Perfect Half Space Games

Thomas Colcombet, Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz

LSV, ENS Paris-Saclay & CNRS & Inria

LICS 2017, June 23rd, 2017
What to do this week-end?

Reykjavik
Landmannalaugar
Thórsmörk
Hrútafjördur
Vatnajökull
Mývatn

Maximal dry temperature as a parity objective
Uncontrolled events as a two-players game
Discrete resources as a multi-energy objective

(−1,0)
(−4,−3)
(0,0)
(−1,0)
(0,0)
(−1,0)
(−2,−1)
(−4,−5)
(−1,0)
(−1,0)
(1,0)

2/10
What to do this weekend?

- Reykjavik
- Hrútafjördur
- Landmannalaugar
- Thórsmörk
- Vatnajökull
- Mývatn
WHAT TO DO THIS WEEK-END?

MAXIMAL DRY TEMPERATURE

- Reykjavik: 10°C
- Landmannalaugar: 9°C
- Þórsmörk: 6°C
- Hrútafjörður: 4°C
- Vatnajökull: 9°C
- Mývatn: 12°C
- Maximal dry temperature as a parity objective
- Uncontrolled events as a two-players game
- Discrete resources as a multi-energy objective

(−1,0) (−4,−3) (0,0) (−1,0) (0,0) (−1,0) (1,0) (−2,−1) (−4,−5) (−1,0) (−1,0)
WHAT TO DO THIS WEEK-END?

Maximal dry temperature
as a parity objective

![Game Diagram](image)
What to do this week-end?

Maximal dry temperature
as a parity objective
What to do this week-end?

Uncontrolled events
What to do this week-end?

Maximal dry temperature as a parity objective

Uncontrolled events as a two-players game
WHAT TO DO THIS WEEK-END?

Maximal dry temperature as a parity objective
Uncontrolled events as a two-players game
What to do this week-end?

Discrete resources

Energy Parity Games
Extended Energy Games
Bounding Games
Perfect Half Space Games
What to do this week-end?

Maximal dry temperature as a parity objective

Uncontrolled events as a two-players game

Discrete resources as a multi-energy objective
What to do this week-end?

Maximal dry temperature as a parity objective

Uncontrolled events as a two-players game

Discrete resources as a multi-energy objective
Player 1 wins a play if both

- **energy** objective: no component goes negative
- **parity** objective: the maximal priority is odd

Example

\[
R(0,0) \xrightarrow{(1,0)} R(1,0) \xrightarrow{(1,0)} R(2,0) \xrightarrow{(-1,0)} H(1,0) \xrightarrow{(0,0)} R(1,0) \rightarrow \cdots
\]
Multi-Dimensional Energy Parity Games

Applications

- contractive \((\oplus,!)\)-Horn linear logic
 (Kanovich, APAL ’95)

- (weak) simulation of finite-state systems by Petri nets
 (Abdulla et al., Concur ’13)

- model-checking Petri nets with a fragment of \(\mu\)-calculus
 (Abdulla et al., Concur ’13)

- resource-bounded agent temporal logic \(\text{RB}^\pm\text{ATL}^*\)
 (Alechina et al., RP ’16 & AI ’17)
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td></td>
</tr>
<tr>
<td>\exists initial credit</td>
<td></td>
</tr>
</tbody>
</table>

