Test Suite Generation

Sylvain Schmitz

LORIA, INRIA Nancy - Grand Est, Nancy, France

NaTAL Workshop, Nancy, June 25, 2008
Issues with Surface Generation

*Jean que cherches-tu est grand.
Jean qui baille s’endort.
Le chat noir est grand.
Il le faut.
Beaucoup de chats noirs se lavent.
Jean qu’il arrive agit.
*Le chat est avec beaucoup de poils grand.
Jean qui agit est grand.
*Le repas que attendez-vous arrive.
*Jean est avec chat grand.
Overgeneration

Definition
Equivalently, if a grammar
 ▶ assigns incorrect structure to grammatical sentences
 ▶ accepts agrammatical sentences
 ▶ generates agrammatical sentences
Error Mining

van Noord [2004], Sagot and Éric de la Clergerie [2006]

Applied to undergeneration:

1. parse a large corpus of correct sentences
2. failures indicate coverage issues
3. statistical analysis identifies a probable culprit for each failure
4. might attempt to provide corrections
Error Mining
van Noord [2004], Sagot and Éric de la Clergerie [2006]

Applied to undergeneration:

1. parse a large corpus of correct sentences
2. failures indicate coverage issues
3. statistical analysis identifies a probable culprit for each failure
4. might attempt to provide corrections
For Overgeneration?

Which test suite for pass/failure?

- a TreeBank
- a corpus of incorrect sentences
- sentences generated from the grammar
 - which input?
 - generation from logic formulae is NP-complete
For Overgeneration?

Which test suite for pass/failure?

- a TreeBank
- a corpus of incorrect sentences
- sentences generated from the grammar
 - which input?
 - generation from logic formulae is NP-complete
For Overgeneration?

Which test suite for pass/failure?

- a TreeBank
- a corpus of incorrect sentences
- sentences generated from the grammar
 - which input?
 - generation from logic formulae is NP-complete
For Overgeneration?

Which test suite for pass/failure?

- a TreeBank
- a corpus of incorrect sentences
- sentences generated from the grammar
 - which input?
 - generation from logic formulae is NP-complete
“Exhaustive” Generation

- not in terms of elementary trees (about 6,000)
- in terms of linguistic phenomena
 - grammar compiled from a meta grammar
 - compilation traces
 - 87 classes match linguistic phenomena
Meta Grammar

XMG, Crabbé [2005] and many others
Guided Generation

Input:
bag of classes

\{ InvertedNominalSubject, RelativeObject \}

Output:
set of trees

Le repas que attendez vous arrive.
Algorithm

S
Algorithm

S

N↓

VP

V◊

n0V
Algorithm
Algorithm
Algorithm

```
S
  |   |
N   VP
  |   |
S   V
  |   |
N   que
  |   |
D   C
  |   |
N   S
```

```
n0V
noun
stddeterminer
n0Vn1
```
Algorithm
Algorithm

Le repas que attendez vous arrive.
Digression: 2-level Syntax

Shieber [2006] and many others
Digression: Regular Tree Grammar

\[
\begin{align*}
S_s & \rightarrow n0V(N_s) \\
N_s & \rightarrow \text{noun}(N_a) \\
N_a & \rightarrow \text{stddeterminer}(N_a) \\
N_a & \rightarrow n0Vn1(N_a, Cl_s) \\
N_a & \rightarrow \varepsilon() \\
Cl_s & \rightarrow \text{CliticT}()
\end{align*}
\]

- need to account for feature structures
 see [S and Le Roux, 2008]
Algorithm, again

- derivation-tree centric

- distances computed using the accessibility relation in the regular tree grammar

- elementary tree selection uses distances
 - to the remaining target classes
 - to the globally accumulated classes
 - to the classes accumulated in the current derivation
Experiments with the Algorithm

- issue: non termination of the grammar
- experiments on small controlled subsets
- larger generation using GenI
 see [Gardent and Kow, 2007]
Experiments with Error Mining

Issues: Ordering Suspects

Worst Form Number: 1 0.220409692766 complexAdvDeDeterminer s0Pv1post
d7 0.220780944532

Worst Form Number: 2 0.185227187873 AdjectivalPredicativeform s0Pv1post
d7 0.185539179236
d11 0.185187092097
Experiments with Error Mining

Issues: Bigrams

Worst Form Number: 5 0.0836861365418
CanonicalSubject InvertedNominalSubject
d10 0.0838670966961
d1 0.0838670966961
InvertedNominalSubject RelativeObject
d10 0.0838670966961
d1 0.0838670966961
Random Concluding Remarks

- application of two-level syntax
- opens new issues with error mining
- entropy measures?

