With fixed dimension and number of priorities, it is in pseudo polynomial time.

- series of reductions using notably perfect half-space games

- fine understanding of Player 2’s strategies:
 Player 2 can win by announcing in which perfect half space he will escape
Complexity of Multi-Energy Parity Games

Theorem (Colcombet et al., LICS ’17)

1. The given initial credit problem for multi-dimensional energy parity games is in $2\text{-}\text{EXP}$.

2. With fixed dimension and number of priorities, it is in pseudo polynomial time.

- series of reductions using notably perfect half-space games

- fine understanding of Player 2’s strategies: Player 2 can win by announcing in which perfect half space he will escape
REDUCTIONS AND STRATEGY TRANSFERS

multi-dimensional energy parity games

(\text{Jančar, RP ’15})

\[\downarrow \]

extended multi-dimensional energy games (Brázdil et al., ICALP ’10)

\[\downarrow \]

bounding games (Jurdziński et al., ICALP ’15)

\[\downarrow \]

perfect half space games (Colcombet et al., LICS ’17)

\[\downarrow \]

lexicographic energy games (Colcombet and Niwiński)

\[\downarrow \]

mean-payoff games (Comin and Rizzi, Algorithmica ’16)
Extended Multi-Dimensional Energy Games

Encode Priorities as Energy (Jančar, RP '15)

Two new dimensions: tolerance to humid low/high temperature
Bounding Games

Player 1’s Objective

existential energy

bounding
Bounding Games

Player 1’s Objective

- **Existential Energy**
- **Bounding**
Bounding Games

Player 1’s Objective

existential energy

bounding
Bounding Games

Player 1’s Objective

existential energy

bounding
Bounding Games

Player 1’s Objective

existential energy

bounding
Bounding Games

Encoding Extended Energy Games

Bin excess energy

Unbounded replenishing

(..., −1,...)

(..., ω,...)

(0, 1, 0)
Perfect Half Space Games

Player 2’s Objective in a Bounding Game

Key Intuition
Player 2 can escape in a perfect half space
Perfect Half Space Games

Player 2’s Objective in a Bounding Game

![Diagram](image)

Key Intuition

Player 2 can escape in a *perfect half space*
Perfect Half-Space Games

Perfect Half-Space

\[\{ (x, y) : x + y < 0 \} \]
Perfect Half-Space Games

Perfect Half-Space

\[\{(x, y) : x + y < 0\} \]

boundary: \[\{(x, y) : x + y = 0\} \]
Perfect Half Space Games

Perfect Half Space

\[
\{(x, y) : x + y < 0\}\
\cup \{(x, y) : x + y = 0 \land x < 0\}
\]
Perfect Half Space Games

Plays

- pairs of vertices and perfect half spaces:

 \[(v_0, H_0) \xrightarrow{w_1} (v_1, H_1) \xrightarrow{w_2} (v_2, H_2) \cdots\]

- in his vertices, Player 2 chooses the current perfect half space
Perfect Half Space Games

- Player 2 wins if $\exists i$ s.t. $\sum_{j} w_j \geq 0$ diverges into $\cap_{j \geq i} H_j$

Example

$$H_L \cap H_R = \hfill$$
SOLVING PERFECT HALF SPACE GAMES

Theorem

Perfect half space games on multi-weighted game graphs \((V, E, d)\) are solvable in \((|V| \cdot \|E\|)^{O(d^3)}\).

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- \(\approx\) perfect half space game with a single fixed \(H\)
- itself reduced to a mean-payoff game
SOLVING PERFECT HALF SPACE GAMES

Theorem

Perfect half space games on multi-weighted game graphs \((V, E, d)\) are solvable in \((|V| \cdot \|E\|)^{O(d^3)}\).

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
 - \(\approx\) perfect half space game with a single fixed \(H\)
 - itself reduced to a mean-payoff game
Player 2 Strategies

Oblivious Strategy
Player 2 chooses the same H_v every time it visits vertex v.