3/10
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPSPACE</td>
<td>(Lasota, IPL ’09)</td>
<td>TOWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>coNP</th>
<th>coNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-EXP</td>
<td>TOWER</td>
</tr>
<tr>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Brázdil et al., ICALP ’10)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coNP</td>
<td>coNP</td>
</tr>
<tr>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-EXP</td>
<td>2-EXP</td>
</tr>
<tr>
<td></td>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Jurdziński et al., ICALP ’15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>coNP</th>
<th>coNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
<td>(Chatterjee et al., FSTTCS ’10)</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP</td>
<td>coNP</td>
</tr>
<tr>
<td></td>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Chatterjee et al., Concur ’12)</td>
</tr>
<tr>
<td>∃ initial credit</td>
<td>coNP</td>
<td>coNP</td>
</tr>
<tr>
<td></td>
<td>(Chatterjee et al., Concur ’12)</td>
<td>(Chatterjee et al., Concur ’12)</td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>w. initial credit</td>
<td>2-EXP</td>
<td>decidable</td>
</tr>
<tr>
<td></td>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Abdulla et al., Concur ’13)</td>
</tr>
<tr>
<td>∃ initial credit</td>
<td>coNP</td>
<td>coNP</td>
</tr>
<tr>
<td></td>
<td>(Chatterjee et al., Concur ’12)</td>
<td>(Chatterjee et al., Concur ’12)</td>
</tr>
</tbody>
</table>
Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-EXP</td>
<td>TOWER</td>
<td></td>
</tr>
<tr>
<td>(Courtois and S., MFCS ’14)</td>
<td>(Jančar, RP ’15)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>∃ initial credit</th>
<th>upper bound</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>coNP</td>
<td>coNP</td>
<td></td>
</tr>
<tr>
<td>(Chatterjee et al., Concur ’12)</td>
<td>(Chatterjee et al., Concur ’12)</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Dimensional Energy Parity Games

Complexity

<table>
<thead>
<tr>
<th>w. initial credit</th>
<th>lower bound</th>
<th>2-EXP</th>
<th>(Courtois and S., MFCS ‘14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃ initial credit</td>
<td>coNP</td>
<td>coNP</td>
<td>(Chatterjee et al., Concur ‘12)</td>
</tr>
</tbody>
</table>

upper bound

2-EXP

this talk

coNP

(Chatterjee et al., Concur ‘12)
Fixed Dimensional Energy Fixed Parity Games

Complexity

- **lower bound**
 - EXP for $d \geq 4$
 - (Courtois and S., MFCS ’14)

- **upper bound**
 - pseudoP
 - this talk

- **∃ initial credit**

- **w. initial credit**
 - EXP for $d \geq 4$
 - this talk

- **pseudoP**
 - this talk
Outline

- multi-dimensional energy parity games
 (Jančar, RP ’15)

 extended multi-dimensional energy games (Brázdil et al., ICALP ’10)

 bounding games (Jurdziński et al., ICALP ’15)

 perfect half space games (this paper)

 lexicographic energy games (Colcombet and Niwiński)

 mean-payoff games (Comin and Rizzi, Algorithmica ’16)
Extended Multi-Dimensional Energy Games

Encode Priorities as Energy (Jančar, RP '15)

Two new dimensions: tolerance to humid low/high temperature
Bounding Games

Player 1’s Objective

energy

bounding
Bounding Games

Player 1’s Objective

energy

bounding
Bounding Games

Player 1’s Objective

- **Energy**
- **Bounding**
Bounding Games

Player 1’s Objective

energy

bounding
Bounding Games

Player 1’s Objective

energy

bounding
Bounding Games

Encoding Extended Energy Games

- **Bin excess energy**
 - ![Diagram](image)
 -
 -
 -
 -
 -
 -
 -
 -
 -

- **Unbounded replenishing**
 - ![Diagram](image)
 -
 -
 -
 -
 -
 -
 -
 -
 -

\[(\ldots, 0, \ldots) \rightarrow (0, 1, 0)\]
Bounding Games

Theorem (Jurdziński et al., ICALP ’15)

Bounding games on multi-weighted game graphs (V, E, d) *are solvable in* $(|V| \cdot \|E\|)^{O(d^4)}$.

Corollary

The given initial credit problem with credit c for energy parity games on multi-weighted game graphs (V, E, d) *with p even priorities is solvable in*

$$O(|V| \cdot \|E\|)^{2^{O(d \log (d + p))}} + O(d \cdot \log \|c\|).$$
Bounding Games

Theorem (Jurdziński et al., ICALP ’15)
Bounding games on multi-weighted game graphs \((V,E,d)\) are solvable in \((|V| \cdot \|E\|)^{O(d^4)}.\)

Corollary
The given initial credit problem with credit \(c\) for energy parity games on multi-weighted game graphs \((V,E,d)\) with \(p\) even priorities is solvable in

\[O(|V| \cdot \|E\|)^{2^{O(d \log(d+p))}} + O(d \cdot \log \|c\|).\]
Bounding Games

Theorem (this paper)

Bounding games on multi-weighted game graphs \((V,E,d)\) are solvable in \((|V| \cdot ||E||)^O(d^3)\).

Corollary

The given initial credit problem with credit \(c\) for energy parity games on multi-weighted game graphs \((V,E,d)\) with \(p\) even priorities is solvable in

\[
O(|V| \cdot ||E||)^{2O(d \log (d+p))} + O(d \cdot \log ||c||) .
\]
Perfect Half Space Games

Player 2’s Objective in a Bounding Game

Key Intuition
Player 2 can escape in a perfect half space
Perfect Half Space Games

Player 2’s Objective in a Bounding Game

Key Intuition
Player 2 can escape in a perfect half space
Perfect Half Space Games

Perfect Half Space

\[\{(x, y) : x + y < 0\} \]
Perfect Half Space Games

Perfect Half Space

\[\{(x,y) : x + y < 0\} \]

boundary: \[\{(x,y) : x + y = 0\} \]
Perfect Half Space Games

Perfect Half Space

\[
\{(x, y) : x + y < 0 \} \cup \{(x, y) : x + y = 0 \land x < 0 \}
\]
Perfect Half Space Games

Plays

- pairs of vertices and perfect half spaces:
 \[(v_0, H_0) \xrightarrow{w_1} (v_1, H_1) \xrightarrow{w_2} (v_2, H_2) \ldots\]

- in his vertices, Player 2 chooses the current perfect half space

- Player 2 wins if \(\exists i \text{ s.t. } \sum_{j \geq 0} w_j \text{ diverges into } \bigcap_{j > i} H_j\)
Perfect Half Space Games

- Player 2 wins if $\exists i$ s.t. $\sum_{j \geq 0} w_j$ diverges into $\bigcap_{j > i} H_j$

Example

$H_L \cap H_R = H_Y$
SOLVING PERFECT HALF SPACE GAMES

Theorem

Perfect half space games on multi-weighted game graphs
\((V, E, d)\) are solvable in \(\mathcal{O}(d^3)\).

Proof Idea

- reduce to a lexicographic energy game (Colcombet and Niwiński)
- \(\approx\) perfect half space game with a single fixed \(H\)
- itself reduced to a mean-payoff game
SOLVING PERFECT HALF SPACE GAMES

THEOREM

Perfect half space games on multi-weighted game graphs
$$(V, E, d)$$ are solvable in
$$(|V| \cdot \|E\|)^{O(d^3)}$$.

PROOF IDEA

- reduce to a *lexicographic energy game* (Colcombet and Niwiński)

- \approx perfect half space game with a single fixed H

- itself reduced to a mean-payoff game
Player 2 Strategies

Oblivious Strategy
Player 2 chooses the same H_v every time it visits vertex v.

Theorem
If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

"Counterless" Strategy

Corollary (Brázdil et al., ICALP ’10)
If Player 2 has a winning strategy in a multi-dimensional energy parity game, then it has a positional one.
Player 2 Strategies

Oblivious Strategy
Player 2 chooses the same H_v every time it visits vertex v.

Theorem
If Player 2 has a winning strategy in a perfect half space game, then it has an oblivious one.

“Counterless” Strategy

Corollary (Brázdil et al., ICALP ’10)
If Player 2 has a winning strategy in a multi-dimensional energy parity game, then it has a positional one.
CONCLUDING REMARKS

- tight 2-EXP bounds for multi-energy parity games
- impacts numerous problems
- fine understanding of Player 2’s strategies:
 Player 2 can win by announcing in which perfect half space he will escape
The Icelandic Met Office does not endorse any of the information provided during this talk, and cannot be held liable for a ruined week-end subsequent to foolishly trusting these fabricated forecasts.
REFERENCES

