
An Experimental Ambiguity Detection Tool ∗

Sylvain Schmitz

LORIA, INRIA Nancy - Grand Est, Nancy, France

Abstract

Although programs convey an unambiguous meaning, the grammars
used in practice to describe their syntax are often ambiguous, and com-
pleted with disambiguation rules. Whether these rules achieve to remove
all the ambiguities while preserving the original intended language can be
difficult to ensure. We present an experimental ambiguity detection tool
for GNU Bison, and illustrate how it can assist a grammatical develop-
ment for a subset of Standard ML.

Key words: grammar verification, disambiguation, GLR

1 Introduction

With the broad availability of parser generators that implement the Generalized
LR (GLR) [44] or the Earley [15] algorithm, it might seem that the struggles
with the dreaded report

grammar.y: conflicts: 223 shift/reduce, 35 reduce/reduce

are now over. General parsers of these families simulate the various nondeter-
ministic choices in parallel with good performance, and return all the legitimate
parses for the input (see Scott and Johnstone for a survey [41]).

What our naive account overlooks is that all the legitimate parses according
to the grammar might not always be correct in the intended language. With
programming languages in particular, a program is expected to have a unique
interpretation, and thus a single parse should be returned. Nevertheless, the
grammar developed to describe the language is often ambiguous: ambiguous
grammars are more concise and readable [2]. The language definition should
then include some disambiguation rules to decide which parse to choose.

In this paper, we present a tool for GNU Bison [14]1 that pinpoints possible
ambiguities in context-free grammars (CFGs). Grammar and parser developers
can then use the ambiguities reported by the tool to write disambiguation rules
where they are needed. Since the problem of finding all the ambiguities in a CFG
is undecidable [10, 12, 16], our tool implements a conservative algorithm [38]:
it guarantees that no ambiguity will be overlooked, but it might return false
positives as well. We attempt to motivate the use of such a tool for grammatical
engineering [26].

∗Expanded version of an article presented at the 7th Workshop on Language Descriptions,
Tools and Applications (LDTA’07).

1The modified Bison source is available from the author’s webpage, at the address
http://www.loria.fr/∼schmitsy/.

Preprint

http://www.loria.fr/~schmitsy/

2 S. Schmitz

• We first describe a well-known difficult subset of the syntax of Standard
ML [31] (Section 2.1) that combines a genuine ambiguity with a LR con-
flict requiring unbounded lookahead (Section 2.2). A generalized parser
accomplishes to parse correctly the corresponding Standard ML programs,
but might return more than one parse (Section 2.3).

• We detail how our tool identifies the ambiguity as such and discards the
conflict (Section 3) before succinctly presenting the algorithm we employ.

• We put our technique to test and compare it experimentally with other
conservative ambiguity methods (Section 4).

• At last, we examine the shortcomings of the tool and provide some leads
for its improvement (Section 5).

2 A Difficult Syntactic Issue

In this section, we consider a subset of the grammar of Standard ML, and use it
to illustrate some of the difficulties encountered with classical LALR(1) parser
generators in the tradition of YACC [22]. Unlike the grammars sometimes
provided in other programming language references, the grammar defined by
Miller et al. [31, Appendix B] is not put in LALR(1) form. In fact, it clearly
values simplicity over ease of implementation, and includes highly ambiguous
rules like 〈dec〉−→〈dec〉 〈dec〉.

2.1 Case Expressions in Standard ML

Kahrs [23] describes a situation in the Standard ML syntax where an unbounded
lookahead is needed by a deterministic parser in order to correctly parse certain
strings. The issue arises with alternatives in function value binding and case

expressions. A small set of grammar rules from the language specification that
illustrates the issue is given in Figure 1.

The rules describe Standard ML declarations 〈dec〉 for functions, where each
function name vid is bound, for a sequence 〈atpats〉 of atomic patterns, to an
expression 〈expr〉 using the rule 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉. Different
function value bindings can be separated by alternation symbols “|”. Standard
ML case expressions associate an expression 〈exp〉 with a 〈match〉, which is
a sequence of matching rules 〈mrule〉 of form 〈pat〉 => 〈exp〉, separated by
alternation symbols “ |”.

Example 1 Using mostly these rules, the filter function of the SML/NJ Li-
brary could be written [28] as:

datatype ’a option = NONE | SOME of ’a
fun filter pred l =

let

fun filterP (x :: r , l) =
case (pred x)

of SOME y => filterP(r, y::l)
| NONE => filterP(r, l)

| filterP ([], l) = rev l
in

Preprint

An Experimental Ambiguity Detection Tool 3

〈dec〉 −→ fun 〈fvalbind〉

〈fvalbind〉 −→ 〈fvalbind〉 ′|′ 〈sfvalbind〉

| 〈sfvalbind〉

〈sfvalbind〉 −→ vid 〈atpats〉 = 〈exp〉

〈atpats〉 −→ 〈atpats〉 〈atpat〉

| 〈atpat〉

〈exp〉 −→ case 〈exp〉 of 〈match〉

| vid

〈match〉 −→ 〈match〉 ′|′ 〈mrule〉

| 〈mrule〉

〈mrule〉 −→ 〈pat〉 => 〈exp〉

〈pat〉 −→ vid 〈atpat〉

〈atpat〉 −→ vid

Figure 1: Syntax of function value binding and case expressions in Standard
ML. We translated the rules from their original extended form into BNF. We
note 〈nonterminals〉 between angle brackets and terminals as such, excepted for
the terminal alternation symbol ′|′, quoted in order to avoid confusion with the
choice meta character |.

filterP (l , [])
end

The Standard ML compilers consistently reject this correct input, often pin-
pointing the error at the equal sign in “| filterP ([], l) = rev l”. Let us inves-
tigate why they behave this way.

2.2 The Conflict

We implemented our set of grammar rules in GNU Bison [14], and the result
of a run in LALR(1) mode is a single shift/reduce conflict, a nondeterministic
choice between two parsing actions:

state 20

6 exp: "case" exp "of" match .

8 match: match . ’|’ mrule

’|’ shift, and go to state 24

’|’ [reduce using rule 6 (exp)]

The conflict has to be solved in two different places with the program of
Example 1, corresponding to the two different occurrences of the alternation
symbol “ |”.

If we choose arbitrarily one of the actions—shift or reduce—over the other,
we obtain the parses drawn in Figure 2. The shift action is chosen by default
by Bison, and ends on a parse error when seeing the equal sign where a double
arrow was expected, exactly where the Standard ML compilers report an error
(Figure 2d).