Theorem
If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

“Counterless” Strategy

Corollary (Brázdil et al., ICALP ’10)
If Player 2 has a winning strategy in an existential multi-dimensional energy parity game, then it has a positional one.
Player 2 Strategies

Oblivious Strategy
Player 2 chooses the same H_v every time it visits vertex v.

Theorem
If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

“Counterless” Strategy

Corollary (Brázdil et al., ICALP ’10)
If Player 2 has a winning strategy in an existential multi-dimensional energy parity game, then it has a positional one.
VASS Games

multi-energy game configuration arena over $\mathbb{Q} \times \mathbb{Z}^d$

+ energy objective

VASS game configuration arena over $\mathbb{Q} \times \mathbb{N}^d$

Example

$R(0,0) \not\leftrightarrow H(-1,0)$
Objectives

Monotone objectives:

State reachability given $q_\ell \in Q$, Player 1 wins if any configuration in $\{q_\ell\} \times \mathbb{N}^d$ is visited.

Non-termination Player 1 wins if the play is infinite.

Parity given a colouring $c: Q \to \{1, \ldots, k\}$, Player 1 wins if the least colour seen infinitely often is odd.

Non-monotone objective:

Configuration reachability given $q_\ell \in Q$, Player 1 wins if the configuration $(q_\ell, 0)$ is visited.
Objectives

Monotone objectives:

- **state reachability** given $q_\ell \in Q$, Player 1 wins if any configuration in ${q_\ell} \times \mathbb{N}^d$ is visited

- **non-termination** Player 1 wins if the play is infinite

- **parity** given a colouring $c: Q \rightarrow \{1,\ldots,k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

- **configuration reachability** given $q_\ell \in Q$, Player 1 wins if the configuration $(q_\ell, 0)$ is visited
Objectives

Monotone objectives:

state reachability given $q_\ell \in Q$, Player 1 wins if any configuration in $\{q_\ell\} \times \mathbb{N}^d$ is visited

non-termination Player 1 wins if the play is infinite

parity given a colouring $c: Q \to \{1, \ldots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

configuration reachability given $q_\ell \in Q$, Player 1 wins if the configuration $(q_\ell, 0)$ is visited
OBJECTIVES

Monotone objectives:

- **state reachability** given $q_\ell \in Q$, Player 1 wins if any configuration in $\{q_\ell\} \times \mathbb{N}^d$ is visited

- **non-termination** Player 1 wins if the play is infinite

- **parity** given a colouring $c: Q \rightarrow \{1, \ldots, k\}$, Player 1 wins if the least colour seen infinitely often is odd

Non-monotone objective:

- **configuration reachability** given $q_\ell \in Q$, Player 1 wins if the configuration $(q_\ell, 0)$ is visited
STATE REACHABILITY VASS GAMES

Player 2 can enforce zero-tests:

Minsky machine

Symmetric VASS Game

\[
\begin{array}{c}
q \\
\downarrow c_i = 0 \\
q_1 \\
\uparrow \\
\downarrow c_i \\
q_2 \\
\end{array}
\quad \Rightarrow
\quad
\begin{array}{c}
q \\
\downarrow 0 \\
-\varepsilon_i \\
q_1 \\
\uparrow \\
\downarrow 0 \\
-\varepsilon_i \\
q_2 \\
\end{array}
\]

THEOREM (RASKIN ET AL., AVoCS ’04)

State reachability VASS games with given initial credit are undecidable.
State Reachability VASS Games

Player 2 can enforce zero-tests:

Minsky machine

\[
\begin{align*}
q & \quad c_i = 0 \\
q_1 & \\
q_2 & \\
\end{align*}
\]

Symmetric VASS Game

\[
\begin{align*}
q & \quad -e_i \\
\bot & \\
q_1 & \\
q_2 & \quad 0 \\
\end{align*}
\]

Theorem (Raskin et al., AVoCS ’04)

State reachability VASS games with given initial credit are undecidable.
ASYNMMETRIC VASS GAMES

Player 2 moves restricted to use the zero vector.

