
Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Algorithmic Complexity
of Well-Quasi-Orders

Sylvain Schmitz

Séminaire Automates, IRIF

February 9, 2018

1/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

thesis: a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

thesis: a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Outline

well-quasi-orders (wqo):
I proving algorithm termination

thesis: a toolbox for wqo complexity
I upper bounds

I lower bounds

I complexity classes

this talk: focus on one problem
I reachability in vector addition systems

2/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Vector Addition Systems

3/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Vector Addition Systems

3/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Vector Addition Systems

3/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste?

Yes, (∞,0) is reachable

3/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Vector Addition Systems

Springfield Power Plant

(1,1)

(-1,-2)

produce electricity

recycle uranium

electricity
ur

an
iu

m
w

as
te

(0,1)

Can we produce unbounded electricity with no left-
over uranium waste? Yes, (∞,0) is reachable

3/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

Discrete Resources

I modelling: items, money, energy, molecules, . . .

I distributed computing: active threads in thread pool

I data: isomorphism types in data logics and data-centric
systems

4/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Importance of the Problem
Reachability Problem

input: a vector addition system and two
configurations source and target

question: source→∗ target?

CentralDecision Problem [invited survey S., SIGLOG’16]

Large number of problems interreducible with
reachability in vector addition systems

4/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

Theorem (Minsky’67)
Reachability is undecidable in 2-dimensional
Minsky machines (vector addition systems with
zero tests).

4/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Importance of the Problem
1962

2015

C. A. Petri: Petri nets

R. M. Karp & R. E. Miller: coverability trees
1969

R. J. Lipton: EXPSPACE lower bound
1976

J. E. Hopcroft & J.-J. Pansiot: dim. > 3
not definable in Presburger arithmetic

1979

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982

J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive invariants

2011

this talk: Leroux & S., LICS’15

4/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15]

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

5/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

5/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

(1,1)

(-1,-2)

(0,1) (∞,0)
c

Path

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Equations

0+1 ·a−1 ·b= c
1+1 ·a−2 ·b= 0

Solution Path
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×

(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Equations

1 ·a−1 ·b= c
1 ·a−2 ·b= 0

a,b,c > 0

Unbounded Path
(2,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×1
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×2
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×3
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

−

pump down

=

remainder

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

−

pump down

=

remainder

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×1

(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×1

(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×1
(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×2

solution path

×1

remainder

×2

pump down

×2
(0,1)

(4,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

pump up

×3

solution path

×1

remainder

×3

pump down

×3
(0,1)

(6,0)

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,

6/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops.”

To
the pure mathematician it is natural to
give an ordinal number.

[Turing’49]

7/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops. To
the pure mathematician it is natural to
give an ordinal number.”

[Turing’49]

7/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

8/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

8/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

8/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨

α1

∨

α2

∨...

8/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

9/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
ordinal-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

10/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

10/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

10/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Upper Bounds

How to bound the running time of algorithms with
wqo-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).

Theore
tical C

ompute
r Scien

ce 256
(2001)

63–92 www.e
lsevier

.com/lo
cate/tc

s

Well-stru
ctured

transiti
on sys

tems e
verywh

ere!

A. Fin
kel, Ph

. Schn
oebele

n∗

Lab. S
peci c

ation a
nd Ver

i catio
n, EN

S de Cac
han &

CNRS
UMR 8643,

61 av.
Pdt W

ilson,

94235
Cacha

n Cede
x, Fra

nce

Abstra
ct

Well-stru
ctured

transiti
on system

s (WSTSs)
are a

genera
l class

of in-
nite-sta

te syst
ems fo

r

which
decida

bility results
rely on the ex

istence
of a w

ell-qua
si-orde

ring betwee
n states

that is

compa
tible w

ith the
transiti

ons. In
this ar

ticle, w
e prov

ide an
extensi

ve trea
tment

of the
WSTS

idea an
d show

several
new results

. Our
improv

ed de-
nitions

allow
many

examp
les of

classic
al

system
s to be

seen a
s insta

nces o
f WSTSs.

c� 2001 E
lsevier

Scienc
e B.V.

