The Complexity of Coverability in ν-Petri Nets

R. Lazić S. Schmitz

Department of Computer Science, U. Warwick
LSV, ENS Cachan & INRIA, U. Paris-Saclay

Séminaire méthodes formelles, LaBRI, March 8th, 2016
Outline

ν-Petri nets (νPN)
Petri nets with data management and creation
(Rosa-Velardo and de Frutos-Escrig, 2008, 2011)

- coverability
 - decidable by classical backward coverability algorithm (Abdulla et al., 2000)
 - dual view using downwards-closed sets (Lazić and S., 2015)

Complexity
νPN coverability is complete for double Ackermann (F_{ω^2}-complete)
OUTLINE

ν-Petri nets (νPN)

Petri nets with data management and creation
(Rosa-Velardo and de Frutos-Escrig, 2008, 2011)

coverability

- decidable by classical **backward coverability** algorithm (Abdulla et al., 2000)
- dual view using **downwards-closed sets** (Lazić and S., 2015)

complexity νPN coverability is complete for double Ackermann (\(F_{\omega^2}\)-complete)
Outline

ν-Petri nets (νPN)

Petri nets with data management and creation

(Rosa-Velardo and de Frutos-Escrig, 2008, 2011)

Coverability

- decidable by classical **backward coverability** algorithm (Abdulla et al., 2000)

- dual view using **downwards-closed sets**
 (Lazić and S., 2015)

Complexity
νPN coverability is complete for **double Ackermann** ($\mathcal{F}_{\omega,2}$-complete)
ν-Petri Nets

Tokens carry data from an infinite countable domain \mathbb{D}

![Petri net diagram]

Configurations in \mathbb{N}_P^\times: multisets of markings

$$
\begin{bmatrix}
1 \\ 0 \\ 0 \\
3 \\ 0 \\ 0 \\
1 \\ 1 \\ 0
\end{bmatrix}
$$
ν-Petri Nets

Tokens carry data from an infinite countable domain \mathbb{D}

![Diagram of ν-Petri Nets]

Configurations in $(\mathbb{N}^P)^\otimes$: multisets of markings

$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\xrightarrow{t}
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
$$
Petri Nets as \(\nu \)-Petri Nets

- \(\alpha \) and \(\bar{\alpha} \) are complementary addressing places.
- \(c \) holds the actual token counts.
Petri Nets as ν-Petri Nets

- α and $\bar{\alpha}$ are complementary addressing places
- c holds the actual token counts
Reset Petri Nets as ν-Petri Nets

- α and $\bar{\alpha}$ are complementary addressing places for active tokens
- c holds both the active and inactive tokens
Reset Petri Nets as ν-Petri Nets

- α and \(\bar{\alpha} \) are complementary addressing places for active tokens
- \(c \) holds both the active and inactive tokens
Coverability Problem

verification of safety properties “nothing bad happens”

ordering of configurations by multiset embedding

\[[u_1, \ldots, u_n] \sqsubseteq [v_1, \ldots, v_p] \]

iff \(\exists f : \{1, \ldots, n\} \rightarrow \{1, \ldots, p\} \) injective,

\[\forall 1 \leq i \leq n, u_i \leq v_{f(i)} \]

Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\sqsubseteq
\begin{bmatrix}
10 & 1 & 2 \\
1 & 0 & 3 \\
0 & 1 & 1
\end{bmatrix}
\]

input a \(\nu\)-PN, a source configuration \(src \), and a “bad” configuration \(tgt \)

question \(\exists m, tgt \sqsubseteq m \) and \(src \rightarrow^* m \)?
Polyadic ν-Petri Nets

(Rosa-Velardo and Martos-Salgado, 2012)

- hold tuples of tokens in places
- equivalent to the full π-calculus
- model of dynamic database systems with existential positive guards
- undecidable coverability
Taxonomy of Petri Net Extensions