We could make the correct decision if we had more information at our dis-
posal. The “=” sign in the lookahead string “| filterP ([], l) = rev l” indicates

Preprint

4 S. Schmitz

of SOME y => filterP(r, y::l) | NONE => filterP(r, l)

〈pat〉

〈mrule〉

〈exp〉

〈match〉

. . .

〈exp〉

〈sfvalbind〉

〈fvalbind 〉

〈sfvalbind 〉

error!

vid

(a) Attempted parse when reducing.

of SOME y => filterP(r, y::l) | NONE => filterP(r, l)

〈pat〉

〈mrule〉

〈exp〉

〈match〉

〈match〉

. . .

〈exp〉〈pat〉

〈mrule〉

〈fvalbind 〉

(b) Correct parse tree when shifting.

| NONE => filterP(r, l) | filterP ([], l) = rev l

〈exp〉〈pat〉

〈mrule〉

〈match〉

〈exp〉

〈sfvalbind〉

〈fvalbind 〉

〈fvalbind 〉

. . .

〈exp〉〈atpats〉

〈sfvalbind 〉

(c) Correct parse tree when reducing.

| NONE => filterP(r, l) | filterP ([], l) = rev l

〈exp〉〈pat〉

〈mrule〉

〈match〉

. . .

〈pat〉

〈pat〉

〈mrule〉

〈match〉

error!

〈exp〉

〈sfvalbind 〉

〈fvalbind 〉

(d) Attempted parse when shifting.

Figure 2: Partial parse trees corresponding to the two occurrences of the conflict
in Example 1.

that the alternative is at the topmost function value binding 〈fvalbind〉 level,
and not at the “case” level, or it would be a “=>” sign. But the sign can be ar-
bitrarily far away in the lookahead string: an atomic pattern 〈atpat〉 can derive
a sequence of tokens of unbounded length. The conflict requires an unbounded
lookahead.

Example 2 The issue is made further complicated by the presence of a dangling
ambiguity:

case a of b => case b of c => c | d => d

In this expression, should the dangling “d => d” matching rule be attached
to “case b” or to “case a”? The Standard ML definition indicates that the
matching rule should be attached to “case b”. In this case, the shift should be
chosen rather than the reduction, which explains the choice made by developers
of the various Standard ML parsers.

This issue in the syntax of Standard ML is one of its few major defects
according to a survey by Rossberg [37]:

[Parsing] this would either require horrendous grammar transforma-
tions, backtracking, or some nasty and expensive lexer hack.

Fortunately, the detailed analysis of the conflict we conducted, as well as the
ugly or expensive solutions mentioned by Rossberg, are not necessary with a
general parser.2

2Some deterministic parsing algorithms—LR-Regular [13, 6], noncanonical [42, 39], or LL-

Preprint

An Experimental Ambiguity Detection Tool 5

〈mrule〉〈exp〉

〈match〉

〈match〉

〈mrule〉

〈exp〉

〈exp〉〈mrule〉

〈match〉

case a of b => case b of c => c | d=> d

〈pat〉 〈mrule〉〈exp〉

〈exp〉

〈match〉

≡〈match〉

Figure 3: The shared parse forest for the input of Example 2.

2.3 General Parsing

A general parser returns all the possible parses for the provided input, and as
such discards the incorrect parses of Figures 2a and 2d and only returns the
correct ones of Figures 2b and 2c. In particular, a generalized LALR(1) parser
explores the two possibilities of the conflict, until it reaches the “=>” or “=”
sign, at which point the incorrect partial parses of Figures 2a and 2d fail.

Our tool tackles an issue that appeared with the recent popularity of general
algorithms for programming languages parsers. The user does not know a priori
whether the conflict reported by Bison in the LALR(1) automaton is caused by
an ambiguity or by an insufficient lookahead length. A casual investigation of its
source might only reveal the unbounded lookahead aspect of the conflict as with
Example 1, and overlook the ambiguity triggered by embedded case expressions
like the one of Example 2. The result might be a collection of parse trees—a
parse forest—where a single parse tree was expected, hampering the reliability
of the computations that follow the parsing phase.

Two notions pertain to the current use of parse forests in parsing tools.

• The sharing of common subtrees bounds the forest space complexity by
a polynomial function of the input length [7]. Figure 3 shows a shared
forest for our ambiguity, with a topmost 〈match〉 node that merges the
two alternative interpretations of the input of Example 2.

• Klint and Visser [25] developed the general notion of disambiguation fil-
ters that reject some of the trees of the parse forest, with the hope of
ending the selection process with a single tree. Such a mechanism is imple-
mented in one form or in another in many GLR tools, including SDF [45],
Elkhound [30], and Bison [14].

2.3.1 Merge Functions

Unexpected ambiguities are acute with GLR parsers that compute semantic
attributes as they reduce partial trees. The GLR implementations of GNU
Bison [14] and of Elkhound [30] are in this situation. Attribute values are

Regular [34, 33]—albeit perhaps less known, are able to exploit unbounded lookahead lengths.
Our ambiguity detection algorithm employs similar principles.

Preprint

6 S. Schmitz

synthesized for each parse tree node, and in a situation like the one depicted in
Figure 3, the values obtained for the two alternatives of a shared node have to
be merged into a single value for the shared node as a whole. The user of these
tools should thus provide a merge function that returns the value of the shared
node from the attributes of its competing alternatives.

Failure to provide a merge function where it is needed forces the parser to
choose arbitrarily between the possibilities, which is highly unsafe. Another line
of action is to abort parsing with a message exhibiting the ambiguity; this can
be set with an option in Elkhound, and it is the behavior of Bison.

2.3.2 A Detailed Knowledge of Ambiguities

Example 3 Let us suppose that the user has found out the ambiguity of Ex-
ample 2, and is using a disambiguation filter (in the form of a merge func-
tion in Bison or Elkhound) that discards the dotted alternative of Figure 3,
leaving only the correct parse according to the Standard ML definition. A
simple way to achieve this is to check whether we are reducing using rule
〈match〉−→〈match〉′|′〈mrule〉 or with rule 〈match〉−→〈mrule〉. Filters of this va-
riety are quite common, and are given a specific dprec directive in Bison, also
corresponding to the prefer and avoid filters in SDF2 [45].

The above solution is unfortunately unable to deal with yet another form of
ambiguity with 〈match〉, namely the ambiguity encountered with the input:

case a of b => b | c => case c of d => d | e => e

Indeed, with this input, the two shared 〈match〉 nodes are obtained through
reductions using the same rule 〈match〉−→〈match〉′|′〈mrule〉. Had we trusted
our filter to handle all the ambiguities, we would be running our parser under
a sword of Damocles.

This last example shows that a precise knowledge of the ambiguous cases is
needed for the development of a reliable GLR parser. While the problem of de-
tecting ambiguities is undecidable, conservative answers could point developers
in the right direction.