All rig
hts res

erved.

Keywo
rds: In

- nite s
ystems

; Veri-
cation;

Well-qua
si-orde

ring

1. Intr
oductio

n

1.1. V
eri cat

ion of
in nite-st

ate sys
tems

Forma
l veri-

cation
of pro

grams
and system

s is a
very active

- eld for bo
th theo-

retical
researc

h and practic
al dev

elopme
nts, es

peciall
y since impres

sive advanc
es in

formal
veri- ca

tion te
chnolo

gy pro
ved fe

asible
in seve

ral rea
listic a

pplicat
ions fr

om the

industr
ial wor

ld. The
highly

succes
sful m

odel-ch
ecking

approa
ch for

- nite s
ystems

[16]

sugges
ted tha

t a wo
rking v

eri- cat
ion tec

hnolog
y coul

d well
be dev

eloped
for sys

tems

with a
n in- n

ite stat
e spac

e.

This ex
plains

the con
siderab

le amo
unt of

work t
hat has

been d
evoted

in rece
nt year

s

to this
“veri- c

ation o
f in- ni

te-state
system

s” - eld
, with

a surpr
ising w

ealth o
f posit

ive

results
[50,26

].

1.2. W
ell-stru

ctured
transit

ion sys
tems

A very interes
ting develo

pment
in this - e

ld is the
introdu

ction of wel
l-struc

tured

transit
ion system

s (WSTSs).
These

are transiti
on system

s where
the existen

ce

∗Corres
pondin

g auth
or.

E-mail
addres

s: phs@
lsv.ens

-cacha
n.fr (P

h. Sch
noebel

en).

0304-3
975/01

/$-see
front m

atter
c� 2001 E

lsevier
Scienc

e B.V.
All rig

hts res
erved.

PII: S0
304-3

975(0
0)001

02-X

10/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Controlled

Bad Sequences

Over a qo (X,6)

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I but can be of arbitrary length

11/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Controlled

Bad Sequences

11/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Controlled

Bad Sequences

11/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Controlled Bad Sequences

11/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Controlled Bad Sequences

Over a qo (X,6) with norm ‖ · ‖
I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I controlled by g:N→N and
n ∈N if ∀i . ‖xi‖6 gi(n)
[Cichoń & Tahhan Bittar’98]

Proposition
Assuming {x ∈ X | ‖x‖6 n} finite ∀n, controlled bad
sequences have bounded length.

11/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

The Length of Descending Sequences
α0

∨

α1

∨

α2

∨...

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.

12/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

The Length of Descending Sequences
α0

∨

α1

∨

α2

∨...

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.

12/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

The Length of Descending Sequences
α0

∨

α1

∨

α2

∨...

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.

12/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

The Length of Bad Sequences
α0

∨

α1

∨

α2

∨...

Length Function Theorem (for Dickson’s Lemma
[Figueira, Figueira, S. & Schnoebelen, LICS’11])
Bad sequences over Nd controlled by primitive recursive
functions are of at most Ackermannian length.

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.

12/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Fast-Growing Functions

Ackermann Function

A(1,n) = 2n

A(2,n) = 2n

A(3,n) = tower(n) def
= 2. .

.2}
n times

...

I ackermann(n) def
=A(n,n) not primitive recursive

I quadratic Ackermann function Fω2 : 3-arguments variant

13/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Fast-Growing Functions

Ackermann Function

A(1,n) = 2n

A(2,n) = 2n

A(3,n) = tower(n) def
= 2. .

.2}
n times

...

I ackermann(n) def
=A(n,n) not primitive recursive

I quadratic Ackermann function Fω2 : 3-arguments variant

13/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Fast-Growing Functions

Ackermann Function

A(1,n) = 2n

A(2,n) = 2n

A(3,n) = tower(n) def
= 2. .

.2}
n times

...

I ackermann(n) def
=A(n,n) not primitive recursive

I quadratic Ackermann function Fω2 : 3-arguments variant

13/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

F3
def
=

⋃
e elementary

DTime(tower(e(n)))

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Tower-Complete Problems:
I satisfiability of first-order logic on words [Meyer’75]

I β-equivalence of simply typed λ terms [Statman’79]

I model-checking higher-order recursion schemes [Ong’06]

F
ω2

def
=

⋃
p∈F

<ω2

DTime
(
F
ω2(p(n))

)

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω
def
=

⋃
p primitive recursive

DTime(ackermann(p(n)))

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Ackermann-Complete Problems:
I reachability in lossy Minsky machines [Urquhart’98, Schnoebelen’02]

I satisfiability of safety Metric Temporal Logic [Lazić et al.’16]

I satisfiability of Vertical XPath [Figueira and Segoufin’17]

F
ω2

def
=

⋃
p∈F

<ω2

DTime
(
F
ω2(p(n))

)

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))

14/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Summary
well-quasi-orders (wqo):

I proving algorithm termination

thesis: a toolbox for wqo complexity
I upper bounds: length function theorems

(for ordinals, Dickson’s Lemma, Higman’s
Lemma, and combinations)

I lower bounds

I complexity classes: (Fα)α

this talk: focus on one problem
I reachability in vector addition systems

in Fω2

15/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

More Results

wqo
theory
ESSLLI’12

lecture notes

wqo
complexity

LICS’11
ICALP’11

RP’14

complexity
theory

ToCT’16

VAS
MFCS’11
LICS’15

data nets
LICS’12

FoSSaCS’16
LICS’16

energy
games
MFCS’14
ICALP’15
LICS’17

branching
VAS

ToCL’15

data
logic
CSL’16

linear
logic
JSL’16

proof
theory

database
theory

computational
linguistics

ACL’10

16/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

18/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})

19/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})

19/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ~(2,∞)�∪ ~(5,7)�∪ ~(∞,4)�

19/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

20/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

20/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

20/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,

/

I0

I1

I2

I3 I4

↓Runs

20/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Adherence Membership

I I is adherent to Runs if
I⊆ ↓(I∩Runs)

I semantic equivalent to
Θ condition

I undecidable for arbitrary ideals

I decidable for the ideals arising in
the decomposition algorithm

Runs

↓Runs
I

I adherentI not adherent

21/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational BiologyProof Theory

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational BiologyProof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database TheoryProgramming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security

security protocols
[Verma &

Goubault-Larrecq’05]

Computational Linguistics

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Branching VAS Reachability

I important open problem [Bojańczyk’14]

I incorrect decidability proof in [Bimbó’15]

I application domains:

Complexity Theory

Tower-hard
[Lazić & S., ToCL’15]

Distributed Computing

recursive parallel programs
[Bouajjani & Emmi’13]

Computational Biology

population protocols
[Bertrand et al.’17]

Proof Theory

linear and relevance logics
[de Groote et al.’04
Lazić & S., ToCL’15

S., JSL’16]

Database Theory

data logics
[Bojańczyk et al.’09,

Abriola et al.’17]

Programming Languages

observational equivalence
[Cotton-Barratt et al.’17]

Security

security protocols
[Verma &

Goubault-Larrecq’05]

Computational Linguistics

dominance grammars
[Rambow’94; S., ACL’10]

minimalist syntax [Salvati’10]

22/23

Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Summary

I well-quasi-orders
ubiquitous in termination
proofs

I complexity toolbox
upper & lower bounds,
fast-growing complexity
classes

I application
VAS reachability

Perspectives

1. complexity gap
for VAS reachability

2. parameterisations
for counter systems

3. beyond wqos
FAC orders, Noetherian spaces

4. reachability in VAS extensions

Thank you!

23/23

	Vector Addition Systems
	Decomposition Algorithm
	Complexity
	Perspectives

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:

