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Séminaire Automates, IRIF

February 9, 2018

1/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Outline
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Vector Addition Systems

Springfield Power Plant
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Yes, (∞,0) is reachable
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Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

Discrete Resources

I modelling: items, money, energy, molecules, . . .

I distributed computing: active threads in thread pool

I data: isomorphism types in data logics and data-centric
systems
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Importance of the Problem
Reachability Problem

input: a vector addition system and two
configurations source and target

question: source→∗ target?

CentralDecision Problem [invited survey S., SIGLOG’16]

Large number of problems interreducible with
reachability in vector addition systems
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Importance of the Problem

Reachability Problem
input: a vector addition system and two

configurations source and target
question: source→∗ target?

Theorem (Minsky’67)
Reachability is undecidable in 2-dimensional
Minsky machines (vector addition systems with
zero tests).
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Importance of the Problem
1962

2015

C. A. Petri: Petri nets

R. M. Karp & R. E. Miller: coverability trees
1969

R. J. Lipton: EXPSPACE lower bound
1976

J. E. Hopcroft & J.-J. Pansiot: dim. > 3
not definable in Presburger arithmetic

1979

E. W. Mayr: decidability by decomposition

1981

S. R. Kosaraju: decidability by decomposition

1982

J.-L. Lambert: decidability by decomposition

1992

J. Leroux: decidability by Presburger inductive invariants

2011

this talk: Leroux & S., LICS’15
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15]

Upper Bound Theorem
Reachability in vector addition systems is in cubic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

(1,1)
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c
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Equations

0+1 ·a−1 ·b= c
1+1 ·a−2 ·b= 0

Solution Path
(0,−1)
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

a (1,1)

b (-1,-2)

(0,1) (∞,0)
c

Equations

1 ·a−1 ·b= c
1 ·a−2 ·b= 0

a,b,c > 0

Unbounded Path
(2,0)
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Decomposition Algorithm
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solution path

×1

unbounded path

×1
(0,1)

(0,0) (2,0) (4,0) (6,0)
(0,−1)

6/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Decomposition Algorithm
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

solution path

×1

unbounded path

×3
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Pumpable Paths

unbounded path

−

pump up

−

pump down

=

remainder
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]
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Decomposition Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

can we build a simple run?{
, , ,

}

“Θ Condition”
in ExpSpace
[e.g. Rackoff’78, Demri’13,
Blockelet & S., MFCS’11]

yesno

decompose

uses coverability trees [Karp & Miller’69]

which use Dickson’s Lemma [Dickson, 1913]

, /

,
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Termination

“Finally the checker has to verify that
the process comes to an end. Here
again he should be assisted by the
programmer giving a further definite
assertion to be verified. This may
take the form of a quantity which is
asserted to decrease continually and
vanish when the machine stops.”

To
the pure mathematician it is natural to
give an ordinal number.

[Turing’49]
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Termination of the Decomposition
Algorithm
[Mayr’81, Kosaraju’82, Lambert’92]

Ranking Function ωω
2

α0

∨

∨
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∨

α2

∨...
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Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.
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Upper Bounds

How to bound the running time of algorithms with
ordinal-based termination proofs?

wqos ubiquitous in infinite-state verification

Information and Computation 160, 109�127 (2000)

Algorithmic Analysis of Programs with

Well Quasi-ordered Domains 1Parosh Aziz Abdulla

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: parosh�docs.uu.se
Ka� rlis C8 era� ns

Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia

E-mail: karlis�cclu.lv
Bengt Jonsson

Department of Computer Systems, Uppsala University, P.O. Box 325, 751 05 Uppsala, Sweden

E-mail: bengt�docs.uu.se

and

Yih-Kuen Tsay

Department of Information Management, National Taiwan University, Taipei, Taiwan

E-mail: tsay�im.ntu.edu.twOver the past few years increasing research effort has been directed

towards the automatic verification of infinite-state systems. This paper is

concerned with identifying general mathematical structures which can

serve as sufficient conditions for achieving decidability. We present

decidability results for a class of systems (called well-structured systems)

which consist of a finite control part operating on an infinite data domain.

The results assume that the data domain is equipped with a preorder

which is a well quasi-ordering, such that the transition relation is

``monotonic'' (a simulation) with respect to the preorder. We show that

the following properties are decidable for well-structured systems:

v Reachability: whether a certain set of control states is reachable.

Other safety properties can be reduced to the reachability problem.

doi:10.1006�inco.1999.2843, available online at http:��www.idealibrary.com on

109

0890-5401�00 �35.00

Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

1Supported in part by the Swedish Board for Industrial and Technical Development (NUTEK) and

by the Swedish Research Council for Engineering Sciences (TFR). The work of the second author has

been partially supported by Grant 93�596 from the Latvian Council of Science. The work of the fourth

author has been partially supported by the National Science Council. Taiwan (Republic of China).
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Controlled

Bad Sequences

Over a qo (X,6)

I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I but can be of arbitrary length
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Controlled Bad Sequences

Over a qo (X,6) with norm ‖ · ‖
I x0,x1, . . . is bad if ∀i < j . xi � xj

I (X,6) wqo iff all bad sequences
are finite

I controlled by g:N→N and
n ∈N if ∀i . ‖xi‖6 gi(n)
[Cichoń & Tahhan Bittar’98]

Proposition
Assuming {x ∈ X | ‖x‖6 n} finite ∀n, controlled bad
sequences have bounded length.
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α0

∨

α1
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α2

∨...