3 Detecting Ambiguities

Our tool is implemented in C as a new option in GNU Bison that triggers an
ambiguity detection computation instead of the parser generation. The output
of this verification on our subset of the Standard ML grammar is:

2 potential ambiguities with LR(0) precision detected:

(match -> mrule . , match -> match . ’|’ mrule)

(match -> match . ’|’ mrule , match -> match ’|’ mrule .)

From this ambiguity report, two things can be noted: that user-friendliness
is not a strong point of the tool in its current form, and that the two detected
ambiguities correspond to the two ambiguities of Examples 2 and 3. Further-
more, the reported ambiguities do not mention anything visibly related to the
difficult conflict of Example 1.

Preprint

An Experimental Ambiguity Detection Tool 7

〈fvalbind 〉

〈sfvalbind 〉

〈fvalbind 〉 〈sfvalbind 〉’|’

vid = 〈exp〉〈atpats〉

=〈atpats〉 〈exp〉vid vid

case 〈exp〉 of 〈match〉

Figure 4: Two equivalent positions under the LR(0) item approximation item0,
corresponding to the single item [〈sfvalbind〉−→vid 〈atpats〉·= 〈exp〉].

3.1 Overview

Our ambiguity checking algorithm attempts to find ambiguities as two different
parse trees describing the same sentence. Of course, there is in general an
infinite number of parse trees with an infinite number of derived sentences, and
we make therefore some approximations when visiting the trees.

We consider here approximations based on LR(0) items: a dot in a grammar
production A−→α·β can also be seen as a position in an elementary tree—a
tree of height one—with root A and leaves labeled by αβ. When moving from
item to item, we are also moving inside all the syntax trees that contain the
corresponding elementary trees. The LR(0) item approximation is such that
positions represented by the same item are considered as identical regardless
of their actual context; Figure 4 presents two such equivalent positions in a
derivation tree.

In order to find potential ambiguities modulo our approximation, we further
need to walk through the derivation trees. With LR(0) items, this means that
we can move inside a dotted production without any loss of precision, but that
upwards moves are performed regardless of any context. These eligible single
moves from item to item are in fact the transitions in a nondeterministic LR(0)
automaton (thereafter called LR(0) NFA). All the moves from item to item that
we describe in the following can be checked on the trees of Figures 2 and 3.

Since we want to find two different trees, we work with pairs of concurrent
items, starting from a pair (S−→·〈dec〉 $, S−→·〈dec〉 $) at the beginning of all
trees, and ending on a pair (S−→〈dec〉 $·, S−→〈dec〉 $·). Between these, we pair
items that could be reached upon reading a common prefix of a sentential form,
hence following trees that derive the same sentence modulo our approximations.

The notion of equivalence of positions in derivation trees is the basis for
a framework for context-free grammar approximations, which generalizes more
complex constructions, like the itemΠ equivalence of LR-Regular parsers [13, 19].
The LR(0) NFA is a special case of a more general position automaton that
abstracts left-to-right walks inside the grammar trees. Our algorithm in its
full generality guarantees that all ambiguities are caught for any such position
automaton [38].

Preprint

8 S. Schmitz

3.2 Example Run

We present here our algorithm with LR(0) items on the relevant portion of our
grammar. Let us start with the couple of items reported as being in conflict by
Bison; just like Bison, our algorithm has found out that the two positions might
be reached by reading a common prefix from the beginning of the input:

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈exp〉−→case 〈exp〉 of 〈match〉·) (1)

Unlike Bison, when confronted with a conflict, the algorithm attempts to see
whether we can keep reading the same sentence until we reach the end of
the input. Since we are at the extreme right of the elementary tree for rule
〈exp〉−→case 〈exp〉 of 〈match〉, we are also to the immediate right of the nonter-
minal 〈exp〉 in some rule right part. Our algorithm explores all the possibilities,
thus yielding the three couples:

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈mrule〉−→〈pat〉=>〈exp〉·) (2)

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈exp〉−→case 〈exp〉·of 〈match〉) (3)

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉·) (4)

Applying the same idea to the conflicting pair (2), we should explore all the
items with the dot to the right of 〈mrule〉.

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈match〉−→〈mrule〉·) (5)

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈match〉−→〈match〉 ′|′ 〈mrule〉·) (6)

At this point, we find [〈match〉−→〈match〉· ′|′ 〈mrule〉], our competing item,
among the items with the dot to the right of 〈match〉: from our approximations,
the strings we can expect to the right of the items in the pairs (5) and (6) are
the same, and we report the pairs as potential ambiguities.

Our ambiguity detection is not over yet: from (4), we could reach successively
(showing only the relevant possibilities):

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈fvalbind〉−→〈sfvalbind〉·) (7)

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈fvalbind〉−→〈fvalbind〉· ′|′ 〈sfvalbind〉) (8)

In this last pair, the dot is to the left of the same symbol, meaning that the
following item pair might also be reached by reading the same string from the
beginning of the input:

(〈match〉−→〈match〉 ′|′ ·〈mrule〉, 〈fvalbind〉−→〈fvalbind〉 ′|′ ·〈sfvalbind〉) (9)

The dot being to the left of a nonterminal symbol, it is also at the beginning of

Preprint

An Experimental Ambiguity Detection Tool 9

all the right parts of the productions of this symbol, yielding successively:

(〈mrule〉−→·〈pat〉=>〈exp〉, 〈fvalbind〉−→〈fvalbind〉 ′|′ ·〈sfvalbind〉) (10)

(〈mrule〉−→·〈pat〉=>〈exp〉, 〈sfvalbind〉−→·vid 〈atpats〉 = 〈exp〉) (11)

(〈pat〉−→·vid 〈atpat〉, 〈sfvalbind〉−→·vid 〈atpats〉 = 〈exp〉) (12)

(〈pat〉−→vid·〈atpat〉, 〈sfvalbind〉−→vid·〈atpats〉 = 〈exp〉) (13)

(〈pat〉−→vid·〈atpat〉, 〈atpats〉−→·〈atpat〉) (14)

(〈pat〉−→vid〈atpat〉·, 〈atpats〉−→〈atpat〉·) (15)

(〈mrule〉−→〈pat〉·=>〈exp〉, 〈atpats〉−→〈atpat〉·) (16)

(〈mrule〉−→〈pat〉·=>〈exp〉, 〈sfvalbind〉−→vid 〈atpats〉· = 〈exp〉) (17)

Our exploration stops with this last item pair: its concurrent items expect differ-
ent terminal symbols, and thus cannot reach the end of the input upon reading
the same string. The algorithm has successfully found how to discriminate the
two possibilities in conflict in Example 1.

3.3 Presentation of the Algorithm

The example run presented above relates couples of items. We call this rela-
tion the mutual accessibility relation ma, and define it as the union of several
primitive relations:

mas for terminal and nonterminal shifts, holding for instance between pairs (8)
and (9), but also between (14) and (15),

mae for downwards closures, holding for instance between pairs (9) and (10),

mac for upwards closures in case of a conflict, i.e. when one of the items in
the pair has its dot to the extreme right of the rule right part and the
concurrent item is different from it, holding for instance between pairs (2)
and (5). Formally, our notion of a conflict coincides with that of Aho and
Ullman [1, Theorem 5.9].

The algorithm thus constructs the image of the initial pair (S′−→·S$, S′−→·S$)
by the ma

∗ relation. If at some point we reach a pair holding twice the same item
from a pair with different items, we report an ambiguity.3 The algorithm some-
how explores the context to the right of conflicts in the same way it explored the
context to their left, which makes it somehow similar to noncanonical parsing
techniques [42]. We call therefore our algorithm the noncanonical unambiguity
(NU) test.

The size of the ma relation is bounded by the square of the size of the
position automaton, here the LR(0) NFA. Let |G| denote the size of the context-
free grammar G, i.e. the sum of the length of all the rules right parts, and |P |
denote the number of rules; then, in the LR(0) case, the algorithm time and
space complexity are bounded by O((|G| |P |)2).

3Since this occurs as soon as we find a mac relation that reaches the same item twice, the
mar relation and the boolean flag described in the general algorithm [38] are not needed.

Preprint

10 S. Schmitz

3.4 Implementation Details

The experimental tool currently implements the algorithm with LR(0) items,
SLR(1) items—meaning that simple lookahead sets are considered for the con-
flict relation mac—, and LR(1) items. Although the space required by LR(1)
item pairs is really large, we need this level of precision in order to guarantee
an improvement over the LALR(1) construction. The implementation changes
a few details.

3.4.1 NFA Size Optimization

We construct a nondeterministic automaton [20, 18] whose states are either
dotted rule items of form A−→α·β, or some nonterminal items of form ·A or
A·. For instance, a nonterminal item would be used when computing the mutual
accessibility of (2) and before reaching (5):

(〈match〉−→〈match〉· ′|′ 〈mrule〉, 〈mrule〉·). (18)

The size of the NFA then becomes bounded by O(|G|) in the LR(0) and SLR(1)
case, and O(|G||T |2)—where |T | is the number of terminal symbols—in the
LR(1) case, and the complexity of the algorithm is thus bounded by the square
of these numbers.

3.4.2 Static Disambiguation

We consider the associativity and static precedence directives [2] of Bison in the
conflict relation mac, and thus we do not report statically resolved ambiguities.
Dynamic merge functions are a different matter, discussed in Section 5.3.

3.4.3 Ordering Conflicts

We order our items pairs to avoid redundancy in reduce/reduce conflicts. In
such a conflict, we can choose to follow one reduction or the other, and we
might find a point of ambiguity sooner or later depending on this choice.

The same issue was met by McPeak and Necula with Elkhound [30], where
a strict bottom-up order was enforced using an ordering on the nonterminals
and the portion of the input string covered by each reduction.

We solve our issue in a similar fashion, the difference being that we do not
have a finite input string at our disposal, and thus we adopt a more conservative
ordering. We say that A and B are in a right corner relation, noted A ∠B, if
there is a rule A−→αB. Our order is then the transitive reflexive closure ∠

∗ of
the right corner relation. In a reduce/reduce conflict between reductions to A

and B, we follow the reduction of A if A 6 ∠
∗ B or if both A ∠

∗ B and B ∠
∗ A.

4 Experimental Comparisons

The choice of a conservative ambiguity detection algorithm is currently rather
limited. Nevertheless, several parsing techniques define proper subsets of the
unambiguous grammars, and as such can be employed as unambiguity tests.
The most common of all is the LALR(1) construction, but, as argued earlier,
the presence of a conflict is not very informative as far as ambiguity is concerned.

Preprint

An Experimental Ambiguity Detection Tool 11

We present in this section several comparisons between our algorithm and its
competitors.

4.1 Other Conservative Algorithms

4.1.1 LR(k) Construction

The class of LR(k) grammars uses a fixed amount k of lookahead to dispel con-
flicts. Although it is widely considered that even a setting of k = 1 leads to
impractical parser sizes, there exist compression techniques, and a few imple-
mentations are available (e.g. MSTA [29]).

The grammar family Gn

3
demonstrates the complexity gains with our algo-

rithm as compared to LR(k) parsing:

S−→A | Bn, A−→Aaa | a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1 (Gn

3
)

While a LR(2n) test is needed in order to tell that Gn

3
is unambiguous, the

grammar is found unambiguous with our algorithm using LR(0) items.

Following the results on LR(k) testing [20], we implemented a canonical LR
test in our tool using the same item pairing technique as for the NU test. More
precisely, we compute the image of the initial pair of items through (mas ∪ mae)∗

and report a LR conflict as soon as we find an item pair that could follow a
conflict relation mac.

4.1.2 LR-Regular Construction

Beyond LR(k) parsing, LR-Regular parsing [13] employs a regular approxima-
tion of the right context of conflicts in an attempt to find the correct parsing
action. In practice it explores a regular cover of the right context of LR conflicts
with a finite automaton [6].

Grammar G5 is a non-LRR grammar with rules

S−→AC | BCb, A−→a, B−→a, C−→cCb | cb. (G5)

It is found unambiguous by our algorithm using LR(0) items.

Still with our item pairing approach, we implemented a LRR test, where item
pairs after a conflict—i.e. after a mac relation—have to follow the same terminal
symbols (and not any symbol in V as with mas), and can move downwards and
upwards freely. A potential ambiguity is reported whenever a pair containing
twice the same item is reached at some point during the exploration of the right
context of conflicts, as with the NU test.

4.1.3 Horizontal and Vertical Ambiguity

A different approach, unrelated to any parsing method, was proposed by Brabrand
et al. [9] with their horizontal and vertical unambiguity test (HVRU). Horizon-
tal ambiguity appears with overlapping concatenated languages, and vertical
ambiguity with non-disjoint unions; their method thus follows exactly how the
context-free grammar was formed. Their intended application is to test gram-
mars that describe RNA secondary structures [36].

Preprint

12 S. Schmitz

Table 1: Reported potential ambiguities in the comparison grammars.

Grammar actual class LALR(1) HVRU [9] NU(item0)

Gn

3
LR(2n) 1 0 0

G5 non-LRR 1 1 0

G6 non-LRR 6 0 9

G7 LR(0) 0 1 0

Grammars G6 and G7 show that our method is not comparable with the
horizontal and vertical ambiguity detection method of Brabrand et al. Grammar
G6 is a palindrome grammar with rules

S−→aSa | bSb | a | b | ε (G6)

that our method finds erroneously ambiguous. Conversely, grammar G7 with
rules

S−→AA, A−→aAa | b (G7)

is a LR(0) grammar, and the test of Brabrand et al. finds it horizontally am-
biguous and not vertically ambiguous.

Table 1 compiles the results obtained on these grammars. The “LALR(1)”
column provides the total number of conflicts (shift/reduce as well as reduce/re-
duce) reported by Bison, the “HVRU” column the number of potential am-
biguities (horizontal or vertical) reported by the HVRU algorithm, and the
“NU(item0)” column the number of potential ambiguities reported by our algo-
rithm with LR(0) items.

For completeness, we also present the results of our tool on the RNA gram-
mars of Reeder et al. [36] in Table 2.

4.1.4 Precision Settings

Several conservative ambiguity detection methods are thus possible: LR(k) and
LR-Regular testing, horizontal and vertical unambiguity testing, and NU test-
ing. Each of these methods can employ different scales of precision:

Table 2: Reported potential ambiguities in the RNA grammars discussed by
Reeder et al. [36].

Grammar actual class LALR(1) HVRU [9] NU(item1)

RNA1 ambiguous 30 6 14

RNA2 ambiguous 33 7 13

RNA3 non-LRR 4 0 2

RNA4 SLR(1) 0 0 0

RNA5 SLR(1) 0 0 0

RNA6 LALR(1) 0 0 0

RNA7 non-LRR 5 0 3

RNA8 LALR(1) 0 0 0

Preprint

An Experimental Ambiguity Detection Tool 13

• our implementation of the LR, LR-Regular and NU methods can employ
LR(0), SLR(1) or LR(1) items and notions of conflicts;

• GNU Bison and MSTA further provide respectively a LALR(1) precision
and a LR(k) precision with an arbitrary fixed k for the LR method;

• the results published by Brabrand et al. with horizontal and vertical un-
ambiguity also take advantage of the possibility to unfold the grammar in
order to improve the precision of their tests. Since—at the time of this
writing—such unfolding had to be performed manually, we did not con-
sider it in our tests, but one should note that it would have improved the
results of their implementation. The approximation they build without
unfolding follows the technique of Mohri and Nederhof [32], and is slightly
better than the one provided by LR(0) items, because they identify the
strongly regular portions of the grammar and avoid some unnecessary
approximations.

4.2 Experiments on Grammars for Programming Languages

We ran our implementations of the LR, LRR and NU methods on seven different
ambiguous grammars for programming languages:

Pascal an ISO-7185 Pascal grammar retrieved from the comp.compilers FTP
at ftp://ftp.iecc.com/pub/file/, LALR(1) except for a dangling else
ambiguity,

Mini C a simplified C grammar written by Jacques Farré for a compilers
course, LALR(1) except for a dangling else ambiguity,

ANSI C [24, Appendix A.13], also retrieved from the comp.compilers FTP.
The grammar is LALR(1), except for a dangling else ambiguity. The
ANSI C’ grammar is the same grammar modified by setting typedef
names to be a nonterminal, with a single production 〈typedef -name〉−→identifier .
The modification reflects the fact that GLR parsers should not rely on the
lexer hack for disambiguation.

Standard ML, extracted from the language definition [31, Appendix B]. As
mentioned in Section 2, this is a highly ambiguous grammar, and no effort
whatsoever was made to ease its implementation with a parser generator.

Elsa C++, developed with the Elkhound GLR parser generator [30], and a
smaller version without class declarations nor function bodies. Although
this is a grammar written for a GLR parser generator, it allows determin-
istic parsing whenever possible in an attempt to improve performance.

In order to provide a better ground for comparisons between LR, LRR and
NU testing, we implemented an option that computes the number of initial
LR(0) item pairs in conflict—for instance pair (1)—that can reach a point of
ambiguity—for instance pair (5)—through the ma relation. Table 3 presents the
number of such initial conflicting pairs with our tests when employing LR(0)
items, SLR(1) items, and LR(1) items. We completed our implementation by
counting conflicting LR(0) item pairs for the LALR(1) conflicts in the parsing
tables generated by Bison, which are shown in the LALR(1) column of Table 3.

Preprint

ftp://ftp.iecc.com/pub/file/

14 S. Schmitz

Table 3: Number of initial LR(0) conflicting pairs remaining with the LR, LRR
and NU tests employing successively LR(0), SLR(1), LALR(1), and LR(1) pre-
cision.

Precision LR(0) SLR(1) LALR(1) LR(1)

Method LR LRR NU LR LRR NU LR LR LRR NU

Pascal 119 55 55 5 5 5 1 1 1 1

Mini C 153 11 10 5 5 4 1 1 1 1

ANSI C 261 13 2 13 13 2 1 1 1 1

ANSI C’ 265 117 106 22 22 11 9 9 - -

Standard ML 306 163 158 130 129 124 109 109 107 107

Small Elsa C++ 509 285 239 25 22 22 24 24 - -

Elsa C++ 973 560 560 61 58 58 53 - - -

This measure of the initial LR(0) conflicts is far from perfect. In particular,
our Standard ML subset has a single LR(0) conflict that mingles an actual
ambiguity with a conflict requiring an unbounded lookahead exploration: the
measure would thus show no improvement when using our test. The measure
is not comparable with the numbers of potential ambiguities reported by NU;
for instance, NU(item1) would report 89 potential ambiguities for Standard ML,
and 52 for ANSI C’. Another means to compare ambiguity detection tools is
thus investigated in the next subsection.

Although we ran our tests on a machine equipped with a 3.2GHz Xeon and
3GiB of physical memory, several tests employing LR(1) items exhausted the
memory. The explosive number of LR(1) items is also responsible for a huge
slowdown: for the small Elsa grammar, the NU test with SLR(1) items ran
in 0.22 seconds, against more than 2 minutes for the corresponding canonical
LR(1) test (and managed to return a better conflict report).

4.3 Micro-Benchmarks

Basten [5] compared several means to detect ambiguities in context-free gram-
mars, including our own implementation in GNU Bison, the AMBER generative
test [40], and the MSTA LR(k) parser generator [29]. Also confronted with the
difficulty of measuring ambiguity in a meaningful way, he opted for a micro-
benchmark approach, performing the tests on 36 small unambiguous grammars
and 48 ambiguous ones from various sources.

4.3.1 Basten’s Results

The conservative accuracy ratios Basten [5] obtained with our tool, computed
as the number of grammars correctly classified as unambiguous, divided by the
number of tested grammars, were of 61%, 69%, and 86% in LR(0), SLR(1), and
LR(1) mode respectively. This compares rather well to the LR(k) tests, where
the ratio drops to 75%, with attempted k values as high as 50. Interestingly,
when run against the same collection, our LRR test with LR(1) precision chokes
on the same grammars as the LR(k) tests, and obtains the same 75% ratio.
Furthermore, the grammars on which the NU(item1) test failed were all of the

Preprint

An Experimental Ambiguity Detection Tool 15

Table 4: Number of conflicts obtained with Bison, Brabrand et al.’s tool, and
our tool in LRR and NU modes with various precision settings.

Method actual LR HVRU LRR NU

Precision class LALR(1) ≥LR(0) LR(1) LR(0) SLR(1) LR(1)

90-10-042 LR(2) 2 0 14 7 7 6

98-05-030 non LR 1 10 26 0 0 0

98-08-215 LR(2) 1 0 0 0 0 0

03-02-124 LR(2) 1 0 0 0 0 0

03-09-027 LR(2) 2 0 0 0 0 0

03-09-081 LR(3) 2 0 0 0 0 0

05-03-114 LR(2) 1 0 0 0 0 0

Ada “is” LR(2) 1 0 0 0 0 0

Ada calls non-LR 1 0 0 1 0 0

C++ qualified IDs non-LRR 1 5 21 0 0 0

Java modifiers non-LR 31 0 0 3 0 0

Java names non-LR 1 0 0 0 0 0

Java arrays LR(2) 1 0 0 0 0 0

Java casts LR(2) 1 0 0 0 0 0

Pascal typed LR(2) 1 0 0 0 0 0

Set expressions non-LR 8 19 119 2 2 2

same mold (1-, 2-, and 4-letters palindromes, and the RNA grammars RNA3

and RNA7 of Reeder et al. [36]).

4.3.2 A Larger Collection

We gathered a few more unambiguous grammars from programming languages
constructs in order to improve the representativity of Basten’s grammar collec-
tion in this domain.

The comp.compilers Collection A first set of seven unambiguous gram-
mars was found in the comp.compilers archive when querying the word “con-
flict” and after ruling out ambiguous grammars and LL-related conflicts:4

90-10-042 an excerpt of the YACC syntax, which has an optional semicolon
as end of rule marker that makes it LR(2);

98-05-030 a non LR excerpt of the Tiger syntax;

98-08-215 a LR(2) grammar;

03-02-124 a LR(2) excerpt of the C# grammar;

03-09-027 a LR(2) grammar;

03-09-081 a LR(3) grammar;

05-03-114 a LR(2) grammar.

4The names xx-xx-xxx are the message identifiers on the archive, respectively available at
http://compilers.iecc.com/comparch/article/xx-xx-xxx.

Preprint

http://compilers.iecc.com
http://compilers.iecc.com

16 S. Schmitz

Table 5: Accuracy ratios of each method on our set of 16 small grammars,
on the complete set of 52 unambiguous small grammars, and on the set of 26
non-LALR(1) small grammars.

Method LR HVRU LRR NU

Precision LALR(1) LR(k) ≥LR(0) LR(1) LR(0) SLR(1) LR(1)

Accuracy/improvement 0% 62% 81% 75% 75% 87% 87%

Overall accuracy 50% 69% 69% 75% 65% 75% 87%

Overall improvement 0% 42% 69% 50% 58% 65% 73%

The Literature Collection A second set of nine grammars was compiled
using grammars from the literature, notably from the literature on LR-Regular
and noncanonical parsing techniques:

Ada “is” a LR(2) snippet of the Ada syntax [3], pointed out by Baker [4] and
Boullier [8];

Ada calls a non LR fragment of the Ada syntax, pointed out by Boullier [8];

C++ qualified IDs a non LR-Regular portion of the C++ syntax [21];

Java modifiers a non LR excerpt of the Java syntax, which was detailed by
Gosling et al. [17] in their Sections 19.1.2 and 19.1.3;

Java names a non LR excerpt given in their Section 19.1.1;

Java arrays a LR(2) excerpt given in their Section 19.1.4;

Java casts a LR(2) excerpt given in their Section 19.1.5;

Pascal typed a LR(2) grammar for Pascal variable declarations that enforces
type correctness, given by Tai [43];

Set expressions a non LR grammar that distinguishes between arithmetic and
set expressions, given by Čulick and Cohen [13].

Results We ran several conservative ambiguity detection tests on Basten’s
grammar collection and on our small collection. Table 4 shows the results of
our micro-benchmarks, and Table 5 compiles the accuracy ratios we obtained.
Our small collection contains only non-LALR(1) grammars, and as such the
accuracy of the various tools can also be seen as an improvement ratio over
LALR(1). The overall accuracy and improvement scores take into account the
complete collection of 53 unambiguous grammars using both our grammars and
Basten’s; 26 grammars are not LALR(1) in this full collection.

The ability to freely specify lookahead lengths in a LR(k) parser improves
over LALR(1) parsing, but significantly less than the methods that take an
unbounded lookahead into account. An interesting point is that the results
of our tool in LR(1) precision with Brabrand et al.’s horizontal and vertical
ambiguity check are not highly correlated, and a simple conjunction of the
two tools would obtain an overall 88% improvement rate, or 94% on our small
collection only. Figure 5 sums up the grammar class inclusions for the various

Preprint

An Experimental Ambiguity Detection Tool 17

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

CFGHVRU UCFG

NU

LR-Regular

LR(k)

LALR(1)

Figure 5: Grammar classes inclusions of various context-free grammar classes.
The surface of each rectangle is roughly commensurate with its importance in
the full collection of small grammars.

methods we presented, and attempts to render their relative importance on the
complete collection of 100 small grammars.

Let us finally point out that a much larger grammar collection would be
needed in order to obtain more trustworthy micro-benchmark result. Such re-
sults might still not be very significant for large, complex grammars with a lot
of interaction, where the precision of a method seems to be much more impor-
tant than for small grammars: for instance, our NU method performs as well
with SLR(1) precision as with LR(1) precision on our 16 small grammars (Ta-
ble 4), but the results of Table 3 demonstrate a significant improvement when
employing LR(1) items on real grammars.

5 Current Limitations

Our implementation is still a prototype. We describe several planned improve-
ments (Sections 5.1 and 5.2), followed by a brief account on the difficulty of
considering dynamic disambiguation filters and merge functions in the algo-
rithm (Section 5.3).

5.1 Ambiguity Report

As mentioned in the beginning of Section 3, the ambiguity report returned by
our tool is hard to interpret.

A first solution, also advocated by Brabrand et al. [9], is to attempt to
generate actually ambiguous inputs that match the detected ambiguities. The
ambiguity report would then comprise two parts, one for proven ambiguities

Preprint

18 S. Schmitz

a ba c

A

B

A≡

B

Figure 6: The shared parse forest for input aabc with grammar G8.

with examples of input, and one for the potential ambiguities. The generation
should only follow item pairs from which the potential ambiguities are reachable
through ma relations, and stop whenever finding the ambiguity or after having
explored a given number of paths.

The good results Basten [5] obtained with AMBER [40] on his set of small
ambiguous grammars emphasizes the interest for a mixed strategy, where the
paths to potential ambiguities in ma

∗ could be employed to guide the generation
of ambiguous sentential forms. The running time of AMBER on a full program-
ming language grammar is currently rather prohibitive; running a generator on
the portions of the grammar that might present an ambiguity according to our
tool could improve it drastically. The initial experiments run by Basten in this
direction are highly encouraging.

Displaying the (potentially) ambiguous paths in the grammar in a graphical
form is a second possibility. This feature is implemented by ANTLRWorks, the
development environment for ANTLR version 3 [33].

5.2 Running Time

The complexity of our algorithm is a square function of the grammar size. If,
instead of item pairs, we considered deterministic states of items like LALR(1)
does, the worst-case complexity would rise to an exponential function. Our
algorithm is thus more robust.

Nonetheless, practical computations seem likely to be faster with LALR(1)
item sets: a study of LALR(1) parsers sizes by Purdom [35] showed that the size
of the LALR(1) parser was usually a linear function of the size of the grammar.
Therefore, all hope of analyzing large GLR grammars—like the Cobol grammar
recovered by Lämmel and Verhoef [27]—is not lost.

The theory behind noncanonical LALR parsing [39] might translate into
a special case of our algorithm for ambiguity detection, yielding the missing
tradeoff between SLR(1) and LR(1) precision.

5.3 Dynamic Disambiguation Filters

In contrast with its treatment of static precedence and associativity directives,
our tool does not ignore potential ambiguities when the user has declared a
merge function that might solve the issue. The rationale is simple: we do not
know whether the merge function will actually solve the ambiguity. Consider
for instance the rules

A−→aBc | aaBc, B−→ab | b. (G8)

Preprint

An Experimental Ambiguity Detection Tool 19

Our tool reports an ambiguity on the item pair (B−→ab·, B−→b·), and is quite
right: the input aabc is ambiguous. As shown in Figure 6, adding a merge
function on the rules of B would not resolve the ambiguity: the merge function
should be written for A.

If we consider arbitrary productions for B, a merge function might be useful
only if the languages of the alternatives for B are not disjoint. We could thus
improve our tool to detect some useless merge declarations. On the other hand,
if the two languages are not equivalent, then there are cases where a merge
function is needed on A—or even at a higher level. Ensuring equivalence is
difficult, but could be attempted in some decidable cases, namely when we can
detect that the languages of the alternatives of B are finite or regular, or using
bisimulation equivalence [11].

6 Conclusions

The paper reports on an ambiguity detection tool. In spite of its experimental
state, the tool has been successfully used on a very difficult portion of the Stan-
dard ML grammar. The tool also improves on the dreaded LALR(1) conflicts
report, albeit at a much higher computational price.

We hope that the need for such a tool, the results obtained with this first
implementation, and the solutions described for the current limitations will
encourage the investigation of better ambiguity detection techniques. The in-
tegration of our method with the one designed by Brabrand et al. is another
promising solution.

Acknowledgements The work reported in this article was conducted at the
Laboratoire I3S, Université de Nice - Sophia Antipolis & CNRS, France.

The author gratefully acknowledges the help received from Bas Basten with
his grammar collection and from Claus Brabrand and Anders Møller with their
ambiguity detection tool.

The author also thanks Jacques Farré for his help in the preparation of this
paper and Sébastien Verel for granting him access to a fast computer.

References

[1] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,
Translation, and Compiling. Volume I: Parsing. Series in Auto-
matic Computation. Prentice Hall, 1972. ISBN 0-13-914556-7. URL
http://portal.acm.org/citation.cfm?id=SERIES11430.578789.

[2] Alfred V. Aho, Stephen C. Johnson, and Jeffrey D. Ullman. Deterministic
parsing of ambiguous grammars. Communications of the ACM, 18(8):441–
452, 1975. ISSN 0001-0782. doi: 10.1145/360933.360969.

[3] ANSI. Reference Manual for the Ada Programming Lan-
guage ANSI/MIL-STD-1815A-1983. Springer, 1983. URL
http://www.adahome.com/Resources/refs/83.html.

Preprint

http://portal.acm.org/citation.cfm?id=SERIES11430.578789
http://dx.doi.org/10.1145/360933.360969
http://www.adahome.com/Resources/refs/83.html

20 S. Schmitz

[4] Theodore P. Baker. Extending lookahead for LR parsers. Journal of
Computer and System Sciences, 22(2):243–259, 1981. ISSN 0022-0000.
doi: 10.1016/0022-0000(81)90030-1.

[5] H. J. S. Basten. Ambiguity detection methods for context-free grammars.
Master’s thesis, Centrum voor Wiskunde en Informatica, Universiteit van
Amsterdam, August 2007.

[6] Manuel E. Bermudez and Karl M. Schimpf. Practical arbitrary lookahead
LR parsing. Journal of Computer and System Sciences, 41(2):230–250,
1990. ISSN 0022-0000. doi: 10.1016/0022-0000(90)90037-L.

[7] Sylvie Billot and Bernard Lang. The structure of shared
forests in ambiguous parsing. In ACL’89, pages 143–
151. ACL Press, 1989. doi: 10.3115/981623.981641. URL
http://www.aclweb.org/anthology/P89-1018.

[8] Pierre Boullier. Contribution à la construction automatique d’analyseurs
lexicographiques et syntaxiques. Thèse d’État, Université d’Orléans, 1984.

[9] Claus Brabrand, Robert Giegerich, and Anders Møller. Analyz-
ing ambiguity of context-free grammars. In Jan Holub and Jan
Žd’árek, editors, CIAA’07, volume 4783 of Lecture Notes in Com-
puter Science, pages 214–225. Springer, 2007. ISBN 978-3-540-76335-2.
doi: 10.1007/978-3-540-76336-9 21.

[10] David G. Cantor. On the ambiguity problem of Backus sys-
tems. Journal of the ACM, 9(4):477–479, 1962. ISSN 0004-5411.
doi: 10.1145/321138.321145.

[11] Didier Caucal. Graphes canoniques de graphes algébriques. RAIRO
- Theoretical Informatics and Applications, 24(4):339–352, 1990. URL
http://www.inria.fr/rrrt/rr-0872.html.

[12] Noam Chomsky and Marcel Paul Schützenberger. The algebraic theory of
context-free languages. In P. Braffort and D. Hirshberg, editors, Computer
Programming and Formal Systems, Studies in Logic, pages 118–161. North-
Holland Publishing, 1963.

[13] Karel Čulik and Rina Cohen. LR-Regular grammars—an extension of
LR(k) grammars. Journal of Computer and System Sciences, 7(1):66–96,
1973. ISSN 0022-0000. doi: 10.1016/S0022-0000(73)80050-9.

[14] Charles Donnely and Richard Stallman. Bison version 2.3, September 2006.
URL http://www.gnu.org/software/bison/manual/.

[15] Jay Earley. An efficient context-free parsing algorithm. Com-
munications of the ACM, 13(2):94–102, 1970. ISSN 0001-0782.
doi: 10.1145/362007.362035.

[16] Robert W. Floyd. On ambiguity in phrase structure languages.
Communications of the ACM, 5(10):526, 1962. ISSN 0001-0782.
doi: 10.1145/368959.368993.

Preprint

http://dx.doi.org/10.1016/0022-0000(81)90030-1
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.3115/981623.981641
http://www.aclweb.org/anthology/P89-1018
http://dx.doi.org/10.1007/978-3-540-76336-9_21
http://dx.doi.org/10.1145/321138.321145
http://www.inria.fr/rrrt/rr-0872.html
http://dx.doi.org/10.1016/S0022-0000(73)80050-9
http://www.gnu.org/software/bison/manual/
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1145/368959.368993

An Experimental Ambiguity Detection Tool 21

[17] James Gosling, Bill Joy, and Guy Steele. The JavaTM Language Specifi-
cation. Addison-Wesley, first edition, 1996. ISBN 0-201-63451-1. URL
http://java.sun.com/docs/books/jls/.

[18] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practi-
cal Guide. Ellis Horwood Limited, 1990. ISBN 0-13-651431-6. URL
http://www.cs.vu.nl/∼dick/PTAPG.html.

[19] Stephan Heilbrunner. Tests for the LR-, LL-, and LC-Regular conditions.
Journal of Computer and System Sciences, 27(1):1–13, 1983. ISSN 0022-
0000. doi: 10.1016/0022-0000(83)90026-0.

[20] Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman. Opera-
tions on sparse relations and efficient algorithms for grammar problems. In
15th Annual Symposium on Switching and Automata Theory, pages 127–
132. IEEE Computer Society, 1974.

[21] ISO. ISO/IEC 14882:1998: Programming Languages — C++. Interna-
tional Organization for Standardization, Geneva, Switzerland, 1998.

[22] Stephen C. Johnson. YACC — yet another compiler compiler. Computing
science technical report 32, AT&T Bell Laboratories, Murray Hill, New
Jersey, July 1975.

[23] Stefan Kahrs. Mistakes and ambiguities in the definition of Standard ML.
Technical Report ECS-LFCS-93-257, University of Edinburgh, LFCS, 1993.
URL http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/.

[24] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, 1988. ISBN 0-13-110362-8.

[25] Paul Klint and Eelco Visser. Using filters for the disambiguation
of context-free grammars. In G. Pighizzini and P. San Pietro,
editors, ASMICS Workshop on Parsing Theory, Technical Re-
port 126-1994, pages 89–100. Università di Milano, 1994. URL
http://citeseer.ist.psu.edu/klint94using.html.

[26] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineer-
ing discipline for grammarware. ACM Transactions on Software En-
gineering and Methodology, 14(3):331–380, 2005. ISSN 1049-331X.
doi: 10.1145/1072997.1073000.

[27] Ralf Lämmel and Chris Verhoef. Semi-automatic grammar recovery. Soft-
ware: Practice & Experience, 31:1395–1438, 2001. doi: 10.1002/spe.423.

[28] Peter Lee. Using the SML/NJ System. Carnegie Mellon University, 1997.
URL http://www.cs.cmu.edu/∼petel/smlguide/smlnj.htm.

[29] Vladimir Makarov. MSTA (syntax description translator), 1999. URL
http://cocom.sourceforge.net/msta.html.

[30] Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR
parser generator. In Evelyn Duesterwald, editor, CC’04, volume 2985 of
Lecture Notes in Computer Science, pages 73–88. Springer, 2004. ISBN
3-540-21297-3. doi: 10.1007/b95956.

Preprint

http://java.sun.com/docs/books/jls/
http://www.cs.vu.nl/~dick/PTAPG.html
http://dx.doi.org/10.1016/0022-0000(83)90026-0
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/
http://citeseer.ist.psu.edu/klint94using.html
http://dx.doi.org/10.1145/1072997.1073000
http://dx.doi.org/10.1002/spe.423
http://www.cs.cmu.edu/~petel/smlguide/smlnj.htm
http://cocom.sourceforge.net/msta.html
http://dx.doi.org/10.1007/b95956

22 S. Schmitz

[31] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
definition of Standard ML. MIT Press, revised edition, 1997. ISBN 0-262-
63181-4.

[32] Mehryar Mohri and Mark-Jan Nederhof. Regular approximations of
context-free grammars through transformation. In Jean-Claude Junqua
and Gertjan van Noord, editors, Robustness in Language and Speech Tech-
nology, volume 17 of Text, Speech and Language Technology, chapter 9,
pages 153–163. Kluwer Academic Publishers, 2001. ISBN 0-7923-6790-1.
URL http://citeseer.ist.psu.edu/mohri00regular.html.

[33] Terence J. Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. The Pragmatic Programmers, 2007. ISBN 0-9787392-
5-6.

[34] David A. Poplawski. On LL-Regular grammars. Journal of Com-
puter and System Sciences, 18(3):218–227, 1979. ISSN 0022-0000.
doi: 10.1016/0022-0000(79)90031-X.

[35] Paul Purdom. The size of LALR(1) parsers. BIT Numerical Mathematics,
14(3):326–337, 1974. ISSN 0006-3835. doi: 10.1007/BF01933232.

[36] Janina Reeder, Peter Steffen, and Robert Giegerich. Effective ambiguity
checking in biosequence analysis. BMC Bioinformatics, 6:153, 2005. ISSN
1471-2105. doi: 10.1186/1471-2105-6-153.

[37] Andreas Rossberg. Defects in the revised definition of Standard ML. Tech-
nical report, Saarland University, Saarbrücken, Germany, July 2006. URL
http://ps.uni-sb.de/Papers/paper info.php?label=sml-defects.

[38] Sylvain Schmitz. