Ideal Decompositions for Vector Addition Systems

S. Schmitz joint work with J. Leroux

ENS Cachan & CNRS & INRIA, Université Paris-Saclay

Séminaire Vérification, IRIF October 24th, 2016

Outline

- vector addition systems (VAS) and their reachability problem
- ideals of well-quasi-orders
- a counter-example guided abstraction refinement (CEGAR) procedure
- the KLMST decomposition algorithm named after Sacerdote and Tenney (1977), Mayr (1981), Kosaraju (1982), and Lambert (1992)

VECTOR ADDITION SYSTEMS (VAS)

(Karp and Miller, 1969)

Syntax

- dimension $d \in \mathbb{N}$
- $\blacktriangleright \ \text{finite set} \ A \subseteq_{\text{fin}} \mathbb{Z}^d \ \text{of} \ \underset{a \in \mathbf{A}}{\operatorname{actions}} \ a \in \mathbf{A}$

SEMANTICS

- configurations $\mathbf{u}, \mathbf{v}, \ldots \in \mathbb{N}^d$
- transitions $\mathbf{u} \xrightarrow{\mathbf{a}} \mathbf{v} \in \mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d$ with $\mathbf{v} = \mathbf{u} + \mathbf{a}$

VECTOR ADDITION SYSTEMS (VAS)

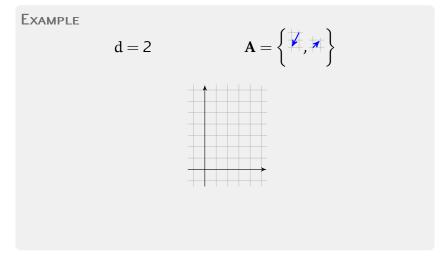
(Karp and Miller, 1969)

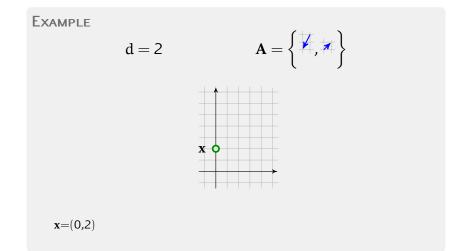
Syntax

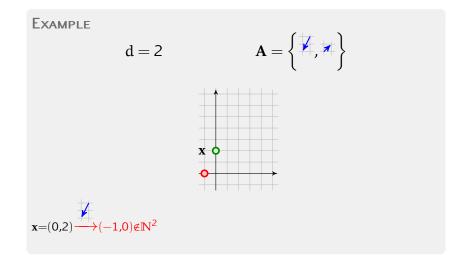
- $\blacktriangleright \ \text{dimension} \ d \in \mathbb{N}$
- \blacktriangleright finite set $A\subseteq_{fin} \mathbb{Z}^d$ of actions $a\in A$

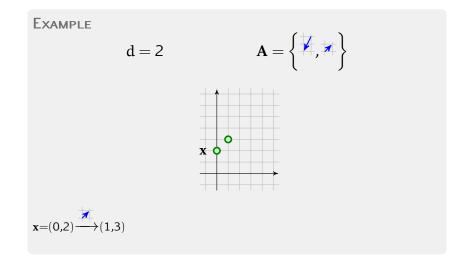
Semantics

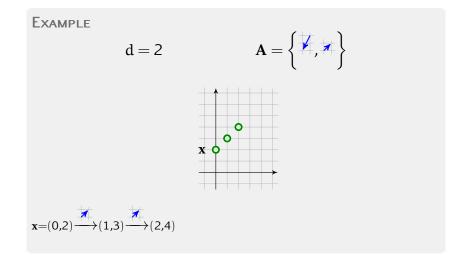
- configurations $\mathbf{u}, \mathbf{v}, \ldots \in \mathbb{N}^d$
- transitions $\mathbf{u} \xrightarrow{\mathbf{a}} \mathbf{v} \in \mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d$ with $\mathbf{v} = \mathbf{u} + \mathbf{a}$

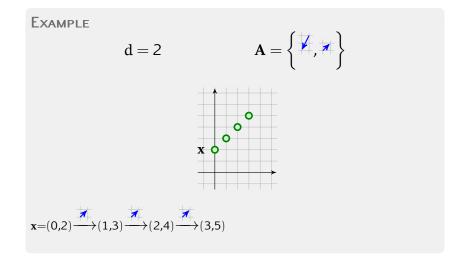


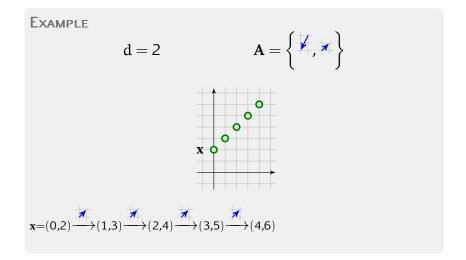


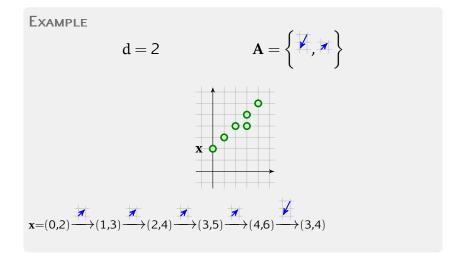


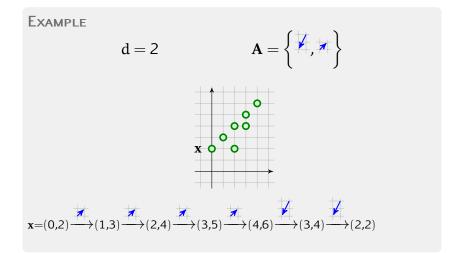


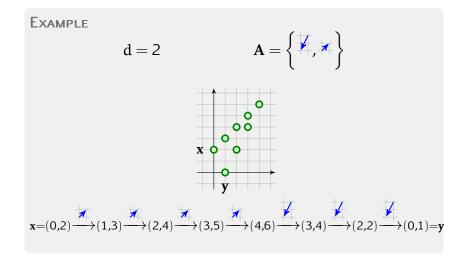












VAS Reachability

Runs and Preruns

Definition (Prerun)

A prerun is an element

$$(\mathbf{u}, (\mathbf{u}_1, \mathbf{a}_1, \mathbf{v}_1) \cdots (\mathbf{u}_k, \mathbf{a}_k, \mathbf{v}_k), \mathbf{v})$$

 $\mathsf{from}\ \mathsf{PreRuns}_{\!\boldsymbol{A}} \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \times (\mathbb{N}^d \times \boldsymbol{A} \times \mathbb{N}^d)^* \times \mathbb{N}^d$

DEFINITION (RUN)

A prerun is connected (is a run) if

(source) $\mathbf{u} = \mathbf{u}_1$

```
(transitions) \forall 1 \leq j \leq k, u_j + a_j = v_j
```

 $(\text{contiguity}) \ \forall 1 < j \leqslant k \text{, } \mathbf{v}_{j-1} = \mathbf{u}_j$

(target) $\mathbf{v}_k = \mathbf{v}$

 $\mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{ \rho \in \mathsf{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \}$

VAS REACHABILITY input $\mathbf{A} \subseteq_{\text{fin}} \mathbb{Z}^d, \mathbf{x}, \mathbf{y} \in \mathbb{N}^d$ question Is \mathbf{y} reachable from \mathbf{x} in \mathbf{A} ? I.e., is Runs_A(\mathbf{x}, \mathbf{y}) $\neq \emptyset$?

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011) VAS Reachability is decidable.

- ▶ by the KLMST decomposition algorithm (Mayr, 1981; Kosaraju, 1982; Lambert, 1992)
- ▶ by Presburger invariants (Leroux, 2011)

 $\mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{\rho \in \mathsf{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y\}$

```
VAS REACHABILITY

input \mathbf{A} \subseteq_{\text{fin}} \mathbb{Z}^d, \mathbf{x}, \mathbf{y} \in \mathbb{N}^d

question Is \mathbf{y} reachable from \mathbf{x} in \mathbf{A}?

I.e., is \text{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \neq \emptyset?
```

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011)

VAS Reachability is decidable.

- ▶ by the KLMST decomposition algorithm (Mayr, 1981; Kosaraju, 1982; Lambert, 1992)
- ▶ by Presburger invariants (Leroux, 2011)

 $\mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{\rho \in \mathsf{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y\}$

```
VAS REACHABILITY

input \mathbf{A} \subseteq_{\text{fin}} \mathbb{Z}^d, \mathbf{x}, \mathbf{y} \in \mathbb{N}^d

question Is \mathbf{y} reachable from \mathbf{x} in \mathbf{A}?

I.e., is \text{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \neq \emptyset?
```

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011)

VAS Reachability is decidable.

- by the KLMST decomposition algorithm (Mayr, 1981; Kosaraju, 1982; Lambert, 1992)
- by Presburger invariants (Leroux, 2011)

 $\mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{ \rho \in \mathsf{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \}$

```
VAS REACHABILITY

input \mathbf{A} \subseteq_{\text{fin}} \mathbb{Z}^d, \mathbf{x}, \mathbf{y} \in \mathbb{N}^d

question Is y reachable from x in A?

I.e., is Runs_A(x,y) \neq \emptyset?
```

Theorem (Mayr, 1981; Kosaraju, 1982; Lambert, 1992; Leroux, 2011)

VAS Reachability is decidable.

- ▶ by the KLMST decomposition algorithm (Mayr, 1981; Kosaraju, 1982; Lambert, 1992)
- ▶ by Presburger invariants (Leroux, 2011)

Theorem (Leroux and S., 2015)

The KLMST decomposition algorithm computes the ideal decomposition of

 $\downarrow \mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{ \rho' \in \mathsf{PreRuns}_A \mid \exists \rho \in \mathsf{Runs}_A(x,y) \, . \, \rho' \trianglelefteq \rho \}$

• entails decidability of VAS Reachability:

 $\mathsf{Runs}_{A}(x,y) = \emptyset \text{ iff } \downarrow \mathsf{Runs}_{A}(x,y) = \emptyset$

- definition of a wqo over preruns (Jančar, 1990)
- wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)

THEOREM (LEROUX AND S., 2015) The KLMST decomposition algorithm computes the ideal decomposition of

 $\downarrow \mathsf{Runs}_{A}(x,y) \stackrel{\text{\tiny def}}{=} \{ \rho' \in \mathsf{PreRuns}_{A} \mid \exists \rho \in \mathsf{Runs}_{A}(x,y) \, . \, \rho' \trianglelefteq \rho \}$

entails decidability of VAS Reachability:

$$\mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset \text{ iff } \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset$$

- definition of a wqo over preruns (Jančar, 1990)
- wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)

THEOREM (LEROUX AND S., 2015) The KLMST decomposition algorithm computes the ideal decomposition of

 $\downarrow \mathsf{Runs}_A(x,y) \stackrel{\scriptscriptstyle{def}}{=} \{ \rho' \in \mathsf{PreRuns}_A \mid \exists \rho \in \mathsf{Runs}_A(x,y) \, . \, \rho' \trianglelefteq \rho \}$

entails decidability of VAS Reachability:

$$\mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset \text{ iff } \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset$$

- definition of a wqo over preruns (Jančar, 1990)
- wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)

THEOREM (LEROUX AND S., 2015) The KLMST decomposition algorithm computes the ideal decomposition of

 $\downarrow \mathsf{Runs}_A(x,y) \stackrel{\text{\tiny def}}{=} \{ \rho' \in \mathsf{PreRuns}_A \mid \exists \rho \in \mathsf{Runs}_A(x,y) \, . \, \rho' \trianglelefteq \rho \}$

entails decidability of VAS Reachability:

$$\mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset \text{ iff } \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \emptyset$$

- definition of a wqo over preruns (Jančar, 1990)
- wqo ideals (Finkel and Goubault-Larrecq, 2009, 2012)

DEFINITION A quasi-order (X, \leq) is a wqo if in any infinite sequence x_0, x_1, \ldots of elements of $X, \exists i < j \text{ s.t. } x_i \leq x_j$.

Example

- Finite sets with equality (X, =)
- **hatural numbers** (\mathbb{N}, \leqslant)
- Dickson's Lemma: if (A, \leq_A) and (B, \leq_B) are words, then $(A \times B, \leq_X)$ is a word, where $(a, b) \leq_X (a', b')$ iff $a \leq_A a'$ and $b \leq_B b'$
- ► Higman's Lemma: if (A, \leq) is a wqo, then (A^*, \leq_*) is a wqo, where

 $u \leq_* v$ iff $u = a_1 \cdots a_k$ and $v = v_0 b_1 v_1 \cdots v_{k-1} b_k v_k$ with $v_0, \dots, v_k \in A^*$ and $\forall 1 \leq j \leq k$. $a_j \leq b_j \in A$.

DEFINITION A quasi-order (X, \leq) is a wqo if in any infinite sequence x_0, x_1, \ldots of elements of $X, \exists i < j \text{ s.t. } x_i \leq x_j$.

Example

- Finite sets with equality (X, =)
- natural numbers (\mathbb{N},\leqslant)
- ▶ Dickson's Lemma: if (A, \leq_A) and (B, \leq_B) are wqos, then $(A \times B, \leq_{\times})$ is a wqo, where $(a,b) \leq_{\times} (a',b')$ iff $a \leq_A a'$ and $b \leq_B b'$
- ► Higman's Lemma: if (A, ≤) is a wqo, then (A*, ≤*) is a wqo, where

$$\begin{split} u \leqslant_* \nu \text{ iff } u &= a_1 \cdots a_k \text{ and } \nu = \nu_0 b_1 \nu_1 \cdots \nu_{k-1} b_k \nu_k \text{ with } \\ \nu_0, \dots, \nu_k \in A^* \text{ and } \forall 1 \leqslant j \leqslant k \, . \, a_j \leqslant b_j \in A. \end{split}$$

DEFINITION A quasi-order (X, \leq) is a wqo if in any infinite sequence x_0, x_1, \ldots of elements of $X, \exists i < j \text{ s.t. } x_i \leq x_j$.

Example

- Finite sets with equality (X, =)
- natural numbers (\mathbb{N},\leqslant)
- ▶ Dickson's Lemma: if (A, \leq_A) and (B, \leq_B) are wqos, then $(A \times B, \leq_{\times})$ is a wqo, where $(a,b) \leq_{\times} (a',b')$ iff $a \leq_A a'$ and $b \leq_B b'$
- ► Higman's Lemma: if (A, \leq) is a wqo, then (A^*, \leq_*) is a wqo, where

$$\begin{split} u \leqslant_* \nu \text{ iff } u &= a_1 \cdots a_k \text{ and } \nu = \nu_0 b_1 \nu_1 \cdots \nu_{k-1} b_k \nu_k \text{ with } \\ \nu_0, \dots, \nu_k \in A^* \text{ and } \forall 1 \leqslant j \leqslant k \text{.} a_j \leqslant b_j \in A. \end{split}$$

DEFINITION A quasi-order (X, \leq) is a wqo if in any infinite sequence x_0, x_1, \ldots of elements of $X, \exists i < j \text{ s.t. } x_i \leq x_j$.

Example

- Finite sets with equality (X, =)
- natural numbers (\mathbb{N},\leqslant)
- ▶ Dickson's Lemma: if (A, \leq_A) and (B, \leq_B) are wqos, then $(A \times B, \leq_{\times})$ is a wqo, where $(a,b) \leq_{\times} (a',b')$ iff $a \leq_A a'$ and $b \leq_B b'$
- ▶ Higman's Lemma: if (A, \leq) is a wqo, then (A^*, \leq_*) is a wqo, where

$$\begin{split} & \mathfrak{u} \leqslant_* \nu \text{ iff } \mathfrak{u} = \mathfrak{a}_1 \cdots \mathfrak{a}_k \text{ and } \nu = \nu_0 b_1 \nu_1 \cdots \nu_{k-1} b_k \nu_k \text{ with } \\ & \nu_0, \dots, \nu_k \in A^* \text{ and } \forall 1 \leqslant j \leqslant k \, . \, \mathfrak{a}_j \leqslant b_j \in A. \end{split}$$

▶ $(\mathbb{N}^d, \leqslant)$ is a wqo for the componentwise ordering

- $(\mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d, \preceq) \text{ is a wqo, where}$ $(\mathbf{u}, \mathbf{a}, \mathbf{v}) \preceq (\mathbf{u}', \mathbf{b}, \mathbf{v}') \text{ iff } \mathbf{u} \leqslant \mathbf{u}', \mathbf{a} = \mathbf{b}, \text{ and } \mathbf{v} \leqslant \mathbf{v}'$
- $((\mathbb{N}^d imes \mathbf{A} imes \mathbb{N}^d)^*, \preceq_*)$ is a wqo
- ▶ Jančar (1990): (PreRuns_A, ⊴) is a wqo, where ($\mathbf{u}, w, \mathbf{v}$) \leq ($\mathbf{u}', w', \mathbf{v}'$) iff $\mathbf{u} \leq \mathbf{u}', w \leq_* w'$, and $\mathbf{v} \leq \mathbf{v}'$

- ▶ $(\mathbb{N}^d, \leqslant)$ is a wqo for the componentwise ordering
- $\begin{array}{l} & (\mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d, \preceq) \text{ is a wqo, where} \\ & (\mathbf{u}, \mathbf{a}, \mathbf{v}) \preceq (\mathbf{u}', \mathbf{b}, \mathbf{v}') \text{ iff } \mathbf{u} \leqslant \mathbf{u}', \mathbf{a} = \mathbf{b}, \text{ and } \mathbf{v} \leqslant \mathbf{v}' \end{array}$
- $((\mathbb{N}^d imes \mathbf{A} imes \mathbb{N}^d)^*, \preceq_*)$ is a wqo
- ▶ Jančar (1990): (PreRuns_A, ⊴) is a wqo, where ($\mathbf{u}, w, \mathbf{v}$) \leq ($\mathbf{u}', w', \mathbf{v}'$) iff $\mathbf{u} \leq \mathbf{u}', w \leq_* w'$, and $\mathbf{v} \leq \mathbf{v}'$

- ▶ $(\mathbb{N}^d, \leqslant)$ is a wqo for the componentwise ordering
- $\begin{array}{l} & (\mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d, \preceq) \text{ is a wqo, where} \\ & (\mathbf{u}, \mathbf{a}, \mathbf{v}) \preceq (\mathbf{u}', \mathbf{b}, \mathbf{v}') \text{ iff } \mathbf{u} \leqslant \mathbf{u}', \mathbf{a} = \mathbf{b}, \text{ and } \mathbf{v} \leqslant \mathbf{v}' \end{array}$
- $((\mathbb{N}^d imes \mathbf{A} imes \mathbb{N}^d)^*, \preceq_*)$ is a wqo
- ▶ Jančar (1990): (PreRuns_A, \trianglelefteq) is a wqo, where ($\mathbf{u}, w, \mathbf{v}$) \trianglelefteq ($\mathbf{u}', w', \mathbf{v}'$) iff $\mathbf{u} \leqslant \mathbf{u}', w \preceq_* w'$, and $\mathbf{v} \leqslant \mathbf{v}'$

- $\blacktriangleright \ ({\rm I\!N}^d,\leqslant)$ is a wqo for the componentwise ordering
- $\begin{array}{l} & (\mathbb{N}^d \times \mathbf{A} \times \mathbb{N}^d, \preceq) \text{ is a wqo, where} \\ & (\mathbf{u}, \mathbf{a}, \mathbf{v}) \preceq (\mathbf{u}', \mathbf{b}, \mathbf{v}') \text{ iff } \mathbf{u} \leqslant \mathbf{u}', \mathbf{a} = \mathbf{b}, \text{ and } \mathbf{v} \leqslant \mathbf{v}' \end{array}$
- $((\mathbb{N}^d imes \mathbf{A} imes \mathbb{N}^d)^*, \preceq_*)$ is a wqo
- ▶ Jančar (1990): (PreRuns_A, ⊴) is a wqo, where $(\mathbf{u}, w, \mathbf{v}) \trianglelefteq (\mathbf{u}', w', \mathbf{v}')$ iff $\mathbf{u} \leqslant \mathbf{u}', w \preceq_* w'$, and $\mathbf{v} \leqslant \mathbf{v}'$

Characterising WQOs

Upward closure:
$$\uparrow S \stackrel{\text{\tiny def}}{=} \{x \in X \mid \exists s \in S \, . \, s \leqslant x\}.$$

LEMMA (MINIMAL BASIS PROPERTY) A qo (X, \leq) is a wqo iff every non-empty subset $S \subseteq X$ has a finite set of minimal elements min $\leq S$.

LEMMA (ASCENDING CHAIN PROPERTY) A qo (X, \leq) is a wqo iff every ascending chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upward-closed sets is finite.

Template for many algorithms: represent the sets U_n as $\uparrow(\text{min}_\leqslant U_n)$ using finitely many elements.

Characterising WQOs

Downward closure: $\downarrow S \stackrel{\text{\tiny def}}{=} \{x \in X \mid \exists s \in S \, . \, x \leqslant s\}.$

Lemma (Minimal Basis Property)

A qo (X, \leq) is a wqo iff every non-empty subset $S \subseteq X$ has a finite set of minimal elements min $\leq S$.

Lemma (Descending Chain Property)

A qo (X, \leq) is a wqo iff every descending chain $D_0 \supseteq D_1 \supseteq \cdots$ of downward-closed sets is finite.

Template for many algorithms: represent the sets U_n as $\uparrow(\text{min}_\leqslant U_n)$ using finitely many elements.

Ideals as Canonical Bases

Downward closure:
$$\downarrow S \stackrel{\text{\tiny def}}{=} \{x \in X \mid \exists s \in S \, : x \leqslant s\}.$$

LEMMA (CANONICAL IDEAL DECOMPOSITION; BONNET, 1975) Every downward-closed subset $D \subseteq X$ of a wqo (X, \leq) is the union of a unique finite family of incomparable (for the inclusion) ideals.

Lemma (Descending Chain Property) A qo (X, \leq) is a wqo iff every descending chain $D_0 \supseteq D_1 \supseteq \cdots$ of downward-closed sets is finite.

DEALS

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- ▶ Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x$ and $x_2 \leq x$
- ▶ Ideal I

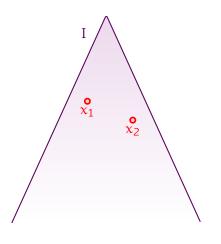
downwards-closed and directed

- Examples
 - $\downarrow x \in Idl(X)$ for any x in X
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$

DEALS

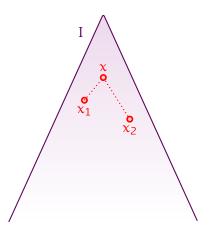
(BONNET, 1975; FINKEL AND GOUBAULT-LARRECQ, 2009)

- ► Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I downwards-closed and directed
- Examples
 - $\downarrow x \in Idl(X)$ for any x in X
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



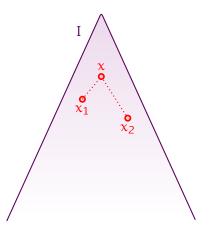
(BONNET, 1975; FINKEL AND GOUBAULT-LARRECQ, 2009)

- Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I downwards-closed and directed
- Examples
 - $\downarrow x \in Idl(X)$ for any x in X
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



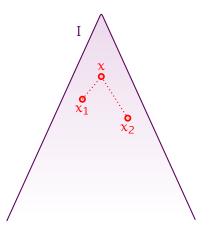
(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I downwards-closed and directed
- Examples
 - $\downarrow x \in Idl(X)$ for any x in X
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



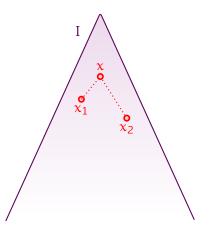
(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I downwards-closed and directed
- Examples
 - ${}^{\scriptstyle {}_{\scriptstyle \bullet}} \ \downarrow x \in Idl(X) \text{ for any } x \text{ in } X$
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I downwards-closed and directed
- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - $\mathbb{N} \in \mathrm{Idl}(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- ► Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- Ideal I

- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - ▶ $\mathbb{N} \in Idl(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

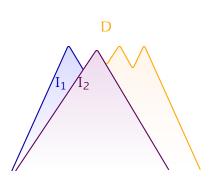
- ► Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- ► Ideal I

- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - ▶ $\mathbb{N} \in Idl(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$

(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- ► Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- ► Ideal I

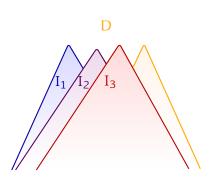
- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - ▶ $\mathbb{N} \in Idl(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- ► Ideal I

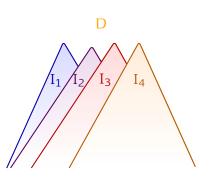
- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - ▶ $\mathbb{N} \in Idl(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



(Bonnet, 1975; Finkel and Goubault-Larrecq, 2009)

- ► Directed set Δ non-empty and $\forall x_1, x_2 \in I$, $\exists x.x_1 \leq x \text{ and } x_2 \leq x$
- ► Ideal I

- Examples
 - ▶ $\downarrow x \in Idl(X)$ for any x in X
 - ▶ $\mathbb{N} \in Idl(\mathbb{N})$
 - $\{a,b\}^* \in Idl(\{a,b,c\}^*)$
- Canonical Decompositions if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$



Effectivity

- ► represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j 's are maximal for inclusion
- ▶ must allow effective operations over ideals: $I \subseteq J, \, I \cap J, \, I \setminus \uparrow x$ for $x \in X$
- ► Finkel and Goubault-Larrecq (2009, 2012): effective representations exist for all the wqos in this talk
- ► for Cartesian products: $Idl(A \times B) = {I \times J | I \in Idl(A) and J \in Idl(B)}$
- ▶ for finite sequences: Idl(X*) are products defined by:

$$\begin{split} P &:= \epsilon \mid A \cdot P & (\text{products}) \\ A &:= (I + \epsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* & (\text{atoms}) \end{split}$$

where I, I_1, \dots, I_n range over Idl(X)

Effectivity

- \blacktriangleright represent canonical decompositions $D=I_1\sqcup\cdots\sqcup I_k$ where the $I_j{'s}$ are maximal for inclusion
- ▶ must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \setminus \uparrow x$ for $x \in X$
- ► Finkel and Goubault-Larrecq (2009, 2012): effective representations exist for all the wqos in this talk
- ▶ for Cartesian products: $Idl(A \times B) = \{I \times J \mid I \in Idl(A) \text{ and } J \in Idl(B)\}$
- ► for finite sequences: Idl(X^{*}) are products defined by:

$$\begin{split} P &:= \epsilon \mid A \cdot P & (\text{products}) \\ A &:= (I + \epsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* & (\text{atoms}) \end{split}$$

where I, I_1, \dots, I_n range over Idl(X)

EFFECTIVITY

- ▶ represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j 's are maximal for inclusion
- ▶ must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \setminus \uparrow x$ for $x \in X$
- ► Finkel and Goubault-Larrecq (2009, 2012): effective representations exist for all the wqos in this talk
- ► for Cartesian products: $Idl(A \times B) = \{I \times J \mid I \in Idl(A) \text{ and } J \in Idl(B)\}$
- ► for finite sequences: Idl(X^{*}) are products defined by:

$$\begin{split} P &:= \epsilon \mid A \cdot P & (\text{products}) \\ A &:= (I + \epsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* & (\text{atoms}) \end{split}$$

where I, I_1, \dots, I_n range over Idl(X)

Effectivity

- ▶ represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j 's are maximal for inclusion
- ▶ must allow effective operations over ideals: $I \subseteq J, I \cap J$, $I \setminus \uparrow x$ for $x \in X$
- ► Finkel and Goubault-Larrecq (2009, 2012): effective representations exist for all the wqos in this talk
- ► for Cartesian products: $Idl(A \times B) = \{I \times J \mid I \in Idl(A) \text{ and } J \in Idl(B)\}$
- ► for finite sequences: Idl(X^{*}) are products defined by:

$$\begin{split} P &:= \epsilon \mid A \cdot P & (\text{products}) \\ A &:= (I + \epsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* & (\text{atoms}) \end{split}$$

where I, I_1, \ldots, I_n range over $\mathsf{Idl}(X)$

An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

$\forall n. \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \subseteq \mathsf{D}_n$

initially $D_0 \stackrel{\text{\tiny def}}{=} \operatorname{PreRuns}_A$

 $\forall \mathbf{n} \models \text{if } \mathbf{D}_{\mathbf{n}} = \mathbf{I} \sqcup \mathbf{D} \text{ and}$ $\exists \mathbf{p} \in \mathbf{U} \cup \mathbf{Runs}(\mathbf{a}, \mathbf{r})$ $\mathbf{D}_{\mathbf{n}} \in \mathbf{D} \cup (\mathbf{D} \setminus \mathbf{r})$

otherwise stop:

 $D_n = \downarrow Runs_A(x, y)$

AN ABSTRACTION REFINEMENT PROCEDURE (CEGAR) Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t. $\forall \mathbf{n} . \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \subseteq \mathsf{D}_{\mathsf{n}}$ initially $D_0 \stackrel{\text{def}}{=} \operatorname{PreRuns}_{\blacktriangle}$

AN ABSTRACTION REFINEMENT PROCEDURE (CEGAR) Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t. $\forall \mathbf{n} . \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \subseteq \mathsf{D}_{\mathsf{n}}$ initially $D_0 \stackrel{\text{\tiny def}}{=} \operatorname{PreRuns}_{A}$ $\forall n \models \text{if } D_n = I \sqcup D \text{ and }$ D $D_n = \downarrow Runs_A(\mathbf{x}, \mathbf{y})$

AN ABSTRACTION REFINEMENT PROCEDURE (CEGAR)

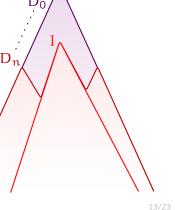
Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

 $\forall \mathbf{n} . \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \subseteq \mathsf{D}_{\mathsf{n}}$

initially $D_0 \stackrel{\text{def}}{=} \operatorname{PreRuns}_{\blacktriangle}$

 $\forall n \models \text{if } \mathbf{D}_n = \mathbf{I} \sqcup \mathbf{D} \text{ and }$ $\exists \rho \in I \setminus \downarrow Runs_{\mathbf{A}}(\mathbf{x}, \mathbf{v}),$

 $D_n = \downarrow Runs_A(\mathbf{x}, \mathbf{y})$



AN ABSTRACTION REFINEMENT PROCEDURE (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

 $\forall n \,.\, {\downarrow} \, \mathsf{Runs}_{\!A}(x,y) \subseteq D_n$

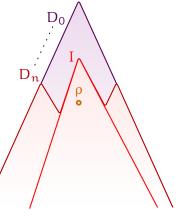
initially $D_0 \stackrel{\text{\tiny def}}{=} \text{PreRuns}_A$

 $\forall n \mathrel{\blacktriangleright} \text{if } D_n = I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y), \\ D = e^{\det} D \cup (I \land \Phi_n)$

 $D_{n+1} \cong D \cup (I \setminus \uparrow \rho)$

otherwise stop:

 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!A}(x, y)$



AN ABSTRACTION REFINEMENT PROCEDURE (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

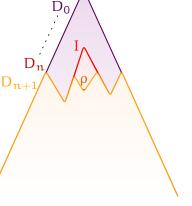
 $\forall n \, . \, \downarrow \mathsf{Runs}_A(x, y) \subseteq \mathsf{D}_n$

initially $D_0 \stackrel{\text{\tiny def}}{=} \text{PreRuns}_A$

$$\forall n \models \text{if } D_n = I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow \text{Runs}_A(\mathbf{x}, \mathbf{y}), \\ D_{n+1} \stackrel{\text{def}}{=} D \cup (I \setminus \uparrow \rho) \end{cases}$$

otherwise stop:

 $D_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\! A}(x, y)$



An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

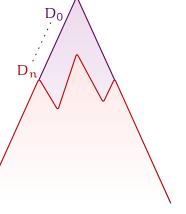
 $\forall n \,.\, {\downarrow} \, \mathsf{Runs}_{\!A}(x,y) \subseteq D_n$

initially $D_0 \stackrel{\text{\tiny def}}{=} \text{PreRuns}_A$

$$\forall n \models \text{if } D_n = I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}), \\ D_{n+1} \stackrel{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

otherwise stop:

 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!A}(x, y)$



 D_{n+}

An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow -closed sets s.t.

 $\forall n \,.\, {\downarrow} \, \mathsf{Runs}_{\!A}(x,y) \subseteq D_n$

initially $D_0 \stackrel{\text{\tiny def}}{=} \text{PreRuns}_A$

$$\forall n \models \text{if } D_n = I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}), \\ D_{n+1} \stackrel{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

- otherwise stop:
 - $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!A}(x, y)$

CONTAINMENT ORACLES

Ideal Containment (into VAS Runs) Problem

input $A \subseteq_{fin} \mathbb{Z}^d$, $x, y \in \mathbb{N}^d$, $I \in Idl(PreRuns_A)$

question $\exists \rho \in I \setminus \downarrow \mathsf{Runs}_A(x, y)$?

Proposition VAS Reachability reduces to Ideal Containment.

PROOF. Because $\downarrow (\mathbf{0}, \varepsilon, \mathbf{0}) \subseteq \downarrow \operatorname{Runs}_{A}(\mathbf{x}, \mathbf{y})$ iff $\operatorname{Runs}_{A}(\mathbf{x}, \mathbf{y}) \neq \emptyset$.

Proposition Ideal Containment is decidable.

CONTAINMENT ORACLES

Ideal Containment (into VAS Runs) Problem

input $A \subseteq_{fin} \mathbb{Z}^d$, $x, y \in \mathbb{N}^d$, $I \in Idl(PreRuns_A)$

question Is $I \subseteq \downarrow \mathsf{Runs}_A(x, y)$?

Proposition VAS Reachability reduces to Ideal Containment.

PROOF. Because $\downarrow (\mathbf{0}, \varepsilon, \mathbf{0}) \subseteq \downarrow \operatorname{Runs}_{A}(\mathbf{x}, \mathbf{y})$ iff $\operatorname{Runs}_{A}(\mathbf{x}, \mathbf{y}) \neq \emptyset$.

Proposition Ideal Containment is decidable.

Containment Oracles

Ideal Containment (into VAS Runs) Problem

```
input A \subseteq_{fin} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in Idl(PreRuns_A)
```

question Is $I \subseteq \downarrow Runs_A(x, y)$?

Proposition VAS Reachability reduces to Ideal Containment.

 $\begin{array}{l} \mathsf{PROOF.} \\ \mathsf{Because} \downarrow(\mathbf{0},\epsilon,\mathbf{0}) \subseteq \mathop{\downarrow} \mathsf{Runs}_A(x,y) \text{ iff } \mathsf{Runs}_A(x,y) \neq \emptyset. \end{array}$

Proposition Ideal Containment is decidable.

Containment Oracles

Ideal Containment (into VAS Runs) Problem

```
input A \subseteq_{fin} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in Idl(PreRuns_A)
```

question Is $I \subseteq \downarrow Runs_A(x, y)$?

Proposition VAS Reachability reduces to Ideal Containment.

```
 \begin{array}{l} \mathsf{PROOF.} \\ \mathsf{Because} \downarrow(\mathbf{0},\epsilon,\mathbf{0}) \subseteq \mathop{\downarrow} \mathsf{Runs}_A(x,y) \text{ iff } \mathsf{Runs}_A(x,y) \neq \emptyset. \end{array}
```

Proposition

Ideal Containment is decidable.

Adherence Oracles

Adherence (of VAS Runs) Membership Problem

input $\mathbf{A} \subseteq_{\text{fin}} \mathbb{Z}^d$, $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$, $I \in \text{Idl}(\text{PreRuns}_{\mathbf{A}})$

question $\exists \Delta \subseteq \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y})$ directed s.t. $\downarrow \Delta = I$?

Claim

In the context of the CEGAR procedure, containment checks are equivalent to adherence membership checks.

Тнео<mark>кем</mark> Adherence Membership is undecidable.

PROOF IDEA. By a reduction from Boundedness in Lossy Counter Machines.

Adherence Oracles

Adherence (of VAS Runs) Membership Problem

input $A \subseteq_{fin} \mathbb{Z}^d$, $x, y \in \mathbb{N}^d$, $I \in Idl(PreRuns_A)$

question $\exists \Delta \subseteq \mathsf{Runs}_A(x, y)$ directed s.t. $\downarrow \Delta = I$?

Claim

In the context of the CEGAR procedure, containment checks are equivalent to adherence membership checks.

Tнеогем Adherence Membership is undecidable.

PROOF IDEA. By a reduction from Boundedness in Lossy Counter Machines.

- ▶ both containment and adherence miss a crucial point: if $\downarrow Runs_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow Runs_A(x, y)$
- ▶ find 'nice' invariants of such ideals: initially D₀ ^{def} PreRuns_A is nice
 - $\begin{array}{l} \forall n & \text{if } D_n = I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow Runs_A(x, y), \text{ which is decidable,} \\ D_{n+1} \stackrel{\text{def}}{=} D \cup (I \setminus \uparrow \rho) \text{ is nice} \end{array}$
 - otherwise stop:

 $D_n = \downarrow Runs_A(x, y)$

- ▶ both containment and adherence miss a crucial point: if $\downarrow Runs_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow Runs_A(x, y)$
- find 'nice' invariants of such ideals:

initially $D_0 \stackrel{\text{\tiny def}}{=} \operatorname{PreRuns}_A$ is nice

 $\forall \mathbf{n} \models \text{ if } \mathbf{D}_{\mathbf{n}} = \mathbf{I} \sqcup \mathbf{D} \text{ and}$ $\exists \rho \in \mathbf{I} \setminus \downarrow \text{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}), \text{ which is decidable,}$ $\mathbf{D} = e^{\frac{def}{2}} \mathbf{D} \cup (\mathbf{I}) \uparrow \mathbf{a}) \text{ becomes}$

otherwise stop:

 $D_n = \downarrow Runs_A(x, y)$

- ▶ both containment and adherence miss a crucial point: if $\downarrow Runs_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow Runs_A(x, y)$
- ▶ find 'nice' invariants of such ideals: initially D₀ ^{def} PreRuns_A is nice

$$\begin{split} \forall n ~ \blacktriangleright ~ \text{if } D_n &= I \sqcup D \text{ and} \\ \exists \rho \in I \setminus \downarrow \mathsf{Runs}_{A}(x, y) \text{, which is decidable,} \\ D_{n+1} \stackrel{\text{\tiny def}}{=} D \cup (I \setminus \uparrow \rho) \text{ is nice} \end{split}$$

otherwise stop:

 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!\boldsymbol{A}}(\boldsymbol{x}, \boldsymbol{y})$

- ▶ both containment and adherence miss a crucial point: if $\downarrow Runs_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow Runs_A(x, y)$
- ► find 'nice' invariants of such ideals: initially $D_0 \stackrel{\text{def}}{=} \operatorname{PreRuns}_A$ is nice

otherwise stop:

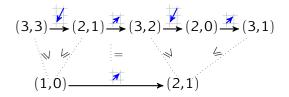
 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!\boldsymbol{A}}(\boldsymbol{x}, \boldsymbol{y})$

- ▶ both containment and adherence miss a crucial point: if $\downarrow Runs_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow Runs_A(x, y)$
- ► find 'nice' invariants of such ideals: initially $D_0 \stackrel{\text{def}}{=} \operatorname{PreRuns}_A$ is nice

otherwise stop:

 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!\boldsymbol{A}}(\boldsymbol{x}, \boldsymbol{y})$

Run Embeddings



$$\begin{split} & \mathsf{Fix}\ \rho = \mathbf{c}_0 \xrightarrow{a_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{a_k} \mathbf{c}_k \ \text{from}\ \mathsf{Runs}_A(\mathbf{x},\mathbf{y}) \\ & \mathsf{lf}\ \rho' \trianglerighteq \rho \ \text{is a run}, \exists \mathbf{v}_0, \dots, \mathbf{v}_{k+1} \in \mathbb{N}^d \ \text{and} \ \sigma_0, \dots, \sigma_k \in \mathbf{A}^*: \end{split}$$

 $\rho' = (\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\sigma_0} (\mathbf{v}_1 + \mathbf{c}_0) \xrightarrow{a_1} (\mathbf{v}_1 + \mathbf{c}_1) \cdots (\mathbf{v}_k + \mathbf{c}_{k-1}) \xrightarrow{a_k} (\mathbf{v}_k + \mathbf{c}_k) \xrightarrow{\sigma_k} (\mathbf{v}_{k+1} + \mathbf{c}_k)$

LEMMA (RUN AMALGAMATION) If $\rho \leq \rho_1, \rho_2$ are runs, then there exists a run $\rho' \geq \rho_1, \rho_2$.

Run Embeddings

$$\begin{split} & \mathsf{Fix} \ \rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k \ \mathsf{from} \ \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \\ & \mathsf{If} \ \rho' \trianglerighteq \rho \ \mathsf{is} \ \mathsf{a} \ \mathsf{run}, \exists \mathbf{v}_0, \dots, \mathbf{v}_{k+1} \in \mathbb{N}^d \ \mathsf{and} \ \sigma_0, \dots, \sigma_k \in \mathbf{A}^* : \end{split}$$

 $\rho' = (\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\sigma_0} (\mathbf{v}_1 + \mathbf{c}_0) \xrightarrow{\mathbf{a}_1} (\mathbf{v}_1 + \mathbf{c}_1) \cdots (\mathbf{v}_k + \mathbf{c}_{k-1}) \xrightarrow{\mathbf{a}_k} (\mathbf{v}_k + \mathbf{c}_k) \xrightarrow{\sigma_k} (\mathbf{v}_{k+1} + \mathbf{c}_k)$

LEMMA (RUN AMALGAMATION) If $\rho \leq \rho_1, \rho_2$ are runs, then there exists a run $\rho' \geq \rho_1, \rho_2$.

Run Embeddings

$$(3,3) \xrightarrow{4} (2,1) \xrightarrow{4} (3,2) \xrightarrow{4} (2,0) \xrightarrow{4} (3,1)$$

$$= \underbrace{(1,0)} \xrightarrow{4} (2,1)$$

$$\begin{split} & \mathsf{Fix} \ \rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k \ \mathsf{from} \ \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \\ & \mathsf{lf} \ \rho' \trianglerighteq \rho \ \mathsf{is} \ \mathsf{a} \ \mathsf{run}, \exists \mathbf{v}_0, \dots, \mathbf{v}_{k+1} \in \mathbb{N}^d \ \mathsf{and} \ \sigma_0, \dots, \sigma_k \in \mathbf{A}^* : \end{split}$$

$$\rho' = (\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\sigma_0} (\mathbf{v}_1 + \mathbf{c}_0) \xrightarrow{\mathbf{a}_1} (\mathbf{v}_1 + \mathbf{c}_1) \cdots (\mathbf{v}_k + \mathbf{c}_{k-1}) \xrightarrow{\mathbf{a}_k} (\mathbf{v}_k + \mathbf{c}_k) \xrightarrow{\sigma_k} (\mathbf{v}_{k+1} + \mathbf{c}_k)$$

LEMMA (RUN AMALGAMATION) If $\rho \leq \rho_1, \rho_2$ are runs, then there exists a run $\rho' \geq \rho_1, \rho_2$.

MAXIMAL RUN IDEALS (1/2)

Since \trianglelefteq is a wqo, $B \stackrel{\text{\tiny def}}{=} \min_{\trianglelefteq} \text{Runs}_{A}(x, y)$ is finite:

$$\label{eq:Runs} {}_{A}(x,y) = \bigcup_{\rho \in B} {}_{\downarrow}(\uparrow \rho \cap \mathsf{Runs}_{A}(x,y))$$

For any run $\rho, {\downarrow}({\uparrow}\rho \cap {\sf Runs}_A(x,y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow(\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.

MAXIMAL RUN IDEALS (1/2)

Since \trianglelefteq is a wqo, $B \stackrel{\text{\tiny def}}{=} \min_{\trianglelefteq} \text{Runs}_{A}(x, y)$ is finite:

$${\downarrow} \mathsf{Runs}_{A}(x,y) = \bigcup_{\rho \in B} {\downarrow}({\uparrow} \rho \cap \mathsf{Runs}_{A}(x,y))$$

For any run $\rho, {\downarrow}({\uparrow}\rho \cap \mathsf{Runs}_A(x,y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow(\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.

MAXIMAL RUN IDEALS (1/2)

Since \trianglelefteq is a wqo, $B \stackrel{\text{\tiny def}}{=} \min_{\trianglelefteq} \text{Runs}_{A}(x, y)$ is finite:

$$\downarrow \mathsf{Runs}_{A}(\mathbf{x}, \mathbf{y}) = \bigcup_{\rho \in B} \downarrow (\uparrow \rho \cap \mathsf{Runs}_{A}(\mathbf{x}, \mathbf{y}))$$

For any run $\rho, {\downarrow}({\uparrow}\rho \cap {\sf Runs}_{\! A}(x,y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow(\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.

MAXIMAL RUN IDEALS (1/2)

Since \trianglelefteq is a wqo, $B \stackrel{\text{\tiny def}}{=} \min_{\trianglelefteq} \text{Runs}_{A}(x, y)$ is finite:

$$\downarrow \mathsf{Runs}_{A}(\mathbf{x}, \mathbf{y}) = \bigcup_{\rho \in B} \downarrow (\uparrow \rho \cap \mathsf{Runs}_{A}(\mathbf{x}, \mathbf{y}))$$

For any run $\rho, {\downarrow}({\uparrow}\rho \cap {\sf Runs}_A(x,y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow(\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.

MAXIMAL RUN IDEALS (2/2)

TRANSFORMER RELATIONS

- $\blacktriangleright \ \ \widehat{\frown} \ \stackrel{c}{\frown} \stackrel{\text{def}}{=} \{(u,v) \mid \exists \sigma \in A^* \, . \, u + c \xrightarrow{\sigma} v + c \}$
- $\stackrel{c}{\frown}$ is periodic: it contains 0, and if $u \stackrel{c}{\frown} v$ and $u' \stackrel{c}{\frown} v'$, then $u + u' \stackrel{c}{\frown} v + v'$

Decomposition of $\uparrow \rho \cap \operatorname{Runs}_A(x, y)$

- let $\rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$
- ▶ consider all the (k + 1)-tuples $(\mathbf{v}_0, \mathbf{v}_1), (\mathbf{v}_1, \mathbf{v}_2), \dots, (\mathbf{v}_{k-1}, \mathbf{v}_k) \text{ s.t. } \mathbf{v}_0 \overset{\mathbf{c}_0}{\longrightarrow} \mathbf{v}_1 \overset{\mathbf{c}_1}{\longrightarrow} \cdots \overset{\mathbf{c}_k}{\longrightarrow} \mathbf{v}_k$ every projection $\mathbf{P}_j \stackrel{\text{def}}{=} \{(\mathbf{v}_j, \mathbf{v}_{j+1}) \mid \dots\}$ is also periodic
- ▶ define Ω_j as the set of runs $\mathbf{v}_j + \mathbf{c}_j \xrightarrow{\sigma_j} \mathbf{v}_{j+1} + \mathbf{c}_j$ for each j

MAXIMAL RUN IDEALS (2/2)

TRANSFORMER RELATIONS

- $\blacktriangleright \ \ \widehat{\frown} \ \stackrel{c}{\frown} \stackrel{\text{def}}{=} \{(u,v) \mid \exists \sigma \in A^* \, . \, u + c \xrightarrow{\sigma} v + c \}$
- $\stackrel{c}{\sim}$ is periodic: it contains 0, and if $u \stackrel{c}{\sim} v$ and $u' \stackrel{c}{\sim} v'$, then $u + u' \stackrel{c}{\sim} v + v'$

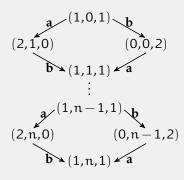
Decomposition of $\uparrow \rho \cap \mathsf{Runs}_A(x,y)$

- $\blacktriangleright \text{ let } \rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$
- ► consider all the (k+1)-tuples $(\mathbf{v}_0, \mathbf{v}_1), (\mathbf{v}_1, \mathbf{v}_2), \dots, (\mathbf{v}_{k-1}, \mathbf{v}_k)$ s.t. $\mathbf{v}_0 \overset{c_0}{\frown} \mathbf{v}_1 \overset{c_1}{\frown} \cdots \overset{c_k}{\frown} \mathbf{v}_k$ every projection $\mathbf{P}_j \stackrel{\text{def}}{=} \{(\mathbf{v}_j, \mathbf{v}_{j+1}) \mid \dots\}$ is also periodic
- ▶ define Ω_j as the set of runs $\mathbf{v}_j + \mathbf{c}_j \xrightarrow{\sigma_j} \mathbf{v}_{j+1} + \mathbf{c}_j$ for each j

Marked Witness Graphs

Example

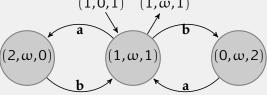
$$\begin{split} \mathbf{A} = & \{ a, b \} \text{ where } a = (1, 1, -1) \qquad b = (-1, 0, 1) \\ \mathbf{c}_j = & (1, 0, 1) \qquad \mathbf{P}_j = \{ ((0, 0, 0), (0, n, 0)) \mid n \in \mathbb{N} \} \\ & \Omega_j = \{ \mathbf{c}_j \xrightarrow{w_1 \cdots w_n} \mathbf{c}_j + (0, n, 0) \mid n \in \mathbb{N}, w_i \in \{ ab, ba \} \} \end{split}$$



Marked Witness Graphs

Each Ω_j can be represented as a finite marked witness graph $M_j.$

EXAMPLE $A = \{a, b\} \text{ where } a = (1, 1, -1) \qquad b = (-1, 0, 1)$ $c_j = (1, 0, 1) \qquad P_j = \{((0, 0, 0), (0, n, 0)) \mid n \in \mathbb{N}\}$ $\Omega_j = \{c_j \xrightarrow{w_1 \cdots w_n} c_j + (0, n, 0) \mid n \in \mathbb{N}, w_i \in \{ab, ba\}\}$ $(1, 0, 1) \qquad (1, \omega, 1)$



Marked Witness Graph Sequences Back to $\rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$:

• $\uparrow \rho \cap \text{Runs}_A(x, y)$ can be represented using a sequence of marked witness graphs and actions from A:

$$\xi = M_0, \mathbf{a}_1, M_1, \dots, \mathbf{a}_k, M_k$$

- conversely, each such sequence defines an associated set of runs Ω_ξ and an associated prerun ideal I_ξ.
- conditions on such sequences:
 - consistent markings (Mayr, 1981)
 - θ condition (Kosaraju, 1982)
 - perfectness condition (Lambert, 1992)

Lemma (Perfectness implies Adherence Membership) If ξ is perfect then $I_{\xi} = \downarrow \Omega_{\xi}$.

MARKED WITNESS GRAPH SEQUENCES Back to $\rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$:

• $\uparrow \rho \cap \text{Runs}_A(x, y)$ can be represented using a sequence of marked witness graphs and actions from A:

$$\xi = M_0, \mathbf{a}_1, M_1, \dots, \mathbf{a}_k, M_k$$

- conversely, each such sequence defines an associated set of runs Ω_{ξ} and an associated prerun ideal I_{ξ} .
- conditions on such sequences:
 - consistent markings (Mayr, 1981)
 - θ condition (Kosaraju, 1982)
 - perfectness condition (Lambert, 1992)

Lemma (Perfectness implies Adherence Membership) If ξ is perfect then $I_{\xi} = \downarrow \Omega_{\xi}$.

Marked Witness Graph Sequences Back to $\rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \cdots \mathbf{c}_{k-1} \xrightarrow{\mathbf{a}_k} \mathbf{c}_k$:

• $\uparrow \rho \cap Runs_A(x, y)$ can be represented using a sequence of marked witness graphs and actions from A:

$$\xi = M_0, \mathbf{a}_1, M_1, \dots, \mathbf{a}_k, M_k$$

- conversely, each such sequence defines an associated set of runs Ω_{ξ} and an associated prerun ideal I_{ξ} .
- perfectness condition on such sequences

Lemma (Perfectness implies Adherence Membership) If ξ is perfect then $I_{\xi} = \downarrow \Omega_{\xi}$.

THEOREM

There exists a finite set Ξ of perfect marked witness graph sequences s.t. $\downarrow \mathsf{Runs}_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) = \bigcup_{\xi \in \Xi} I_{\xi}$.

KLMST ALGORITHM (SCHEMATICALLY) Construct a sequence $\Xi_0, \Xi_1, ...$ of finite sets of marked witness graph sequences with $\forall n$

$$D_{\mathfrak{n}} \stackrel{\text{\tiny def}}{=} \bigcup_{\xi \in \Xi_{\mathfrak{n}}} I_{\xi} \supseteq \mathop{\downarrow} \mathsf{Runs}_{A}(x, y)$$

initially Ξ_0 is s.t. $D_0 = PreRuns_A$

$\forall n \models \text{ if } \Xi_n = \{\xi\} \uplus \Xi \text{ and}$ $\xi \text{ is not perfect, which is decidable}$ $\Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

otherwise stop:

 $D_n = \downarrow Runs_A(x, y)$

witness graph sequences with $\forall n$

$$\mathsf{D}_{n} \stackrel{\text{\tiny def}}{=} \bigcup_{\xi \in \Xi_{n}} \mathrm{I}_{\xi} \supseteq \! \downarrow \! \mathsf{Runs}_{\!\mathbf{A}}(\mathbf{x}, \mathbf{y})$$

initially Ξ_0 is s.t. $D_0 = PreRuns_A$

 $\forall n > \text{ if } \Xi_n = {\xi} \oplus \Xi \text{ and}$ $\xi \text{ is not perfect, which is decidable}$ $\Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

otherwise stop:

 $D_n = \downarrow Runs_A(x, y)$

witness graph sequences with $\forall n$

$$\mathsf{D}_{n} \stackrel{\text{\tiny def}}{=} \bigcup_{\xi \in \Xi_{n}} \mathrm{I}_{\xi} \supseteq \! \downarrow \! \mathsf{Runs}_{\!\mathbf{A}}(\mathbf{x}, \mathbf{y})$$

initially Ξ_0 is s.t. $D_0 = PreRuns_A$

$$\forall n \models \text{if } \Xi_n = \{\xi\} \uplus \Xi \text{ and}$$

 $\xi \text{ is not perfect, which is decidable,}$
 $\Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

otherwise stop:

 $D_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\! A}(x, y)$

witness graph sequences with $\forall n$

$$\mathsf{D}_{n} \stackrel{\text{\tiny def}}{=} \bigcup_{\xi \in \Xi_{n}} \mathrm{I}_{\xi} \supseteq \! \downarrow \! \mathsf{Runs}_{\!\mathbf{A}}(\mathbf{x}, \mathbf{y})$$

initially Ξ_0 is s.t. $D_0 = PreRuns_A$

$$\forall n \models \text{if } \Xi_n = \{\xi\} \uplus \Xi \text{ and}$$

 $\xi \text{ is not perfect, which is decidable,}$
 $\Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

otherwise stop:

 $D_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\! A}(x, y)$

witness graph sequences with $\forall n$

$$\mathsf{D}_{n} \stackrel{\text{\tiny def}}{=} \bigcup_{\xi \in \Xi_{n}} \mathrm{I}_{\xi} \supseteq \! \downarrow \! \mathsf{Runs}_{\! \mathbf{A}}(\mathbf{x}, \mathbf{y})$$

initially Ξ_0 is s.t. $D_0 = PreRuns_A$

$$\forall n \models \text{if } \Xi_n = \{\xi\} \uplus \Xi \text{ and} \\ \xi \text{ is not perfect, which is decidable,} \\ \Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$$

otherwise stop:

 $\mathsf{D}_n \,{=}\, {\downarrow} \, \mathsf{Runs}_{\!A}(x, y)$

- ideals as an algorithmic tool to work with downward-closed sets
- new understanding of the KLMST decomposition extension to other models (BVASS, PDVAS,...)?
- complexity of VAS Reachability :
 - ▶ PSpace-complete with states if d = 2 (Blondin et al., 2015)
 - \blacktriangleright ExpSpace-hard (Lipton, 1976) and in F_{ω^3} (Leroux and S., 2015) in general
- to learn more: references in the next slide and http://arxiv.org/abs/1503.00745 (Leroux and S., 2015)

- ideals as an algorithmic tool to work with downward-closed sets
- new understanding of the KLMST decomposition extension to other models (BVASS, PDVAS,...)?
- complexity of VAS Reachability :
 - ▶ PSpace-complete with states if d = 2 (Blondin et al., 2015)
 - \blacktriangleright ExpSpace-hard (Lipton, 1976) and in F_{ω^3} (Leroux and S., 2015) in general
- to learn more: references in the next slide and http://arxiv.org/abs/1503.00745 (Leroux and S., 2015)

- ideals as an algorithmic tool to work with downward-closed sets
- new understanding of the KLMST decomposition extension to other models (BVASS, PDVAS,...)?
- complexity of VAS Reachability :
 - ▶ PSpace-complete with states if d = 2 (Blondin et al., 2015)
 - \blacktriangleright ExpSpace-hard (Lipton, 1976) and in F_{ω^3} (Leroux and S., 2015) in general
- to learn more: references in the next slide and http://arxiv.org/abs/1503.00745 (Leroux and S., 2015)

- ideals as an algorithmic tool to work with downward-closed sets
- new understanding of the KLMST decomposition extension to other models (BVASS, PDVAS,...)?
- complexity of VAS Reachability :
 - ▶ PSpace-complete with states if d = 2 (Blondin et al., 2015)
 - \blacktriangleright ExpSpace-hard (Lipton, 1976) and in F_{ω^3} (Leroux and S., 2015) in general
- to learn more: references in the next slide and http://arxiv.org/abs/1503.00745 (Leroux and S., 2015)

References

- Blondin, M., Finkel, A., Göller, S., Haase, C., and McKenzie, P., 2015. Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In *Proc. LICS 2015*, pages 32–43. IEEE Press. doi:10.1109/LICS.2015.14.
- Bonnet, R., 1975. On the cardinality of the set of initial intervals of a partially ordered set. In *Infinite and finite sets:* to Paul Erdős on his 60th birthday, Vol. 1, Coll. Math. Soc. János Bolyai, pages 189–198. North-Holland.
- Finkel, A. and Goubault-Larrecq, J., 2009. Forward analysis for WSTS, part I: Completions. In Proc. STACS 2009, volume 3 of LIPIcs, pages 433–444. LZI. doi:10.4230/LIPIcs.STACS.2009.1844.
- Finkel, A. and Goubault-Larrecq, J., 2012. Forward analysis for WSTS, part II: Complete WSTS. Logic. Meth. in Comput. Sci., 8(3:28):1–35. doi:10.2168/LMCS-8(3:28)2012.
- Jančar, P., 1990. Decidability of a temporal logic problem for Petri nets. *Theor. Comput. Sci.*, 74(1):71–93. doi:10.1016/0304-3975(90)90006-4.
- Karp, R.M. and Miller, R.E., 1969. Parallel program schemata. Journal of Computer and System Sciences, 3(2): 147–195. doi:10.1016/S0022-0000(69)80011-5.
- Kosaraju, S.R., 1982. Decidability of reachability in vector addition systems. In Proc. STOC'82, pages 267–281. ACM. doi:10.1145/800070.802201.
- Lambert, J.L., 1992. A structure to decide reachability in Petri nets. *Theor. Comput. Sci.*, 99(1):79–104. doi:10.1016/0304-3975(92)90173-D.
- Leroux, J., 2011. Vector addition system reachability problem: a short self-contained proof. In Proc. POPL 2011, pages 307–316. ACM. doi:10.1145/1926385.1926421.
- Leroux, J. and Schmitz, S., 2015. Demystifying reachability in vector addition systems. In *Proc. LICS 2015*, pages 56–67. IEEE Press. doi:10.1109/LICS.2015.16.
- Lipton, R., 1976. The reachability problem requires exponential space. Technical Report 62, Yale University. http://cpsc.yale.edu/sites/default/files/files/tr63.pdf.
- Mayr, E.W., 1981. An algorithm for the general Petri net reachability problem. In Proc. STOC'81, pages 238–246. ACM. doi:10.1145/800076.802477.
- Sacerdote, G.S. and Tenney, R.L., 1977. The decidability of the reachability problem for vector addition systems. In *Proc.* STOC'77, pages 61–76. ACM. doi:10.1145/800105.803396.