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.
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The Length of Bad Sequences
α0

∨

α1

∨

α2

∨...

Length Function Theorem (for Dickson’s Lemma
[Figueira, Figueira, S. & Schnoebelen, LICS’11])
Bad sequences over Nd controlled by primitive recursive
functions are of at most Ackermannian length.

Length Function Theorem (for Ordinals [invited talk S.,
RP’14])
Descending sequences overωω

2
controlled by

Ackermannian functions are of at most quadratic
Ackermannian length.
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Fast-Growing Functions

Ackermann Function

A(1,n) = 2n

A(2,n) = 2n

A(3,n) = tower(n) def
= 2. .

.2}
n times

...

I ackermann(n) def
=A(n,n) not primitive recursive

I quadratic Ackermann function Fω2 : 3-arguments variant
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Complexity Classes Beyond Elementary
[S., ToCT’16]

ExpSpace
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Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Fω2
def
=

⋃
p∈F

<ω2

DTime(Fω2(p(n)))
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[S., ToCT’16]

ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Tower-Complete Problems:
I satisfiability of first-order logic on words [Meyer’75]

I β-equivalence of simply typed λ terms [Statman’79]

I model-checking higher-order recursion schemes [Ong’06]

F
ω2
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⋃
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<ω2

DTime
(
F
ω2(p(n))

)
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ExpSpace

Elementary

Primitive Recursive

Multiply Recursive

F3
= Tower

Fω
= Ackermann

Fω2

Fast-Growing Complexity

Examples of Ackermann-Complete Problems:
I reachability in lossy Minsky machines [Urquhart’98, Schnoebelen’02]

I satisfiability of safety Metric Temporal Logic [Lazić et al.’16]

I satisfiability of Vertical XPath [Figueira and Segoufin’17]
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Summary
well-quasi-orders (wqo):

I proving algorithm termination

thesis: a toolbox for wqo complexity
I upper bounds: length function theorems

(for ordinals, Dickson’s Lemma, Higman’s
Lemma, and combinations)

I lower bounds

I complexity classes: (Fα)α

this talk: focus on one problem
I reachability in vector addition systems

in Fω2
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More Results
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Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Perspectives
1. complexity gap for VAS reachability
I ExpSpace-hard [Lipton’76]

I decomposition algorithm: at least Fω (Ackermannian) time

2. parameterisations for counter systems
I the dimension is the main source of complexity
I find better parameters with tight bounds? [Kristiansen & Niggl’04]

3. beyond wqos: FAC qos, Noetherian spaces [Goubault-Larrecq’06]

I complexity?

4. reachability in VAS extensions
I decidable in VAS with hierarchical zero tests [Reinhardt’08]
I what about
I branching VAS
I unordered data Petri nets
I pushdown VAS

17/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Demystifying Reachability
in Vector Addition Systems

[Leroux & S., LICS’15; S., 2017]

Upper Bound Theorem
Reachability in vector addition systems is in quadratic
Ackermann.

Ideal Decomposition Theorem
The Decomposition Algorithm computes the ideal
decomposition of the set of runs from source to target.

18/23



Vector Addition Systems Decomposition Algorithm Complexity Perspectives

Ideals of Well-Quasi-Orders (X,6)

I Canonical decompositions
[Bonnet’75]

ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ({0, . . . ,2}×N)∪ ({0, . . . ,5}× {0, . . . ,7})∪ (N× {0, . . . ,4})
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I Canonical decompositions
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ifD⊆ X is ↓-closed, then

D= I1 ∪ ·· · ∪ In

for (maximal) ideals I1, . . . ,In

I Effective representations
[Goubault-Larrecq et al.’17]

Example (overN2)
D= ~(2,∞)�∪ ~(5,7)�∪ ~(∞,4)�
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Decomposition Theorem
Well-Quasi-Order on Runs

combination of Dickson’s and
Higman’s lemmata

Syntax Semantics

,

, ,
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I3 I4

↓Runs
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I application domains:

Complexity Theory

Tower-hard
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Summary

I well-quasi-orders
ubiquitous in termination
proofs

I complexity toolbox
upper & lower bounds,
fast-growing complexity
classes

I application
VAS reachability

Perspectives

1. complexity gap
for VAS reachability

2. parameterisations
for counter systems

3. beyond wqos
FAC orders, Noetherian spaces

4. reachability in VAS extensions

Thank you!
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