- v-Petri nets (Rosa-Velardo and de Frutos-Escrig, 2008) +order -> ordered data Petri nets (Lazić et al., 2008)
- v-Petri nets (Rosa-Velardo and de Frutos-Escrig, 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- Petri nets +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
- ordered data Petri nets (Lazić et al., 2008) +order -> ordered data nets (Lazić et al., 2008)
- ordered data nets (Lazić et al., 2008) +data -> affine nets (Finkel et al., 2004)
- affine nets (Finkel et al., 2004) +whole-place -> Petri nets
- Petri nets +order -> unordered data nets (Lazić et al., 2008)
- unordered data nets (Lazić et al., 2008) +fresh -> unordered data Petri nets (Lazić et al., 2008)
- unordered data Petri nets (Lazić et al., 2008) +whole-place -> ordered data Petri nets (Lazić et al., 2008)
Fast-Growing Complexity

(S., 2016)

\[F_{\omega \cdot 2} \overset{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{\omega \cdot 2}} \text{DTime}(A_{\omega \cdot 2}(p(n))) \]

- **Elementary**

 \[\bigcup_{k} F_k = \text{PRIMITIVE-RECURSIVE} \]

- **Primitive-Recursive**

 \[\bigcup_{\alpha < \omega} \alpha \omega F_{\alpha} = \text{MULTIPLY-RECURSIVE} \]

- **Multiply-Recursive**

 \[F_{\omega \cdot 2} \]

- **Ackermann**: “Ackermannian in” \(x \mapsto 2x \)

 \[A_1(x) \overset{\text{def}}{=} 2x \quad A_{k+2}(x) \overset{\text{def}}{=} A_{k+1}^x(1) \quad A_{\omega}(x) \overset{\text{def}}{=} A_{x+1}(x) \]

- **Double Ackermann**: “Ackermannian in” \(A_{\omega}(x) \)

 \[A_{\omega+k+1}(x) \overset{\text{def}}{=} A_{\omega+k}^x(1) \quad A_{\omega \cdot 2}(x) \overset{\text{def}}{=} A_{\omega+x+1}(x) \]
Fast-Growing Complexity

(S., 2016)

\[F_{\omega \cdot 2} \overset{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{\leq \omega \cdot 2}} \text{DTime}(A_{\omega \cdot 2}(p(n))) \]

\[\bigcup_{\alpha < \omega} F_{\alpha} = \text{MULTIPLY-RECURSIVE} \]

\[\bigcup_{k} F_{k} = \text{PRIMITIVE-RECURSIVE} \]

\[F_3 = \text{TOWER} \]

\[F_{\omega} F_{\omega + 1} \ldots F_{\omega \cdot 2} \ldots F_{\omega \omega} \]

- Ackermann: "Ackermannian in" \(x \mapsto 2x \)

\[A_1(x) \overset{\text{def}}{=} 2x \quad A_{k+2}(x) \overset{\text{def}}{=} A_{k+1}^x(1) \quad A_\omega(x) \overset{\text{def}}{=} A_{x+1}(x) \]

- Double Ackermann: "Ackermannian in" \(A_\omega(x) \)

\[A_{\omega + k + 1}(x) \overset{\text{def}}{=} A_{\omega + k}^x(1) \quad A_{\omega \cdot 2}(x) \overset{\text{def}}{=} A_{\omega + x + 1}(x) \]
Fast-Growing Complexity

(S., 2016)

- Ackermann: “Ackermannian in” \(x \mapsto 2x \)

\[
A_1(x) \overset{\text{def}}{=} 2x \quad A_{k+2}(x) \overset{\text{def}}{=} A_{k+1}^x(1) \quad A_\omega(x) \overset{\text{def}}{=} A_{x+1}(x)
\]

- double Ackermann: “Ackermannian in” \(A_\omega(x) \)

\[
A_{\omega+k+1}(x) \overset{\text{def}}{=} A_{\omega+k}^x(1) \quad A_{\omega \cdot 2}(x) \overset{\text{def}}{=} A_{\omega+x+1}(x)
\]
Main Result

Theorem

Coverability in νPNs is \mathbb{F}_{ω^2}-complete.

lower bound extends Lipton’s “object-oriented” programming in Petri nets

- basic block: Ackermann counters using Schnoebelen’s construction for reset Petri nets
- pushed to double Ackermann: composition and iteration operations

upper bound analyses a dual view of the backward coverability algorithm
Taxonomy of Petri Net Extensions

complexity of coverability

- ι-Petri nets (Rosa-Velardo and de Frutos-Escrig, 2008)
 - $F_\omega \leq ? \leq F_\omega \omega$ (Rosa-Velardo, 2014)
- unordered data Petri nets (Lazić et al., 2008)
 - $F_3 \leq ? \leq F_\omega \omega$ (Lazić et al., 2008, Rosa-Velardo, 2014)
- unordered data nets (Lazić et al., 2008)
 - $F_\omega \omega \omega$-complete (Haddad et al., 2012)
- ordered data Petri nets (Lazić et al., 2008)
 - $F_\omega \omega \omega$-complete (Haddad et al., 2012)
- unordered data nets (Lazić et al., 2008)
 - $F_\omega \omega \omega$-complete (Rosa-Velardo, 2014)
- affine nets (Finkel et al., 2004)
 - F_{ω}-complete
 - (Schnoebelen, 2010; Figueira et al., 2011)
- Petri nets
 - EXPSPACE-complete (Lipton, 1976; Rackoff, 1978)
Taxonomy of Petri Net Extensions

complexity of coverability

- Petri nets (Rosa-Velardo and de Frutos-Escrig, 2008)
 - $F_\omega \cdot 2$-complete (this talk)

- Ordered data Petri nets (Lazić et al., 2008)
 - $F_{\omega \cdot \omega}$-complete (Haddad et al., 2012)

- Unordered data Petri nets (Lazić et al., 2008)
 - $F_3 \leq F_{\omega \cdot 2}$ (Lazić et al., 2008, this talk)

- Unordered data nets (Lazić et al., 2008)
 - $F_{\omega \cdot \omega}$-complete (Rosa-Velardo, 2014)

- Affine nets (Finkel et al., 2004)
 - F_{ω}-complete
 - (Schnoebelen, 2010; Figueira et al., 2011)

- Petri nets
 - EXPSPACE-complete (Lipton, 1976; Rackoff, 1978)

- ν-Petri Nets

- Fast-Growing Complexity

- Backward Coverability

- Upper Bound
γ-Petri Nets are Well-Structured

(Finkel and Schnoebelen, 2001; Abdulla et al., 2000)

1. \((\mathbb{N}^P)^\otimes, \sqsubseteq\) is a well-quasi-order (wqo), which entails

 - finite bad sequences: any sequence \(m_0, m_1, m_2, \ldots\) with \(\forall i < j, m_i \nsubseteq m_j\), is finite

 - finite basis property: any upwards-closed subset \(U\) has a finite basis \(B\) such that \(U = \uparrow B\)

 - ascending chain property: all the ascending chains \(U_0 \subset U_1 \subset U_2 \subset \cdots\) of upwards-closed subsets are finite

2. **compatibility:** if \(m_1 \sqsubseteq m_1'\) and \(m_1 \rightarrow m_2\), then there exists \(m_2', m_2 \sqsubseteq m_2'\) and \(m_1' \rightarrow m_2'\)
"CLASSICAL" BACKWARD COVERABILITY

(ABDULLA et al., 2000)

compute $U_k = \{ m' \mid \exists m \supseteq \text{tgt}, m' \rightarrow^\leq_k m \}$; $U_* = \bigcup_k U_k$:

initially $U_0 \overset{\text{def}}{=} \uparrow \text{tgt}$

step $U_{k+1} \overset{\text{def}}{=} \text{Pre}_\exists(U_k) \cup U_k$

where

$\text{Pre}_\exists(S) \overset{\text{def}}{=} \{ m \mid \exists s \in S, m \rightarrow s \}$

representation of upwards-closed subsets \mathcal{U} through their minimal elements thanks to finite basis property

termination guaranteed by ascending chain property
“Classical” Backward Coverability

(ABDULLA et al., 2000)

compute $U_k = \{m' \mid \exists m \supseteq \text{tgt}, m' \rightarrow^k m\}; U_* = \bigcup_k U_k$:

initially $U_0 \overset{\text{def}}{=} \uparrow \text{tgt}$

step $U_{k+1} \overset{\text{def}}{=} \text{Pre}_\exists(U_k) \cup U_k$

where

$$\text{Pre}_\exists(S) \overset{\text{def}}{=} \{m \mid \exists s \in S, m \rightarrow s\}$$

representation of upwards-closed subsets U through their minimal elements thanks to finite basis property

termination guaranteed by ascending chain property
“Classical” Backward Coverability

(ABDULLA et al., 2000)

compute \(U_k = \{ m' \mid \exists m \supseteq \text{tgt}, m' \xrightarrow{\leq k} m \} ; U_* = \bigcup_k U_k : \)

initially \(U_0 \overset{\text{def}}{=} \uparrow \text{tgt} \)

step \(U_{k+1} \overset{\text{def}}{=} \text{Pre}_\exists(U_k) \cup U_k \)

where

\[
\text{Pre}_\exists(S) \overset{\text{def}}{=} \{ m \mid \exists s \in S, m \rightarrow s \}
\]

representation of upwards-closed subsets \(\mathcal{U} \) through their minimal elements thanks to finite basis property

termination guaranteed by ascending chain property
Ideal Decompositions for a wqo \((X, \leq)\)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- a subset \(\Delta \subseteq X\) is directed iff \(\Delta \neq \emptyset\) and \(\forall x, y \in \Delta, \exists z \in \Delta, x \leq z\) and \(y \leq z\)

- an ideal \(I\) is a downwards-closed and directed subset

 - equivalently, \(I\) is downwards-closed and irreducible: if \(I \subseteq D_1 \cup D_2\) for \(D_1, D_2\) downwards-closed, then \(I \subseteq D_1\) or \(I \subseteq D_2\)

 - every downwards-closed subset \(D \subseteq X\) is the union of a unique finite family of incomparable ideals: \(D = I_1 \cup \cdots \cup I_n\), called its canonical ideal decomposition

- finite ideal representations for many wqos
Ideal Decompositions for a wqo \((X, \leq)\)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- a subset \(\Delta \subseteq X\) is **directed** iff \(\Delta \neq \emptyset\) and
 \[
 \forall x, y \in \Delta, \exists z \in \Delta, x \leq z \text{ and } y \leq z
 \]

- an **ideal** \(I\) is a downwards-closed and directed subset

- equivalently, \(I\) is downwards-closed and **irreducible**: if \(I \subseteq D_1 \cup D_2\) for \(D_1, D_2\) downwards-closed, then \(I \subseteq D_1\) or \(I \subseteq D_2\)

- every downwards-closed subset \(D \subseteq X\) is the union of a unique finite family of incomparable ideals:
 \(D = I_1 \cup \cdots \cup I_n\), called its **canonical ideal decomposition**

- **finite ideal representations** for many wqos
Ideal Decompositions for a wqo (X, \leq)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- A subset $\Delta \subseteq X$ is **directed** iff $\Delta \neq \emptyset$ and $\forall x, y \in \Delta, \exists z \in \Delta, x \leq z$ and $y \leq z$.

- An ideal I is a downwards-closed and directed subset.

- Equivalently, I is downwards-closed and irreducible: if $I \subseteq D_1 \cup D_2$ for D_1, D_2 downwards-closed, then $I \subseteq D_1$ or $I \subseteq D_2$.

- Every downwards-closed subset $D \subseteq X$ is the union of a unique finite family of incomparable ideals: $D = I_1 \cup \cdots \cup I_n$, called its **canonical ideal decomposition**.

- Finite ideal representations for many wqos.
Ideal Decompositions for a wqo \((X, \preceq)\)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- A subset \(\Delta \subseteq X\) is **directed** iff \(\Delta \neq \emptyset\) and
 \[\forall x, y \in \Delta, \exists z \in \Delta, x \preceq z \text{ and } y \preceq z \]

- An **ideal** \(I\) is a downwards-closed and directed subset

- Equivalently, \(I\) is downwards-closed and **irreducible**: if \(I \subseteq D_1 \cup D_2\) for \(D_1, D_2\) downwards-closed,
 then \(I \subseteq D_1\) or \(I \subseteq D_2\)

- Every downwards-closed subset \(D \subseteq X\) is the union of a unique finite family of incomparable ideals:
 \(D = I_1 \cup \cdots \cup I_n\), called its **canonical ideal decomposition**

- **Finite ideal representations** for many wqos
Ideal Decompositions for a wqo \((X, \leq)\)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- every downwards-closed subset \(D \subseteq X\) is the union of a unique finite family of incomparable ideals: \(D = I_1 \cup \cdots \cup I_n\), called its **canonical ideal decomposition**

- finite ideal representations for many wqos
 - extended markings: \(\text{Idl}(\mathbb{N}^P) = \{ \downarrow u \mid u \in \mathbb{N}_\omega^P \overset{\text{def}}{=} (\mathbb{N} \cup \{\omega\})^P\}\)

 - extended configurations: \(\text{Idl}((\mathbb{N}^P)^\otimes) = \{ \downarrow (B, S) \mid B \in (\mathbb{N}_\omega^P)^\otimes, S \subseteq_f \mathbb{N}_\omega^P\}\)
 - where \(m \subseteq (B, S)\) iff \(\exists m' \in S^\otimes, m \subseteq B \oplus m'\)
 - \((B, S)\) is **reduced** iff \(S\) is an antichain and \(\forall u \in \text{Support}(B), \forall v \in S, u \not\leq v\)
Ideal Decompositions for a wqo \((X, \leq)\)

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009; Goubault-Larrecq et al., 2016)

- every downwards-closed subset \(D \subseteq X\) is the union of a unique finite family of incomparable ideals:
 \(D = I_1 \cup \cdots \cup I_n\), called its **canonical ideal decomposition**

- **finite ideal representations** for many wqos
 - extended markings: \(\text{Idl}(\mathbb{N}_P^\omega) = \{\downarrow u \mid u \in \mathbb{N}_P^\omega \overset{\text{def}}{=} (\mathbb{N} \cup \{\omega\})^P\}\)
 - extended configurations:
 \(\text{Idl}((\mathbb{N}_P^\omega)^\circledast) = \{\downarrow (B, S) \mid B \in (\mathbb{N}_P^\omega)^\circledast, S \subseteq_f \mathbb{N}_P^\omega\}\)
 - where \(m \sqsubseteq (B, S)\) iff \(\exists m' \in S^\circledast, m \sqsubseteq B \oplus m'\)
 - \((B, S)\) is **reduced** iff \(S\) is an antichain and
 \(\forall u \in \text{Support}(B), \forall v \in S, u \not\leq v\)
Dual Backward Coverability

(Lazić and S., 2015)

compute $D_k = \{ m' \mid \forall m \supseteq \text{tgt}, m' \rightarrow^* m \}$; $D_* = \bigcap_k D_k$:

initially $D_0 \overset{\text{def}}{=} (\mathbb{N}P)^\oplus \setminus (\uparrow \text{tgt})$

step $D_{k+1} \overset{\text{def}}{=} \text{Pre}_\forall(D_k) \cap D_k$

where

$\text{Pre}_\forall(S) \overset{\text{def}}{=} \{ m \mid \forall s, m \rightarrow s \implies s \in S \}$

representation of downwards-closed subsets D through finite representations of their ideal decompositions

termination guaranteed by descending chain property
Dual Backward Coverability

(Lazić and S., 2015)

compute \(D_k = \{ m' \mid \forall m \supseteq \text{tgt}, m' \xrightarrow{\leq k} m\} ; D_* = \bigcap_k D_k : \)

initially \(D_0 \overset{\text{def}}{=} (\mathbb{N}^P)_{\ominus} \setminus (\uparrow \text{tgt}) \)

step \(D_{k+1} \overset{\text{def}}{=} \text{Pre}_{\forall}(D_k) \cap D_k \)

where

\[
\text{Pre}_{\forall}(S) \overset{\text{def}}{=} \{ m \mid \forall s, m \rightarrow s \implies s \in S \}
\]

representation of downwards-closed subsets \(D \) through finite representations of their ideal decompositions

termination guaranteed by descending chain property
Dual Backward Coverability

(Lazić and S., 2015)

compute \(D_k = \{ m' | \forall m \subseteq \text{tgt}, m' \xrightarrow{\leq_k} m \} \); \(D_* = \bigcap_k D_k \):

initially \(D_0 \overset{\text{def}}{=} (\mathbb{N}^P)\ominus \setminus (\uparrow\text{tgt}) \)

step \(D_{k+1} \overset{\text{def}}{=} \text{Pre}_\forall(D_k) \cap D_k \)

where

\[\text{Pre}_\forall(S) \overset{\text{def}}{=} \{ m | \forall s, m \rightarrow s \implies s \in S \} \]

representation of downwards-closed subsets \(D \) through finite representations of their ideal decompositions

termination guaranteed by descending chain property
Dual Backward Coverability: Example

\[p_0 \xrightarrow{2} p_1 \]

\[\text{tgt} = (0,5) \]

\[D_0 = \downarrow(\omega,4) \]
Dual Backward Coverability: Example

\[\text{tgt} = (0, 5) \]

\[D_1 = \downarrow (1, 4) \cup \downarrow (\omega, 3) \]
Dual Backward Coverability: Example

\[D_2 = \downarrow(1,4) \cup \downarrow(3,3) \cup \downarrow(\omega,2) \]

\[\text{tgt} = (0,5) \]
Dual Backward Coverability: Example

\[\text{tgt} = (0, 5)\]

\[D_3 = \downarrow(1, 4) \cup \downarrow(3, 3) \cup \downarrow(5, 2) \cup \downarrow(\omega, 1)\]
Dual Backward Coverability: Example

\[D_4 = \downarrow(1,4) \cup \downarrow(3,3) \cup \downarrow(5,2) \cup \downarrow(7,1) \cup \downarrow(\omega,0) \]
Dual Backward Coverability: Example

\[\begin{align*}
p_0 & \to p_1 \quad 2 \\
\text{tgt} & = (0, 5)
\end{align*} \]

\[D_5 = \downarrow(1, 4) \cup \downarrow(3, 3) \cup \downarrow(5, 2) \cup \downarrow(7, 1) \cup \downarrow(9, 0) = D_* \]
Consider a norm $\| \cdot \| : X \rightarrow \mathbb{N}$ with:

$$\forall n, X_{\leq n} \overset{\text{def}}{=} \{ x \in X \mid \| x \| \leq n \}$$

finite:

$$\| u \| \overset{\text{def}}{=} \max_{p \in P} u(p)$$

for $u \in \mathbb{N}_\omega^P$

$$\| B, S \| \overset{\text{def}}{=} \max_{u \in \text{Support}(B), v \in S} (\| B \|, \| u \|, \| v \|)$$

for $\downarrow (B, S) \in \text{Idl}((\mathbb{N}_\omega^P)\otimes)$

$$\| D \| \overset{\text{def}}{=} \max_{1 \leq i \leq n} \| B_i, S_i \|$$

for $D = \downarrow (B_1, S_1) \cup \cdots \cup \downarrow (B_n, S_n)$

Consider a control function $g : \mathbb{N} \rightarrow \mathbb{N}$ strictly monotone and an initial norm $n \in \mathbb{N}$.

A sequence x_0, x_1, \ldots of elements of X is (g, n)-controlled if $\forall i, \| x_i \| \leq g^i(n)$.

Strongly (g, n)-controlled if $\| x_0 \| \leq n$ and $\forall i, \| x_{i+1} \| \leq g(\| x_i \|)$.
Controlled Sequences

- consider a norm $\| \cdot \| : X \rightarrow \mathbb{N}$ with
 $\forall n, X_{\leq n} \overset{\text{def}}{=} \{ x \in X \mid \| x \| \leq n \}$ finite:

 $\| u \| \overset{\text{def}}{=} \max_{p \in P} u(p)$ \quad for $u \in \mathbb{N}_\omega^P$

 $\| B, S \| \overset{\text{def}}{=} \max_{u \in \text{Support}(B), v \in S} (|B|, \| u \|, \| v \|)$ \quad for $\downarrow(B, S) \in \text{Idl}((\mathbb{N}_\omega^P) \otimes)$

 $\| D \| \overset{\text{def}}{=} \max_{1 \leq i \leq n} \| B_i, S_i \|$ \quad for $D = \downarrow(B_1, S_1) \cup \cdots \cup \downarrow(B_n, S_n)$

- consider a control function $g : \mathbb{N} \rightarrow \mathbb{N}$ strictly monotone and an initial norm $n \in \mathbb{N}$

- a sequence x_0, x_1, \ldots of elements of X is (g, n)-controlled if $\forall i, \| x_i \| \leq g^i(n)$

 strongly (g, n)-controlled if $\| x_0 \| \leq n$ and $\forall i, \| x_{i+1} \| \leq g(\| x_i \|)$
Controlled Sequences

▶ consider a norm \(\| \cdot \| : X \to \mathbb{N} \) with
\[
\forall n, X_n \overset{\text{def}}{=} \{ x \in X \mid \| x \| \leq n \} \text{ finite:}
\]
\[
\| u \| \overset{\text{def}}{=} \max_{p \in P} u(p) \quad \text{for } u \in \mathbb{N}_P^\omega
\]
\[
\| B, S \| \overset{\text{def}}{=} \max_{u \in \text{Support}(B), v \in S} (|B|, \| u \|, \| v \|) \quad \text{for } \downarrow (B, S) \in \text{Idl}((\mathbb{N}_P^\omega)^\otimes)
\]
\[
\| D \| \overset{\text{def}}{=} \max_{1 \leq i \leq n} \| B_i, S_i \| \quad \text{for } D = \downarrow (B_1, S_1) \cup \cdots \cup \downarrow (B_n, S_n)
\]

▶ consider a control function \(g : \mathbb{N} \to \mathbb{N} \) strictly monotone and an initial norm \(n \in \mathbb{N} \)

▶ a sequence \(x_0, x_1, \ldots \) of elements of \(X \) is \((g, n)\)-controlled if \(\forall i, \| x_i \| \leq g^i(n) \)

strongly \((g, n)\)-controlled if \(\| x_0 \| \leq n \) and \(\forall i, \| x_{i+1} \| \leq g(\| x_i \|) \)

Length Function Theorems (1/3)

(Figueira et al., 2011; S. and Schnoebelen, 2012)

Fact (Length Function Theorem for Bad Sequences in \(\mathbb{N}^P_\omega \))

Let \(n > 0 \). Any \((g, n)\)-controlled bad sequence \(e_0, e_1, \ldots, e_\ell \) of extended markings in \((\mathbb{N}^P_\omega, \leq)\) has length at most “Ackermannian in” \(g(\max(n, |P|)) \).
Length Function Theorems (2/3)

(Lazić and S., 2015)

- consider a descending chain $D_0 \supsetneq D_1 \supsetneq \cdots \supsetneq D_\ell$

- extract at each step $0 \leq k < \ell$ a proper ideal I_k from the canonical decomposition of D_k, s.t. $I_k \not\subseteq D_{k+1}$

- bad sequence of proper ideals $I_0, I_1, \ldots, I_{\ell-1}$

- in particular, for descending chains $\downarrow S_0 \supsetneq \downarrow S_1 \supsetneq \cdots \supsetneq \downarrow S_\ell$

of antichains

Corollary (Length Function Theorem for Hoare-Descending Chains over \mathbb{N}_ω^P)

Let $n > 0$. Any (g, n)-controlled descending chain $\downarrow S_0 \supsetneq \downarrow S_1 \supsetneq \cdots \supsetneq \downarrow S_\ell$ of antichains of $(\mathbb{N}_\omega^P, \subseteq)$ has length at most “Ackermannian in” $g(\max(n, |P|))$.
Length Function Theorems (2/3)

(Lazić and S., 2015)

- consider a descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

- extract at each step $0 \leq k < \ell$ a proper ideal I_k from the canonical decomposition of D_k, s.t. $I_k \not\subseteq D_{k+1}$

- bad sequence of proper ideals $I_0, I_1, \ldots, I_{\ell-1}$

- in particular, for descending chains $\downarrow S_0 \supseteq \downarrow S_1 \supseteq \cdots \supseteq \downarrow S_\ell$ of antichains

Corollary (Length Function Theorem for Hoare-Descending Chains over \mathbb{N}_ω^P)

Let $n > 0$. Any (g, n)-controlled descending chain $\downarrow S_0 \supseteq \downarrow S_1 \supseteq \cdots \supseteq \downarrow S_\ell$ of antichains of $(\mathbb{N}_\omega^P, \leq)$ has length at most “Ackermannian in” $g(\max(n, |P|))$.
Length Function Theorems (2/3)

(Lazić and S., 2015)

- consider a descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$

- extract at each step $0 \leq k < \ell$ a proper ideal I_k from the canonical decomposition of D_k, s.t. $I_k \subsetneq D_{k+1}$

- **bad sequence** of proper ideals $I_0, I_1, \ldots, I_{\ell-1}$

- in particular, for descending chains $\downarrow S_0 \supseteq \downarrow S_1 \supseteq \cdots \supseteq \downarrow S_\ell$

 of antichains

Corollary (Length Function Theorem for Hoare-Descending Chains over \mathbb{N}_ω^P)

Let $n > 0$. Any (g, n)-controlled descending chain $\downarrow S_0 \supseteq \downarrow S_1 \supseteq \cdots \supseteq \downarrow S_\ell$ of antichains of $(\mathbb{N}_\omega^P, \subseteq)$ has length at most "Ackermannian in" $g(\max(n, |P|))$.
Length Function Theorems (3/3)

- a descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$ over $(\mathbb{N}^P)^\otimes$ is **star-monotone** if $\forall 0 \leq k < \ell - 1$, $\forall I_{k+1} = \downarrow (B_{k+1}, S_{k+1})$ proper ideal from the canonical decomposition of D_{k+1}, $\exists I_k = \downarrow (B_k, S_k)$ proper ideal from the canonical decomposition of D_k s.t. $\downarrow S_{k+1} \subseteq \downarrow S_k$

Theorem (Length Function Theorem for Star-Monotone Descending Chains over $(\mathbb{N}_P^\omega)^\otimes$)

Let $n > 0$. Any strongly (g, n)-controlled star-monotone descending chain $D_0 \supseteq D_1 \supseteq \cdots \supseteq D_\ell$ of configurations in $(\mathbb{N}_P^\omega)^\otimes$ has length at most “double Ackermannian in” $g(\max(n, |P|))$.
WRAPPING UP

Lemma (Strong Control for νPNs)

The descending chain computed by the backward algorithm for a νPN N and target tgt is strongly (g, n)-controlled for $g(x) \overset{\text{def}}{=} x + |N|$ and $n \overset{\text{def}}{=} ||tgt||$.

Lemma (νPN Descending Chains are Star-Monotone)

The descending chains computed by the backward coverability algorithm for νPNs are star-monotone.

Theorem (Upper Bound)

The coverability problem for νPNs is in \mathcal{F}_{ω^2}.
Concluding Remarks

- first “natural” decision problem complete for F_{ω^2}
- ideals and downwards-closed sets as algorithmic tools
 - here, backward analysis (Lazić and S., 2015)
 - forward analysis (Finkel and Goubault-Larrecq, 2009, 2012)
 - reachability in Petri nets (Leroux and S., 2015)
 - formal languages (Zetzsche, 2015; Hague et al., 2016)
 - invariant inference (Padon et al., 2016)
 - piecewise testable separability (Goubault-Larrecq and S., 2016)
Concluding Remarks

- first “natural” decision problem complete for F_{ω^2}
- ideals and downwards-closed sets as *algorithmic* tools
 - here, backward analysis (Lazić and S., 2015)
- forward analysis (Finkel and Goubault-Larrecq, 2009, 2012)
- reachability in Petri nets (Leroux and S., 2015)
- formal languages (Zetzsche, 2015; Hague et al., 2016)
- invariant inference (Padon et al., 2016)
- piecewise testable separability (Goubault-Larrecq and S., 2016)