A FREQUENT ASSUMPTION

- and-branching VASS (Lincoln et al., APAL ’92)
- vector games (Kanovich, APAL ’95)
- B-games (Raskin et al., AVoCS ’04)
- single-sided games (Abdulla et al., Concur ’13)
- alternating VASS (Courtois and S., MFCS ’14)
Monotone Objectives (1/2)

Lemma (Monotone Objectives)

If Player 1 wins a monotone AVASS game from a configuration \(q, v\) and \(v' \geq v\), then she also wins from \(q, v'\).

Corollary (by Dickson’s Lemma)

- finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable
Lemma (Monotone Objectives)

If Player 1 wins a monotone AVASS game from a configuration q, v and $v' \geq v$, then she also wins from q, v'.

Corollary (by Dickson’s Lemma)

- finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable
Monotone Objectives

(1/2)

Lemma (Monotone Objectives)

If Player 1 wins a monotone AVASS game from a configuration q, v and $v' \succeq v$, then she also wins from q, v'.

Corollary (by Dickson’s Lemma)

- finite-memory strategies suffice for Player 1
- state reachability and non-termination objectives are decidable
Monotone Objectives

Multi-Energy Games

\[q \xrightarrow{u} q' \implies q \xrightarrow{u} \triangle \xrightarrow{u} q' \]

Theorem (Abdulla et al., Concur '13)

Monotone AVASS games and multi-dimensional energy games are LOGSPACE-equivalent.

Corollary

Monotone AVASS games with given initial credit are 2-EXP-complete.
Configuration Reachability Objective (1/2)

Player 2 can enforce zero-tests using the reachability objective \((q_\ell, 0)\):

- **Minsky machine**
 - \(q\) \(\xrightarrow{c_i = 0} q_1\)
 - \(q_1 \xrightarrow{c_i} q_2\)

- **AVASS**
 - \(q \xRightarrow{\forall j \neq i: -e_j} q_\ell\)
 - \(q \xRightarrow{-e_i} q_1\)
 - \(q_1 \xRightarrow{} q_2\)

Theorem (Lincoln et al., APAL '92)

Configuration reachability AVASS games with given initial credit are undecidable.
Configuration Reachability Objective

Existential initial credit \(\equiv\) gainy game
where \(\forall q \in Q. \forall 1 \leq i \leq d. q \overset{e_i}{\rightarrow} q\)

Theorem (Urquhart, JSL ’99; Lazić and S., ToCL ’15)

Configuration reachability AVASS games with existential initial credit are ACKERMANN-complete.
MODEL-CHECKING RESOURCE-AWARE LOGICS

VASS models fragment of the μ-calculus on VASS executions

(Abdulla et al., Concur ’13)

resource-bounded concurrent game structures $\text{RB}\pm \text{ATL}^*$

(Alechina et al., RP ’16)

Both are 2-EXP-complete by reduction to multi-energy parity games / parity AVASS games.
MODEL-CHECKING RESOURCE-AWARE LOGICS

VASS models fragment of the \(\mu \)-calculus on VASS executions
(Abdulla et al., Concur ’13)

resource-bounded concurrent game structures \(\text{RB} \pm \text{ATL}^* \)
(Alechina et al., RP ’16)

Both are 2-EXP-complete by reduction to multi-energy parity games / parity AVASS games.
Propositional (Intuitionistic) Linear Logic

<table>
<thead>
<tr>
<th>Rule</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>$\frac{\Gamma \vdash A}{\Gamma, !A \vdash A}$</td>
</tr>
<tr>
<td>(C!)</td>
<td>$\frac{\Gamma, !A, !A \vdash B}{\Gamma, !A \vdash B}$</td>
</tr>
<tr>
<td>(L!)</td>
<td>$\frac{\Gamma, !A \vdash B}{\Gamma, !A \vdash B}$</td>
</tr>
<tr>
<td>(\La)</td>
<td>$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C}$</td>
</tr>
<tr>
<td>(\La_{\rightarrow})</td>
<td>$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C}$</td>
</tr>
<tr>
<td>($\La_{&}$)</td>
<td>$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A & B \vdash C}$</td>
</tr>
<tr>
<td>($\La_{&}$)</td>
<td>$\frac{\Gamma, B \vdash C \quad \Gamma, A & B \vdash C}{\Gamma, A & B \vdash C}$</td>
</tr>
<tr>
<td>(\La_{\oplus})</td>
<td>$\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \oplus B \vdash C}$</td>
</tr>
<tr>
<td>(\La_{\oplus})</td>
<td>$\frac{\Gamma, B \vdash C \quad \Gamma, A \oplus B \vdash C}{\Gamma, A \oplus B \vdash C}$</td>
</tr>
<tr>
<td>(\La_{\otimes})</td>
<td>$\frac{\Gamma, A & B \vdash C}{\Gamma, A & B \vdash C}$</td>
</tr>
<tr>
<td>(\La_{\otimes})</td>
<td>$\frac{\Gamma, A \vdash B \quad \Delta \vdash C}{\Gamma, \Delta \vdash A \otimes B}$</td>
</tr>
<tr>
<td>(\La_{\otimes})</td>
<td>$\frac{\Gamma, A \otimes B \vdash C}{\Gamma, A \otimes B \vdash C}$</td>
</tr>
</tbody>
</table>

...
Propositional (Intuitionistic) Linear Logic

\[
\frac{A \vdash A}{(I)} \quad \frac{\Gamma, !A, !A \vdash B}{(C!)} \quad \frac{\Gamma, A \vdash B}{(L!)}
\]

\[
\frac{\Gamma \vdash A}{\Delta, B \vdash C} \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \quad \frac{\Gamma \vdash A}{\Gamma, A \vdash B} \quad \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C} \quad \frac{\Gamma \vdash A \& B}{\Gamma \vdash A} \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \& B} \quad \frac{\Gamma, A \vdash C}{\Gamma, B \vdash C} \quad \frac{\Gamma, A \& B \vdash C}{\Gamma, A \oplus B \vdash C} \quad \frac{\Gamma \vdash A \oplus B}{\Gamma \vdash A} \quad \frac{\Gamma \vdash A \oplus B}{\Gamma \vdash B} \quad \frac{\Gamma, A \vdash C}{\Gamma, B \vdash C} \quad \frac{\Gamma, A \& B \vdash C}{\Gamma, A \otimes B \vdash C} \quad \frac{\Gamma \vdash A}{\Gamma, A \otimes B \vdash C}\]

...
Propositional (Intuitionistic) Linear Logic

\[
\begin{align*}
\frac{A \vdash A}{(I)} & \quad \frac{\Gamma, !A, !A \vdash B}{(C!)} & \quad \frac{\Gamma, A \vdash B}{(L!)} \\
\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \rightarrow B \vdash C} & \quad \frac{\Gamma, A \vdash B}{(R \rightarrow)} \\
\frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C} & \quad \frac{\Gamma, B \vdash C}{(L \&)} & \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{(R \&)} \\
\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \oplus B \vdash C} & \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{(R \oplus)} \\
\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} & \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{(R \otimes)} \\
\frac{\Gamma, \Delta \vdash A \otimes B}{(R \otimes)} \\
\end{align*}
\]
(!, ⊕)-HORN PROGRAMS

connectives \{\otimes, \neg, \oplus, !\}

simple products \(W, X, Y, Z \coloneqq p_1 \otimes p_2 \otimes \cdots \otimes p_m \) for atomic \(p_i \)'s

Horn implications \(X \rightarrow Y \)

⊕-Horn implications \(X \rightarrow (Y_1 \oplus \cdots \oplus Y_n) \)

(!, ⊕)-Horn sequents \(W, !\Gamma \vdash Z \) where \(\Gamma \) contains Horn and ⊕-Horn implications
(!, ⊕)-HORN PROGRAMS

Horn programs

\[X \rightarrow Y \]

\[X \rightarrow (Y_1 \oplus \cdots \oplus Y_n) \]

AVASS

\[\triangle \rightarrow \triangle \]

\[\neg X \rightarrow +Y \]

\[q \otimes u \rightarrow q' \otimes u \]

\[q_0 \rightarrow (q_1 \oplus q_2) \]

\[q_0 \rightarrow q_1 \rightarrow q_2 \]
$(!, \oplus)$-HORN PROGRAMS

Horn programs

$X \rightarrow Y$

$X \rightarrow (Y_1 \oplus \cdots \oplus Y_n)$

$q \otimes u^- \rightarrow q' \otimes u^+$

$q_0 \rightarrow (q_1 \oplus q_2)$

AVASS

\Rightarrow

\Rightarrow

\Leftarrow

\Leftarrow

$q \quad u \rightarrow\quad q'$

$q_0 \quad q_1 \quad q_2$
(!, ⊕)-Horn Programs (3/3)

Theorem (Kanovich, APAL ’95)

Provability of (!, ⊕)-Horn sequents and configuration reachability AVASS games are PSPACE equivalent.

Corollary (Lincoln et al., APAL ’92)

Provability in propositional linear logic is undecidable.

Corollary (Courtois and S., MFCS ’14; Lazić and S., ToCL ’15)

- *Provability of affine (!, ⊕)-Horn sequents is 2-EXP-complete.*
- *Provability of contractive (!, ⊕)-Horn sequents is ACKERMANN-complete.*
(!, ⊕)-HORN PROGRAMS

Theorem (Kanovich, APAL ‘95)

Provability of (!, ⊕)-Horn sequents and configuration reachability AVASS games are PSPACE equivalent.

Corollary (Lincoln et al., APAL ‘92)

Provability in propositional linear logic is undecidable.

Corollary (Courtois and S., MFCS ‘14; Lazić and S., ToCL ‘15)

- Provability of affine (!, ⊕)-Horn sequents is 2-EXP-complete.
- Provability of contractive (!, ⊕)-Horn sequents is ACKERMANN-complete.
Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - affine ($\oplus,!$)-Horn linear logic
 (Kanovich, APAL ’95)
 - (weak) simulation of finite-state systems by Petri nets
 (Abdulla et al., Concur ’13)
 - model-checking Petri nets with a fragment of μ-calculus
 (Abdulla et al., Concur ’13)
 - resource-bounded agent temporal logic $\text{RB}^\pm\text{ATL}^*$
 (Alechina et al., RP ’16)

- fine understanding of Player 2’s strategies:

 Player 2 can win by announcing in which perfect half space he will escape

Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - affine $(\oplus,!)$-Horn linear logic
 (Kanovich, APAL ’95)
 - (weak) simulation of finite-state systems by Petri nets
 (Abdulla et al., Concur ’13)
 - model-checking Petri nets with a fragment of μ-calculus
 (Abdulla et al., Concur ’13)
 - resource-bounded agent temporal logic $\text{RB}^{\pm} \text{ATL}^*$
 (Alechina et al., RP ’16)
- fine understanding of Player 2’s strategies:

 Player 2 can win by announcing in which perfect half space he will escape
Concluding Remarks

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
 - affine \((\oplus,!)\)-Horn linear logic
 (Kanovich, APAL ‘95)
 - (weak) simulation of finite-state systems by Petri nets
 (Abdulla et al., Concur ‘13)
 - model-checking Petri nets with a fragment of \(\mu\)-calculus
 (Abdulla et al., Concur ‘13)
 - resource-bounded agent temporal logic \(\text{RB}\pm\text{ATL}^*\)
 (Alechina et al., RP ‘16)
- fine understanding of Player 2’s strategies:
 Player 2 can win by announcing in which perfect half space he will escape

