Algorithmic Complexity of Well-Quasi-Orders

Sylvain Schmitz

based on joint works with D. Figueira, S. Figueira, J. Leroux, and Ph. Schnoebelen

LSV, ENS Paris-Saclay & CNRS, Université Paris-Saclay

MoVeP 2018

Outline

well-quasi-orders (wqo):

proving algorithm termination

a toolbox for wqo complexity

- upper bounds
- Iower bounds
- complexity classes
- this talk: focus on one problem
 - reachability in vector addition systems

Outline

well-quasi-orders (wqo):

proving algorithm termination

a toolbox for wqo complexity

- upper bounds
- Iower bounds
- complexity classes

this talk: focus on one problem

reachability in vector addition systems

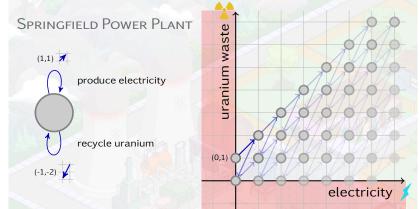
Outline

well-quasi-orders (wqo):

proving algorithm termination

a toolbox for wqo complexity

- upper bounds
- Iower bounds
- complexity classes


this talk: focus on one problem

reachability in vector addition systems

VECTOR ADDITION SYSTEMS

VECTOR ADDITION SYSTEMS

Can we produce unbounded electricity with no leftover uranium waste?

VECTOR ADDITION SYSTEMS

Can we produce unbounded electricity with no leftover uranium waste? Yes, $(\infty, 0)$ is reachable

Importance of the Problem

REACHABILITY PROBLEM input: a vector addition system and two configurations source and target question: source \rightarrow * target?

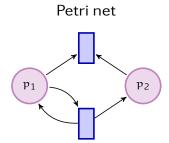
Importance of the Problem

Discrete Resources

- ▶ modelling: items, money, energy, molecules, ...
- distributed computing: active threads in thread pool
- data: isomorphism types in data logics and data-centric systems

Well-Quasi-Orders

Upper Bounds


omplexity Perspective

Importance of the Problem

MoVeP Example: Petri Nets

VAS

4/35

/ell-Quasi-Order

Upper Bounds

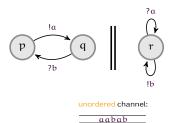
omplexity Perspective


Importance of the Problem

MoVeP Example: Petri Nets

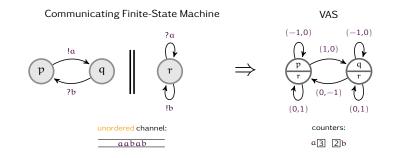
Petri net

VAS



plexity Perspective

Importance of the Problem


MoVeP Example: Unordered CFSM

Communicating Finite-State Machine

Importance of the Problem

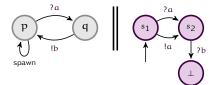
MoVeP Example: Unordered CFSM

Well-Quasi-Orders

Upper Bounds

omplexity Perspective

Importance of the Problem

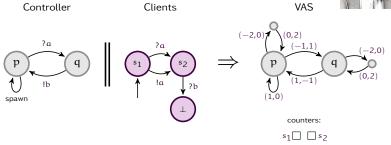

MoVeP Example: Asynchronous Rendez-vous

[German & Prasad Sistla'92]

Controller

Vell-Quasi-Order:

Upper Bounds


Complexity Perspectiv

Importance of the Problem

MoVeP Example: Asynchronous Rendez-vous

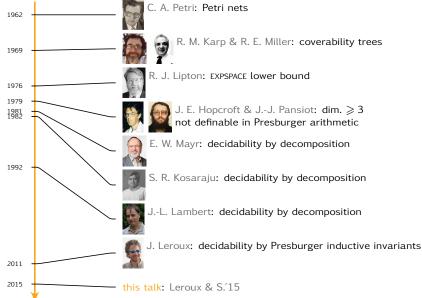
[German & Prasad Sistla'92]

Importance of the Problem

CENTRAL DECISION PROBLEM [S.'16] Large number of problems interreducible with reachability in vector addition systems

Upper Bound

Complexity Perspect


Importance of the Problem

THEOREM (Minsky'67)

Reachability is undecidable in 2-dimensional Minsky machines (vector addition systems with zero tests).

Importance of the Problem

omplexity Perspective

DEMYSTIFYING REACHABILITY IN VECTOR ADDITION SYSTEMS [Leroux & S.'15]

IDEAL DECOMPOSITION THEOREM The Decomposition Algorithm computes the ideal decomposition of the set of runs from source to target.

UPPER BOUND THEOREM Reachability in vector addition systems is in cubic Ackermann.

nplexity Perspective

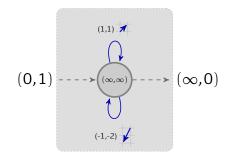
DEMYSTIFYING REACHABILITY IN VECTOR ADDITION SYSTEMS [Leroux & S.'15]

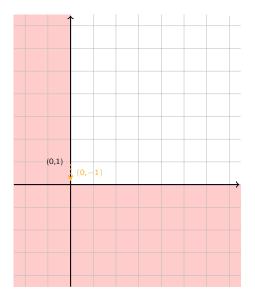
IDEAL DECOMPOSITION THEOREM The Decomposition Algorithm computes the ideal decomposition of the set of runs from source to target.

UPPER BOUND THEOREM Reachability in vector addition systems is in cubic Ackermann.

mplexity Perspective

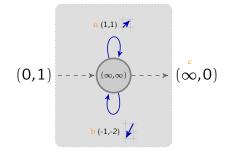
DEMYSTIFYING REACHABILITY IN VECTOR ADDITION SYSTEMS [Leroux & S.'15; S.'17]

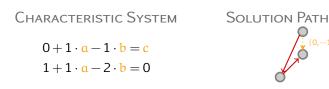

IDEAL DECOMPOSITION THEOREM The Decomposition Algorithm computes the ideal decomposition of the set of runs from source to target.

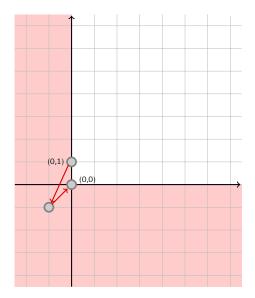

UPPER BOUND THEOREM Reachability in vector addition systems is in quadratic Ackermann.

Upper Bound

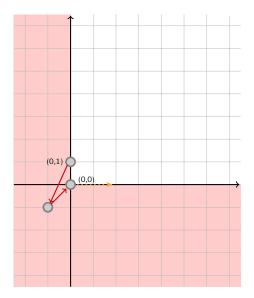
omplexity Perspectiv


"Simple Runs" (Θ Condition)

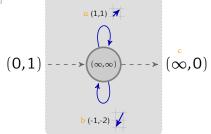



√: (0,−1)

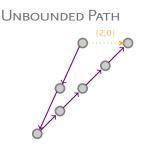
"SIMPLE RUNS" (Θ Condition)

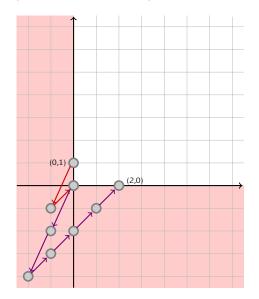

[Mayr'81, Kosaraju'82, Lambert'92]

solution path


[Mayr'81, Kosaraju'82, Lambert'92]

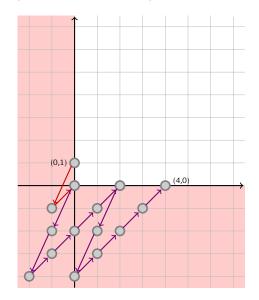
solution path

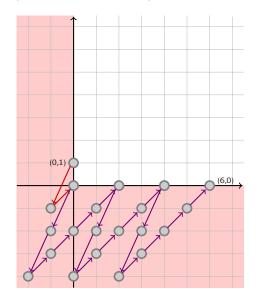



[Mayr'81, Kosaraju'82, Lambert'92]

Homogeneous System

$$1 \cdot a - 1 \cdot b = c$$
$$1 \cdot a - 2 \cdot b = 0$$
$$a, b, c > 0$$



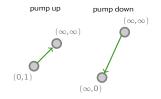

[Mayr'81, Kosaraju'82, Lambert'92]

solution path

[Mayr'81, Kosaraju'82, Lambert'92]

solution path

unbounded path


Upper Bound

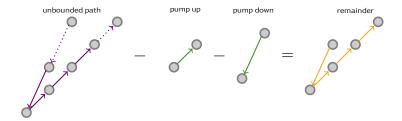
omplexity Perspectiv

"Simple Runs" (Θ Condition)

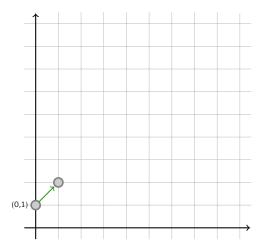
[Mayr'81, Kosaraju'82, Lambert'92]

Pumpable Paths

uses coverability trees [Karp & Miller'69] which relies on Dickson's Lemma [Dickson, 1913]

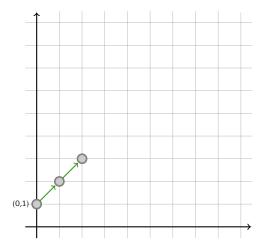

Upper Bounds

omplexity Perspectiv

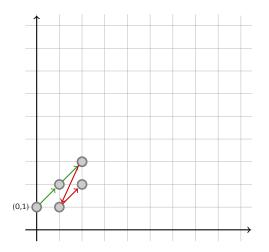

"Simple Runs" (Θ Condition)

[Mayr'81, Kosaraju'82, Lambert'92]

Pumpable Paths

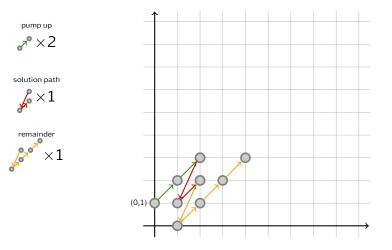

[Mayr'81, Kosaraju'82, Lambert'92]

pump up


[Mayr'81, Kosaraju'82, Lambert'92]

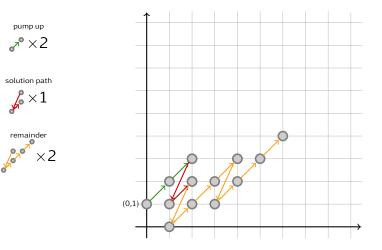
pump up

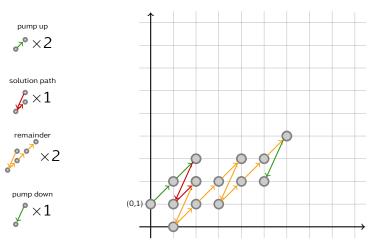
[Mayr'81, Kosaraju'82, Lambert'92]

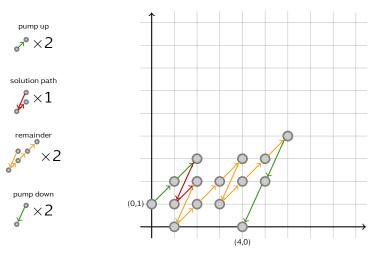


pump up

solution path

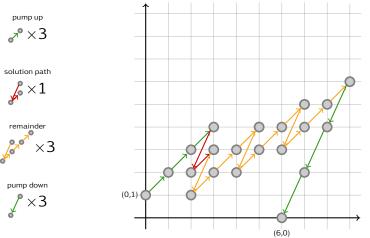





[Mayr'81, Kosaraju'82, Lambert'92]

pump up

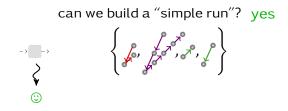
remain

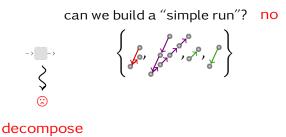


[Mayr'81, Kosaraju'82, Lambert'92]

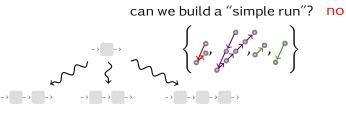
pump up

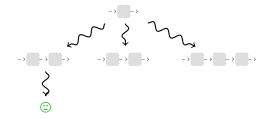
 $\times 3$

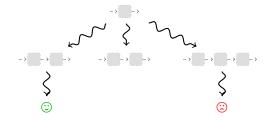

remainder


[Mayr'81, Kosaraju'82, Lambert'92]

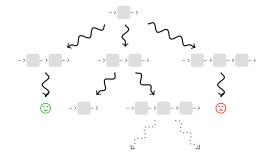
can we build a "simple run"?







[Mayr'81, Kosaraju'82, Lambert'92]


decompose

omplexity Perspectiv

DECOMPOSITION ALGORITHM

Vell-Quasi-Orders

Upper Bounds

plexity Perspectiv

TERMINATION

"Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

[Turing'49]

Vell-Quasi-Orders

Upper Bounds

mplexity Perspectiv

Termination

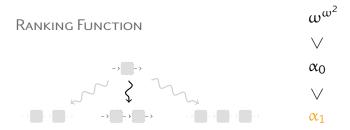
"Finally the checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops. To the pure mathematician it is natural to give an ordinal number."

[Turing'49]

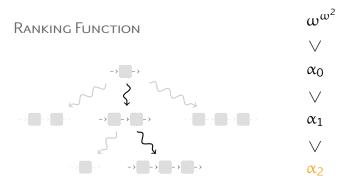
-> ->

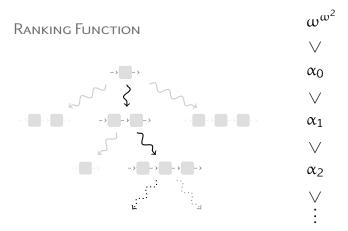
Termination of the Decomposition

Algorithm


[Mayr'81, Kosaraju'82, Lambert'92]

RANKING FUNCTION




Termination of the Decomposition Algorithm

Termination of the Decomposition Algorithm

Termination of the Decomposition Algorithm

omplexity Perspective

DEMYSTIFYING REACHABILITY IN VECTOR ADDITION SYSTEMS [Leroux & S.'15; S.'17]

IDEAL DECOMPOSITION THEOREM The Decomposition Algorithm computes the ideal decomposition of the set of runs from source to target.

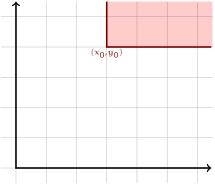
UPPER BOUND THEOREM Reachability in vector addition systems is in quadratic Ackermann.

How to bound the running time of algorithms with ordinal-based termination proofs?

How to bound the running time of algorithms with wqo-based termination proofs?

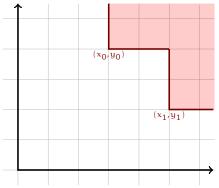
How to bound the running time of algorithms with wgo-based termination proofs?

wgos ubiguitous in infinite-state verification

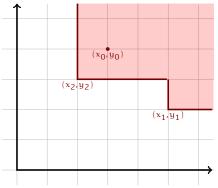


How to bound the running time of algorithms with wgo-based termination proofs?

wgos ubiguitous in infinite-state verification

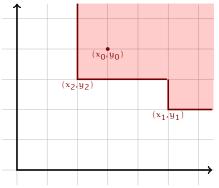


- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$


- Can Eloise win, i.e. play indefinitely?
- If not, how long can she last?

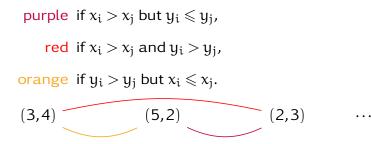
- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

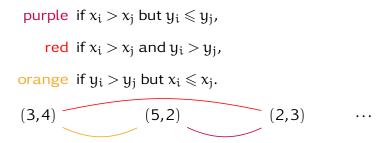
- Can Eloise win, i.e. play indefinitely?
- If not, how long can she last?


- over $\mathbb{Q}_{\geqslant 0} imes \mathbb{Q}_{\geqslant 0}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

- Can Eloise win, i.e. play indefinitely?
- If not, how long can she last?

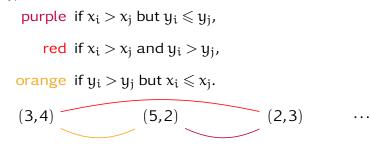
If $(x_0, y_0) \neq (0, 0)$, then choosing $(x_j, y_j) = (\frac{x_0}{2j}, \frac{y_0}{2j})$ wins.


- over $\mathbb{N} \times \mathbb{N}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

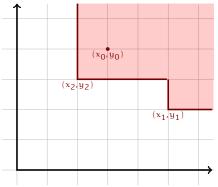

- Can Eloise win, i.e. play indefinitely?
- If not, how long can she last?

Assume there exists an infinite sequence $(x_i, y_i)_i$ of moves over \mathbb{N}^2 .

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i, j)



Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i, j)


By the infinite Ramsey Theorem, there exists an infinite monochromatic subset of indices.

Assume there exists an infinite sequence $(x_j, y_j)_j$ of moves over \mathbb{N}^2 . Consider the pairs of indices i < j: color (i,j)

By the infinite Ramsey Theorem, there exists an infinite monochromatic subset of indices. In all cases, it implies the existence of an infinite decreasing sequence in \mathbb{N} , a contradiction.

- over $\mathbb{N} imes \mathbb{N}$
- given initially (x_0, y_0)
- Eloise plays (x_j, y_j) s.t. $\forall 0 \leq i < j, x_i > x_j$ or $y_i > y_j$

- Can Eloise win, i.e. play indefinitely?
- If not, how long can she last?

- if $(x_0, y_0) = (0, 0), 0$ turns
- otherwise, an arbitrary number of turns N: if $x_0 > 0$:

$$(x_0, y_0), (0, N-1), (0, N-2), \dots, (0, 1), (0, 0)$$

BAD SEQUENCES

$Over \ a \ qo \ (X,\leqslant)$

- x_0, x_1, \dots is bad if $\forall i < j \cdot x_i \not\leq x_j$
- (X,≤) wqo iff all bad sequences are finite

Well-Quasi-Orders

Upper Bounds

Complexity Pers

BAD SEQUENCES

Well-Quasi-Orders

WQOs for Algorithm Termination

▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,

- $(\mathbb{N}^2, \leq_{\times})$ is a wqo: all the runs are finite
- ► How long can SIMPLE run?

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- ▶ How long can SIMPLE run?

- ▶ in any execution, $\langle a_0, b_0 \rangle$,..., $\langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- ► How long can SIMPLE run?

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- How long can SIMPLE run?

Upper Boun

Complexity Perspe

A RICH THEORY

- multiple equivalent definitions
- algebraic constructions

A RICH THEORY

- ▶ multiple equivalent definitions: (X, \leqslant) wqo iff
 - ▶ \leq is well-founded and has no infinite antichains,
 - thus every ordinal is a wqo
 - every linearisation of \leq is well-founded,
 - \leq has the Ascending Chain Condition,
 - if $x_0, x_1, \dots \in X^{\omega}$, then there exists an infinite sequence $i_0 < i_1 < \dots$ with $x_{i_0} \leqslant x_{i_1} \leqslant \dots$,
 - ▶ etc.
- algebraic constructions

A RICH THEORY

- multiple equivalent definitions
- algebraic constructions
 - Cartesian products (Dickson's Lemma),
 - finite sequences (Higman's Lemma),
 - disjoint sums,
 - finite sets with Hoare's quasi-ordering,
 - finite trees (Kruskal's Tree Theorem),
 - graphs with minors (Robertson and Seymour's Graph Minor Theorem), etc.

Upper Bound

Complexity Perspec

Example: Ordinals

ordinal: well-founded linear order

bad sequences are descending sequences:

 $\alpha \nleqslant \beta \text{ iff } \alpha > \beta$

Example: Dickson's Lemma

LEMMA (Dickson 1913)

If $(X, \leq x)$ and $(Y, \leq y)$ are two words, then $(X \times x)$ $Y_{x} \leq x$ is a wgo, where $\leq x$ is the product ordering:

$$\langle x,y\rangle \leqslant_{\times} \langle x',y'\rangle \stackrel{\text{def}}{\Leftrightarrow} x \leqslant_X x' \wedge y \leqslant_Y y'\,.$$

FXAMPLE (\mathbb{N}^d, \leq) using the product ordering

Upper Bound

Complexity Perspective

Example: Higman's Lemma

Lемма (Higman 1952)

If (X, \leq) is a wqo, then (X^*, \leq_*) is a wqo where \leq_* is the subword embedding ordering:

$$a_1 \cdots a_m \leqslant_* b_1 \cdots b_n \stackrel{\text{def}}{\Leftrightarrow} \begin{cases} \exists 1 \leqslant i_1 < \cdots < i_m \leqslant n, \\ \bigwedge_{j=1}^m a_j \leqslant_A b_{i_j} \end{cases}$$

Example

Upper Bounds

omplexity Perspec

BAD SEQUENCES

CONTROLLED BAD SEQUENCES

mplexity Perspective

Controlled Bad Sequences

Over a qo (X, \leq) with norm $\|\cdot\|$

- x_0, x_1, \dots is bad if $\forall i < j \cdot x_i \not\leq x_j$
- (X,≤) wqo iff all bad sequences are finite
- ▶ controlled by $g: \mathbb{N} \to \mathbb{N}$ monotone and inflationary and $n_0 \in \mathbb{N}$ if $\forall i. ||x_i|| \leq g^i(n_0)$

[Cichoń & Tahhan Bittar'98]

PROPOSITION Over (X, \leq) , assuming $\forall n \{x \in X \mid ||x|| \leq n\}$ finite, (g, n_0) -controlled bad sequences have a maximal length, noted $L_{g,X}(n_0)$.

Controlled Bad Sequences

 $\begin{array}{l} \hline \textbf{Proposition}\\ Over \ a \ wqo \ (X,\leqslant), assuming \ \{x\in X \mid \|x\|\leqslant n\} \ to \ be \ finite \\ \forall n, \ (g,n_0) \text{-controlled bad sequences have a maximal}\\ \hline \textbf{length}, \ noted \ L_{g,X}(n_0). \end{array}$

Proof Idea

Controlled Bad Sequences

PROPOSITION Over a wqo (X, \leq) , assuming $\{x \in X \mid ||x|| \leq n\}$ to be finite $\forall n, (g, n_0)$ -controlled bad sequences have a maximal length, noted $L_{g,X}(n_0)$.

Objective Provide upper bounds for $L_{q,X}(n_0)$.

- ▶ in any execution, $\langle a_0, b_0 \rangle, ..., \langle a_n, b_n \rangle$ is a bad sequence over $(\mathbb{N}^2, \leq_{\times})$,
- $(\mathbb{N}^2, \leqslant_{\times})$ is a wqo: all the runs are finite
- ► How long can SIMPLE run?

$$\begin{array}{c|c} \text{SIMPLE } (a,b) & & & & & & & \\ c \longleftarrow 1 & & & & & \\ \text{while } a > 0 \land b > 0 & & & \\ & & \langle a,b,c\rangle \longleftarrow \langle a-1,b,2c\rangle & & & & \\ \text{or} & & & & \langle a,b,c\rangle \longleftarrow \langle 2c,b-1,1\rangle & \\ \text{end} & & & \end{array}$$

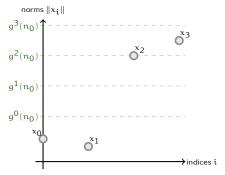
SIMPLE (a, b)	$\langle a, b, c \rangle$	loop iterations
$c \longleftarrow 1$	$\langle 2, 3, 2^0 \rangle$	0
while $a > 0 \land b > 0$	$\langle 1, 3, 2^1 \rangle$	1
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$		
or		
$\langle a, b, c \rangle \longleftarrow \langle 2c, b-1, 1 \rangle$		
end		

SIMPLE (a, b)	$\langle a, b, c \rangle$	loop iterations
$c \longleftarrow 1$	$(2, 3, 2^0)$	0
while $a > 0 \land b > 0$	$\langle 1, 3, 2^1 \rangle$	1
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^2, 2, 2^0 \rangle$	2
or		
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$		
end		

SIMPLE (a,b)	$\langle a, b, c \rangle$	loop iterations
$\begin{array}{l} c \longleftarrow 1 \\ \text{while } a > 0 \land b > 0 \end{array}$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^2, 2, 2^0 \rangle$	2
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$ end	: $\langle 1, 2, 2^{2^2-1} \rangle$: $2+2^2-1$

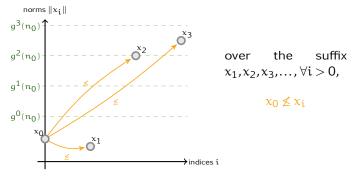
simple (a,b)	$\langle a,b,c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 1, 2, 2^{2^2 - 1} \rangle$	$2+2^2-1$
or	$(2^{2^2}, 1, 1)$	$2 + 2^2$
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$, , , , , , , , , , , , , , , , , , ,	
end		1

simple (a,b)	$\langle a, b, c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 2^{2^2},1,1\rangle$	$2+2^{2}$
or	:	:
$\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$	-2^{2} 1	\cdot
end	$\langle 1, 1, 2^{2^2} - 1 \rangle$	$2+2^2+2^{2^2}-1$


simple (a, b)	$\langle a, b, c \rangle$	loop iterations
$c \longleftarrow 1$		
while $a > 0 \land b > 0$:	:
$\langle a,b,c \rangle \longleftarrow \langle a-1,b,2c \rangle$	$\langle 1, 1, 2^{2^{2^2}-1} \rangle$	$2 + 2^2 + 2^{2^2} - 1$
or $\langle a,b,c \rangle \longleftarrow \langle 2c,b-1,1 \rangle$	$\langle 0,1,2^{2^{2^2}} \rangle$	$2 + 2^2 + 2^{2^2} - 1$ $2 + 2^2 + 2^{2^2}$
end		

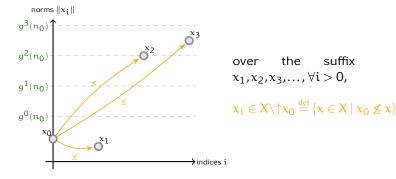
$$\begin{array}{c|c} \text{SIMPLE } (a,b) & & \langle a,b,c\rangle & \text{loop iterations} \\ c \leftarrow 1 & & \\ \text{while } a > 0 \ \land b > 0 & & \vdots & \\ & \langle a,b,c\rangle \leftarrow \langle a-1,b,2c\rangle & & \langle 0,1,2^{2^{2^2}}\rangle & 2+2^2+2^{2^2} \\ \text{or} & & \\ & \langle a,b,c\rangle \leftarrow \langle 2c,b-1,1\rangle \\ \text{end} & & \end{array}$$

- non-elementary complexity
- derive (matching) upper bounds for termination arguments based on $(\mathbb{N}^2, \leq_{\times})$ being a wqo


Descent Equation

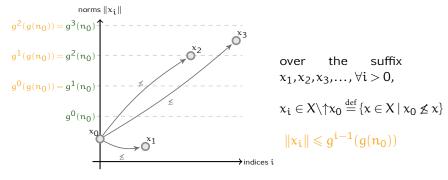
 (g,n_0) -controlled bad sequence $x_0, x_1, x_2, x_3,...$ over a wqo (X, \leq) :

Descent Equation

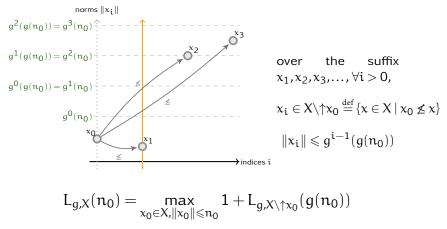

(g,n_0) -controlled bad sequence $x_0, x_1, x_2, x_3,...$ over a wqo (X, \leq) :

suffix

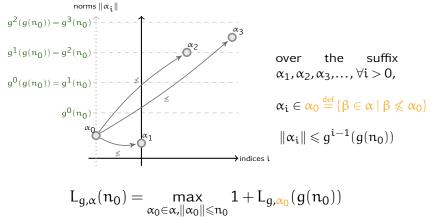
Descent Equation


 (q, n_0) -controlled bad sequence $x_0, x_1, x_2, x_3, \dots$ over a wqo (X, \leq) :

Upper Bounds


Descent Equation

 (g,n_0) -controlled bad sequence $x_0, x_1, x_2, x_3,...$ over a wqo (X, \leq) :


Descent Equation

 (g,n_0) -controlled bad sequence $x_0, x_1, x_2, x_3,...$ over a wqo (X, \leq) :

Descent Equation

 (g,n_0) -controlled bad sequence $\alpha_0, \alpha_1, \alpha_2, \alpha_3,...$ over an ordinal α :

The Case of Ordinals

[S.'14]

• Cantor Normal Form (CNF) for ordinals $\alpha < \varepsilon_0$:

$$\begin{split} \alpha &= \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_k} \cdot c_k \\ \alpha &> \alpha_1 > \dots > \alpha_k \text{ in CNF }, \qquad 0 < c_1, \dots, c_k < \omega \end{split}$$

Norm of ordinals α < ε₀: "maximal constant"

$$\|\boldsymbol{\alpha}\| \stackrel{\text{\tiny def}}{=} \max_{1 \leqslant i \leqslant k} (\max(\|\boldsymbol{\alpha}_i\|, c_i))$$

Example

$$\|\omega^{\omega^2}\| = 2$$
$$\|\omega^{\omega \cdot 5} + \omega^2 \cdot 3\| = 5$$

THE CASE OF ORDINALS

[S.'14]

• Cantor Normal Form (CNF) for ordinals $\alpha < \varepsilon_0$:

$$\begin{split} \alpha &= \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_k} \cdot c_k \\ \alpha &> \alpha_1 > \dots > \alpha_k \text{ in CNF }, \qquad 0 < c_1, \dots, c_k < \omega \end{split}$$

▶ Norm of ordinals $\alpha < \varepsilon_0$: "maximal constant"

$$\|\boldsymbol{\alpha}\| \stackrel{\text{\tiny def}}{=} \max_{1 \leqslant i \leqslant k} (\max(\|\boldsymbol{\alpha}_i\|, c_i))$$

EXAMPLE

$$\|\omega^{\omega^2}\| = 2$$
$$\|\omega^{\omega \cdot 5} + \omega^2 \cdot 3\| = 5$$

The Case of Ordinals

[S.'14]

Recall the descent equation:

$$L_{g,\alpha}(\mathfrak{n}_0) = \max_{\alpha_0 \in \alpha, \|\alpha_0\| \leqslant \mathfrak{n}_0} 1 + L_{g,\alpha_0}(g(\mathfrak{n}_0))$$

PROPOSITION (variant of [Buchholtz, Cichoń & Weiermann'94]) Let $0 < \alpha < \varepsilon_0$ and $\|\alpha\| \leq n_0$. Then

 $L_{g,0}(n_0) = 0$ $L_{g,\alpha}(n_0) = 1 + L_{g,P_{n_0}(\alpha)}(g(n_0))$

 $P_x(\alpha) \text{ denotes the predecessor at } x \text{ of } \alpha > 0 \text{: ``maximal ordinal } \beta < \alpha \text{ s.t. } \|\beta\| \leqslant x''$

The Case of Ordinals

[S.'14]

Recall the descent equation:

$$L_{g,\alpha}(\mathfrak{n}_0) = \max_{\alpha_0 \in \alpha, \|\alpha_0\| \leqslant \mathfrak{n}_0} 1 + L_{g,\alpha_0}(g(\mathfrak{n}_0))$$

PROPOSITION (variant of [Buchholtz, Cichoń & Weiermann'94]) Let $0 < \alpha < \varepsilon_0$ and $\|\alpha\| \le n_0$. Then

$$L_{g,0}(n_0) = 0$$
 $L_{g,\alpha}(n_0) = 1 + L_{g,P_{n_0}(\alpha)}(g(n_0))$

$$\begin{split} P_x(\alpha) \text{ denotes the predecessor at } x \text{ of } \alpha > 0\text{: ``maximal} \\ \text{ordinal } \beta < \alpha \text{ s.t. } \|\beta\| \leqslant x'' \end{split}$$

Upper Bound

The Case of Ordinals

[S.'14]

 $P_x(\alpha) \text{ denotes the predecessor at } x \text{ of } \alpha > 0\text{: ``maximal ordinal } \beta < \alpha \text{ s.t. } \|\beta\| \leqslant x''$

EXAMPLE $P_{3}(\omega^{2}) = \omega \cdot 3 + 3$ $P_{3}(\omega^{\omega^{2}}) = \omega^{\omega \cdot 3 + 3} \cdot 3 + \omega^{\omega \cdot 3 + 2} \cdot 3 + \omega^{\omega \cdot 3 + 1} \cdot 3 + \omega^{\omega \cdot 3} \cdot 3$ $+ \omega^{\omega \cdot 2 + 3} \cdot 3 + \omega^{\omega \cdot 2 + 2} \cdot 3 + \omega^{\omega \cdot 2 + 1} \cdot 3 + \omega^{\omega \cdot 2} \cdot 3$ $+ \omega^{\omega + 3} \cdot 3 + \omega^{\omega + 2} \cdot 3 + \omega^{\omega + 1} \cdot 3 + \omega^{\omega} \cdot 3$ $+ \omega^{3} \cdot 3 + \omega^{2} \cdot 3 + \omega \cdot 3 + 3$

The Case of Ordinals

[S.'14]

 $P_x(\alpha) \text{ denotes the predecessor at } x \text{ of } \alpha > 0\text{: ``maximal ordinal } \beta < \alpha \text{ s.t. } \|\beta\| \leqslant x''$

Example

$$\begin{split} P_3(\omega^2) &= \omega \cdot 3 + 3 \\ P_3(\omega^{\omega^2}) &= \omega^{\omega \cdot 3 + 3} \cdot 3 + \omega^{\omega \cdot 3 + 2} \cdot 3 + \omega^{\omega \cdot 3 + 1} \cdot 3 + \omega^{\omega \cdot 3} \cdot 3 \\ &+ \omega^{\omega \cdot 2 + 3} \cdot 3 + \omega^{\omega \cdot 2 + 2} \cdot 3 + \omega^{\omega \cdot 2 + 1} \cdot 3 + \omega^{\omega \cdot 2} \cdot 3 \\ &+ \omega^{\omega + 3} \cdot 3 + \omega^{\omega + 2} \cdot 3 + \omega^{\omega + 1} \cdot 3 + \omega^{\omega} \cdot 3 \\ &+ \omega^3 \cdot 3 + \omega^2 \cdot 3 + \omega \cdot 3 + 3 \end{split}$$

The Case of Ordinals

[S.'14]

PROPOSITION (variant of [Buchholtz, Cichoń & Weiermann'94]) Let $0 < \alpha < \varepsilon_0$ and $\|\alpha\| \leq n_0$. Then

 $L_{g,0}(n_0) = 0 \qquad L_{g,\alpha}(n_0) = 1 + L_{g,P_{n_0}(\alpha)}(g(n_0))$

This function was already known in the literature!

DEFINITION (Cichoń Hierarchy [Cichoń & Tahhan Bittar'98]) For $g : \mathbb{N} \to \mathbb{N}$, define $(g_{\alpha} : \mathbb{N} \to \mathbb{N})_{\alpha}$ by

$$g_0(x) \stackrel{\text{\tiny def}}{=} 0 \qquad g_\alpha(x) \stackrel{\text{\tiny def}}{=} 1 + g_{\mathsf{P}_x(\alpha)}(g(x)) \text{ for } \alpha > 0$$

ell-Quasi-Orders

Upper Bound

omplexity Perspectiv

THE CASE OF ORDINALS

[S.'14]

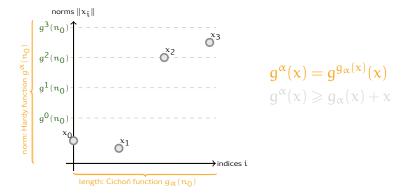
Length Function Theorem (for Ordinals) Let $\alpha < \epsilon_0$ and $n_0 \ge \|\alpha\|$. Then the longest (g, n_0) -controlled descending sequence over α is of length $L_{g,\alpha}(n_0) = g_{\alpha}(n_0)$

Relating Norm and Length

[Cichoń & Tahhan Bittar'98]

Recall the definition of the Cichoń Hierarchy:

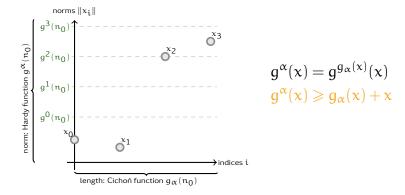
$$g_0(x) \stackrel{\text{\tiny def}}{=} 0 \qquad \quad g_\alpha(x) \stackrel{\text{\tiny def}}{=} 1 + g_{\mathsf{P}_x(\alpha)}(g(x)) \text{ for } \alpha > 0$$


DEFINITION (Hardy Hierarchy) For $g: \mathbb{N} \to \mathbb{N}$, define $(g^{\alpha}: \mathbb{N} \to \mathbb{N})_{\alpha}$ by

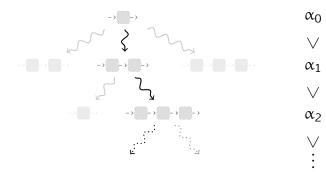
$$g^0(x) \stackrel{\mbox{\tiny def}}{=} x \qquad \quad g^{lpha}(x) \stackrel{\mbox{\tiny def}}{=} g^{P_x(lpha)}(g(x)) \mbox{ for } lpha > 0$$

Relating Norm and Length

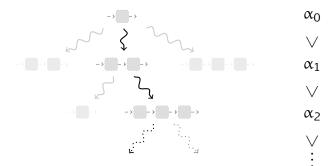
[Cichoń & Tahhan Bittar'98]


$$\begin{array}{ll} g_0(x) \stackrel{\mbox{\tiny def}}{=} 0 & g_\alpha(x) \stackrel{\mbox{\tiny def}}{=} 1 + g_{P_x(\alpha)}(g(x)) & \mbox{for } \alpha > 0 \\ g^0(x) \stackrel{\mbox{\tiny def}}{=} x & g^\alpha(x) \stackrel{\mbox{\tiny def}}{=} g^{P_x(\alpha)}(g(x)) & \mbox{for } \alpha > 0 \end{array}$$

Relating Norm and Length

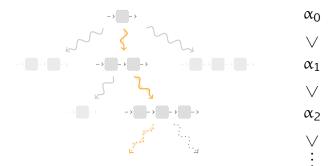

[Cichoń & Tahhan Bittar'98]

$$\begin{array}{ll} g_0(x) \stackrel{\text{\tiny def}}{=} 0 & g_\alpha(x) \stackrel{\text{\tiny def}}{=} 1 + g_{P_x(\alpha)}(g(x)) & \quad \text{for } \alpha > 0 \\ g^0(x) \stackrel{\text{\tiny def}}{=} x & g^\alpha(x) \stackrel{\text{\tiny def}}{=} g^{P_x(\alpha)}(g(x)) & \quad \text{for } \alpha > 0 \end{array}$$



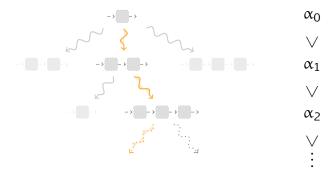
mplexity Perspectives

The Length of Decomposition Branches


The Length of Decomposition Branches

COROLLARY

Assume $n_0 \ge 2$ and $g: \mathbb{N} \to \mathbb{N}$ are such that the sequence of ordinal ranks computed by the decomposition algorithm is (g, n_0) -controlled. The algorithm runs in SPACE $(g^{\omega^{\omega^2}}(n_0))$.


The Length of Decomposition Branches

COROLLARY

Assume $n_0 \ge 2$ and $g: \mathbb{N} \to \mathbb{N}$ are such that the sequence of ordinal ranks computed by the decomposition algorithm is (g, n_0) -controlled. The algorithm runs in SPACE $(g^{\omega^{\omega^2}}(n_0))$.

The Length of Decomposition Branches

CONSEQUENCE OF (FIGUEIRA, FIGUEIRA, S. & SCHNOEBELEN'11) The control $g(x) \stackrel{def}{=} H^{\omega^{\omega}}(e(x))$ for $H(x) \stackrel{def}{=} x + 1$ and an elementary function e, and n_0 the size of the reachability instance fit. Thus the decomposition algorithm runs in SPACE($(H^{\omega^{\omega}} \circ e)^{\omega^{\omega^2}}(n)$.

Restating the Result

"SPACE $((H^{\omega^{\omega}} \circ e)^{\omega^{\omega^{2}}}(n))$ " is unreadable!

- 1. give names
 - $H^{\omega^{\omega}}$ is the Ackermann function
 - $H^{\omega^{\omega^2}}$ is the "quadratic Ackermann" function
- 2. define coarse-grained complexity classes

$$\mathscr{T}_{<\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{\gamma < \omega^{\alpha}} \mathsf{FDTIME}(\mathsf{H}^{\gamma}(n)) \quad \mathbf{F}_{\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{f \in \mathscr{T}_{<\alpha}} \mathsf{DTIME}(\mathsf{H}^{\omega^{\alpha}}(f(n)))$$

Consequence of (S.'16, Тнм. 4.4) VAS Reachability is in F_{ω^2} .

Upper Bounds

omplexity Perspecti

Restating the Result

"SPACE $((H^{\omega^{\omega}} \circ e)^{\omega^{\omega^{2}}}(n))$ " is unreadable!

- 1. give names
 - $H^{\omega^{\omega}}$ is the Ackermann function
 - $H^{\omega^{\omega^2}}$ is the "quadratic Ackermann" function
- 2. define coarse-grained complexity classes

$$\mathscr{F}_{<\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{\gamma < \omega^{\alpha}} \mathsf{FDTIME}(\mathsf{H}^{\gamma}(\mathfrak{n})) \quad \mathbf{F}_{\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{f \in \mathscr{F}_{<\alpha}} \mathsf{DTIME}(\mathsf{H}^{\omega^{\alpha}}(f(\mathfrak{n})))$$

Consequence of (S.'16, Tнм. 4.4)VAS Reachability is in F_{ω^2} .

Restating the Result

"SPACE $((H^{\omega^{\omega}} \circ e)^{\omega^{\omega^{2}}}(n))$ " is unreadable!

- 1. give names
 - $H^{\omega^{\omega}}$ is the Ackermann function
 - $H^{\omega^{\omega^2}}$ is the "quadratic Ackermann" function
- 2. define coarse-grained complexity classes

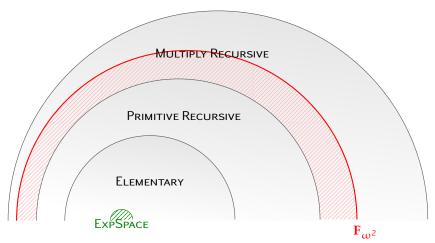
$$\mathscr{F}_{<\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{\gamma < \omega^{\alpha}} \mathsf{FDTIME}(\mathsf{H}^{\gamma}(n)) \quad \mathbf{F}_{\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{f \in \mathscr{F}_{<\alpha}} \mathsf{DTIME}(\mathsf{H}^{\omega^{\alpha}}(f(n)))$$

Consequence of (S.'16, Thm. 4.4)VAS Reachability is in F_{ω^2} .

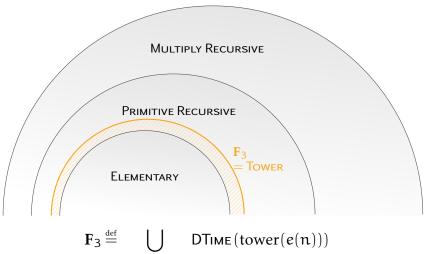
Restating the Result

"SPACE $((H^{\omega^{\omega}} \circ e)^{\omega^{\omega^{2}}}(n))$ " is unreadable!

- 1. give names
 - $H^{\omega^{\omega}}$ is the Ackermann function
 - $H^{\omega^{\omega^2}}$ is the "quadratic Ackermann" function
- 2. define coarse-grained complexity classes

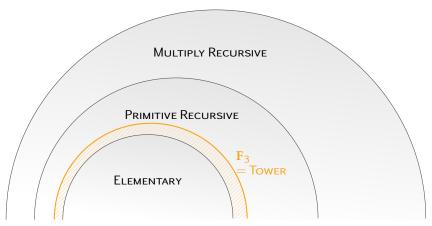

$$\mathscr{F}_{<\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{\gamma < \omega^{\alpha}} \mathsf{FDTIME}(\mathsf{H}^{\gamma}(n)) \quad \mathbf{F}_{\alpha} \stackrel{\text{\tiny def}}{=} \bigcup_{f \in \mathscr{F}_{<\alpha}} \mathsf{DTIME}(\mathsf{H}^{\omega^{\alpha}}(f(n)))$$

Consequence of (S.'16, Thm. 4.4) VAS Reachability is in F_{ω^2} .


omplexity Perspectiv

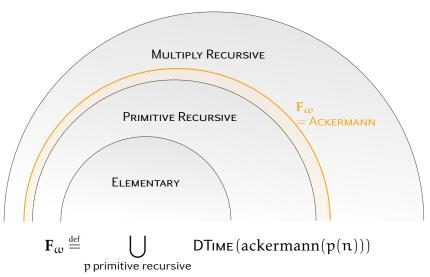
COMPLEXITY CLASSES BEYOND ELEMENTARY

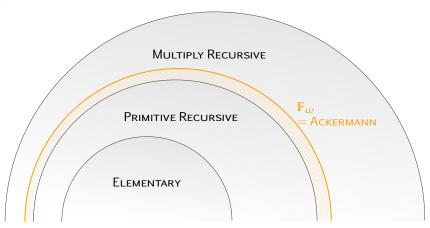
[S.′16]



[S.′16]

e elementary

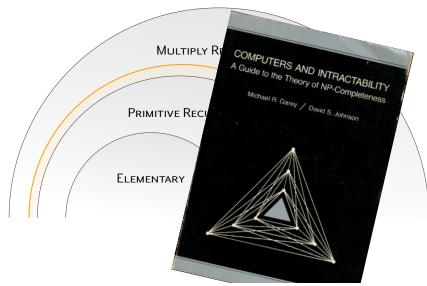

[S.′16]


Examples of Tower-Complete Problems:

- satisfiability of first-order logic on words [Meyer'75]
- β-equivalence of simply typed λ terms [Statman'79]
- model-checking higher-order recursion schemes [Ong'06]

[S.′16]

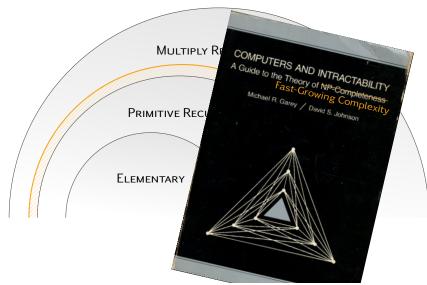
[S.′16]


Examples of Ackermann-Complete Problems:

- reachability in lossy Minsky machines [Urquhart'98, Schnoebelen'02]
- satisfiability of safety Metric Temporal Logic [Lazić et al.'16]
- satisfiability of Vertical XPath [Figueira and Segoufin'17]

mplexity Perspective

COMPLEXITY CLASSES BEYOND ELEMENTARY


[S.′16]

mplexity Perspective

COMPLEXITY CLASSES BEYOND ELEMENTARY

[S.′16]

A Related Problem

labelled VAS $\ transitions\ carry\ labels\ from\ some\ alphabet$

$L(\mathcal{V}, source, target)$ the language of labels in runs from source to target

${\downarrow}L~$ the set of subwords (for $\leqslant_*)$ of the words in the language L

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS V and V' and configurations source, target, source', target' question: $\downarrow L(V, source, target) \subseteq \downarrow L(V', source', target')$?

A Related Problem

labelled VAS $\ transitions\ carry\ labels\ from\ some\ alphabet$

L(V, source, target) the language of labels in runs from source to target

 ${\downarrow}L~$ the set of subwords (for $\leqslant_*)$ of the words in the language L

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq \downarrow L(\mathcal{V}', source', target')$?

Upper Bounds

lexity Perspective

A Related Problem

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq$ $\downarrow L(\mathcal{V}', source', target')?$

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS \mathcal{V} and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, source, target)$ in polynomial time.

COROLLARY The Downwards Language Inclusion problem is in quadratic Ackermann.

Upper Bounds

nplexity Perspectiv

A Related Problem

```
DOWNWARDS LANGUAGE INCLUSION PROBLEM
input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations
source, target, source', target'
question: \downarrow L(\mathcal{V}, source, target) \subseteq
\downarrow L(\mathcal{V}', source', target')?
```

THEOREM (Habermehl, Meyer & Wimmel'10)

Given a labelled VAS \mathcal{V} and configurations **source** and **target** and its decomposition, one can construct a finite automaton for $\downarrow L(\mathcal{V}, source, target)$ in polynomial time.

COROLLARY The Downwards Language Inclusion problem is in quadratic Ackermann. /ell-Quasi-Orders

Upper Bounds

omplexity Persp

A Related Problem

DOWNWARDS LANGUAGE INCLUSION PROBLEM input: two labelled VAS \mathcal{V} and \mathcal{V}' and configurations source, target, source', target' question: $\downarrow L(\mathcal{V}, source, target) \subseteq$ $\downarrow L(\mathcal{V}', source', target')$?

Тнеогем (Zetzsche'16) The Downwards Language Inclusion problem is Аскегмалл-hard.

Perspectives

Summary

well-quasi-orders (wqo):

proving algorithm termination

a toolbox for wqo-based complexity

- upper bounds: length function theorems (for ordinals, Dickson's Lemma, Higman's Lemma, and combinations)
- Iower bounds
- complexity classes: $(\mathbf{F}_{\alpha})_{\alpha}$
- this talk: focus on one problem
 - \blacktriangleright reachability in vector addition systems in F_{ϖ^2}

Perspectives

- 1. complexity gap for VAS reachability
 - ExpSpace-hard [Lipton'76] better lower bounds?
 - decomposition algorithm: at least F_{ω} (Ackermannian) time $\ensuremath{[{\tt Zetzsche'16}]}$

2. reachability in VAS extensions

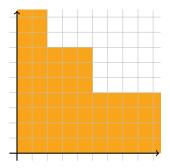
- decidable in VAS with hierarchical zero tests [Reinhardt'08]
- what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS

Perspectives

- 1. complexity gap for VAS reachability
 - ExpSpace-hard [Lipton'76] better lower bounds?
 - decomposition algorithm: at least F_{ϖ} (Ackermannian) time $\space{[Zetzsche'16]}$
- 2. reachability in VAS extensions
 - decidable in VAS with hierarchical zero tests [Reinhardt'08]
 - what about
 - branching VAS
 - unordered data Petri nets
 - pushdown VAS

DEMYSTIFYING REACHABILITY IN VECTOR ADDITION SYSTEMS [Leroux & S.'15]

IDEAL DECOMPOSITION THEOREM The Decomposition Algorithm computes the ideal decomposition of the set of runs from source to target.

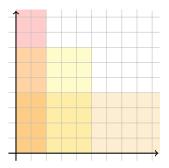

UPPER BOUND THEOREM Reachability in vector addition systems is in cubic Ackermann.

Ideals of Well-Quasi-Orders (X, \leqslant)

• Canonical decompositions [Bonnet'75] if $D \subseteq X$ is \downarrow -closed, then

 $D=I_1\cup\cdots\cup I_n$

for (maximal) ideals I_1, \ldots, I_n


Example (over \mathbb{N}^2) $D = (\{0, ..., 2\} \times \mathbb{N}) \cup (\{0, ..., 5\} \times \{0, ..., 7\}) \cup (\mathbb{N} \times \{0, ..., 4\})$

Ideals of Well-Quasi-Orders (X, \leqslant)

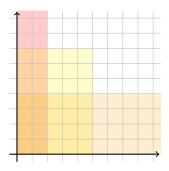
• Canonical decompositions [Bonnet'75] if $D \subseteq X$ is \downarrow -closed, then

 $D=I_1\cup\cdots\cup I_n$

for (maximal) ideals I_1, \ldots, I_n

Example (over \mathbb{N}^2) $D = (\{0,...,2\} \times \mathbb{N}) \cup (\{0,...,5\} \times \{0,...,7\}) \cup (\mathbb{N} \times \{0,...,4\})$

Ideals of Well-Quasi-Orders (X, \leqslant)

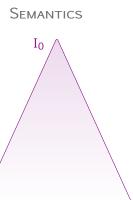

• Canonical decompositions [Bonnet'75] if $D \subseteq X$ is \downarrow -closed, then

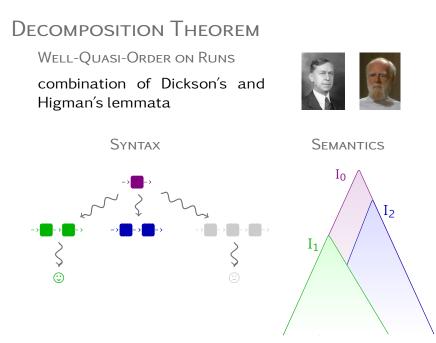
 $D=I_1\cup\cdots\cup I_n$

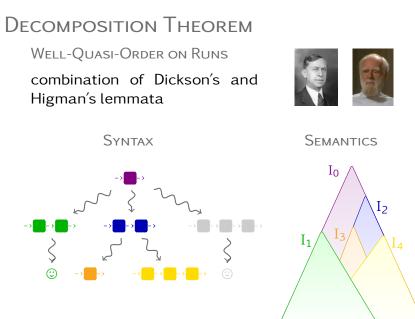
for (maximal) ideals I_1, \ldots, I_n

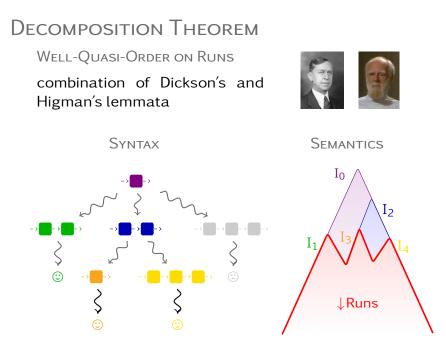
 Effective representations [Goubault-Larrecq et al.'17]

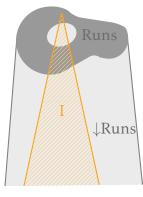
Example (over \mathbb{N}^2) $D = \llbracket (2,\infty) \rrbracket \cup \llbracket (5,7) \rrbracket \cup \llbracket (\infty,4) \rrbracket$




DECOMPOSITION THEOREM

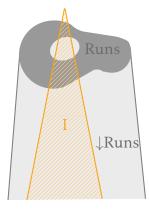

Well-Quasi-Order on Runs combination of Dickson's and Higman's lemmata



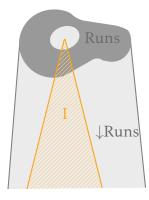


Adherence Membership

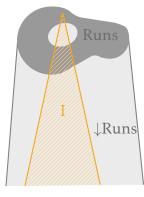
- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm



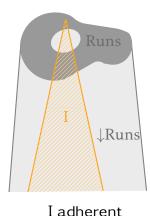
- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm


I adherent

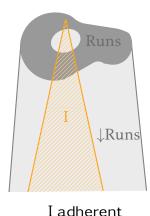
- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm


I not adherent

- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm


I not adherent

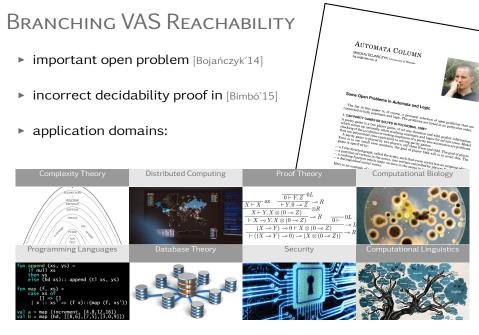
- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm



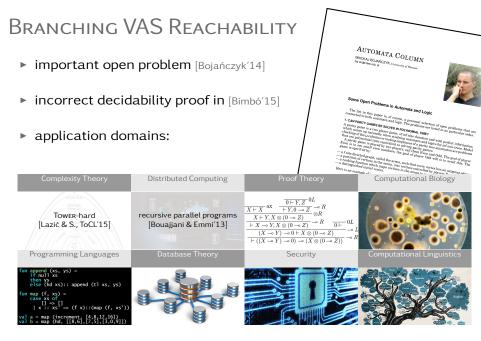
I adherent

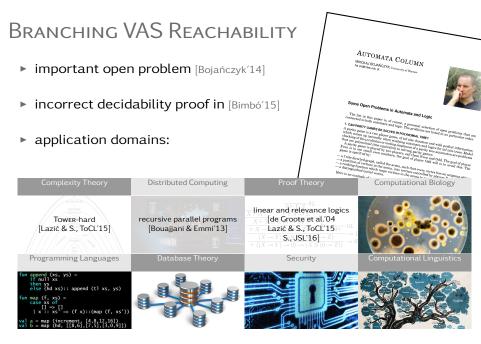
- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm

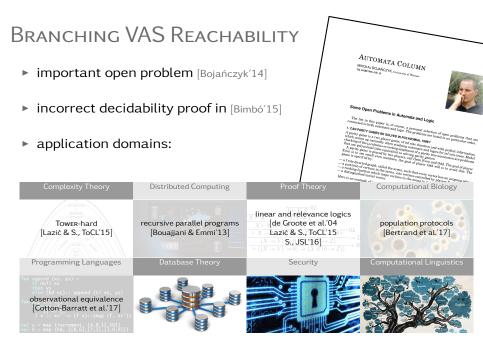


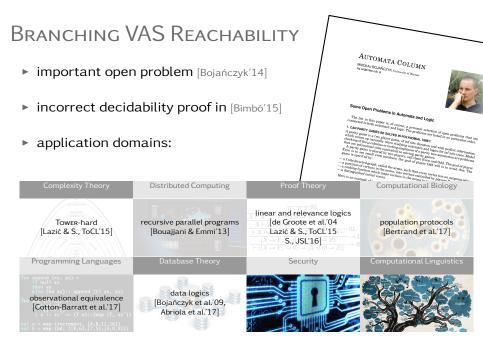

- I is adherent to Runs if $I \subseteq \downarrow (I \cap Runs)$
- semantic equivalent to
 Θ condition
- undecidable for arbitrary ideals
- decidable for the ideals arising in the decomposition algorithm




Branching VAS Reachability


- important open problem [Bojańczyk'14]
- incorrect decidability proof in [Bimbó'15]
- application domains:





Branching VAS Reachability						
 important open 	AUTOMATA COLUMN WCAN ROUMCZYK University of Resease W and Revenues of					
 incorrect decidability proof in [Bimbo'15] application domains: 						
 application don 	Even is to	The state and a diverge a provide advance of the provide advance of the state of th				
Complexity Theory	Distributed Computing	Proof Theory	Computational Biology			
Tower-hard [Lazić & S., ToCL'15]	recursive parallel programs [Bouajjani & Emmi'13]	v linear and relevance logics χ [de Groote et al.'04 χ Lazić & S., ToCL'15 (X - Y) S., JSL'16] = 0 F((X - Y) = 0 = $(X + 0) = 0$	population protocols [Bertrand et al.'17]			
Programming Languages	Database Theory	Security	Computational Linguistics			
<pre>fun append (xe, ys) = then ys then ys else (hd xs):: append (tl xs, ys) fon map (f, xs) = case so [] x :: xs → (f x): (map (f, xs')) val a = map (increment, [4,8,12,161) val b = map (hd, [[8,6],[7,5],[3,0,9]])</pre>						

Branching VAS Reachability							
 important oper 	AUTOMATA COLUMN WCAA BOANCZYK Lowenig of Kenner						
incorrect decidability proof in [Bimbo'15]							
 application domains: application domains: 							
Complexity Theory	Distributed Computing	Proof Theory	Computational Biology				
Tower-hard [Lazić & S., ToCL'15]	recursive parallel programs [Bouajjani & Emmi'13]	linear and relevance logics χ [de Groote et al.'04 x -Lazić & S., ToCL'15 $\stackrel{01}{=}$ $\stackrel{02}{=}$ $\stackrel{02}{=}$ $\stackrel{03}{=}$ $\stackrel{03}{$	population protocols [Bertrand et al.'17]				
Programming Languages	Database Theory	Security	Computational Linguistics				
$ \begin{array}{l} \label{eq:constraints} \label{eq:constraints} \left\{ \begin{array}{l} in the transformation of tra$	data logics [Bojańczyk et al.'09, Abriola et al.'17]	security protocols [Verma & Goubault-Larrecq'05]					

Branching VAS Reachability							
 important oper 	AUTOMATA COLUMN NCOLA BOLMCZYK Listensity of Berner						
 incorrect decidability proof in [Bimbo'15] Some Open Problems in Automate and Logic The bit is the space of t							
 application dor 	Source in Automate and Logics and the approximation of the approximatio						
Complexity Theory	Distributed Computing	Proof Theory	Computational Biology				
Tower-hard [Lazić & S., ToCL'15]	recursive parallel programs [Bouajjani & Emmi'13]	linear and relevance logics (de Groote et al.'04 Lazić & S., ToCL'15 (X - Y) S., JSL'16] = 0 (X - Y) S. (JSL'16) = 0	population protocols [Bertrand et al.'17]				
Programming Languages	Database Theory	Security	Computational Linguistics				
<pre>fun append (se, ys) = then ys then ys then (se, ys) = then ys the</pre>	data logics [Bojańczyk et al.'09, Abriola et al.'17]	security protocols [Verma & Goubault-Larrecq'05]	dominance grammars [Rambow'94; S., ACL'10] minimalist syntax [Salvati'10]				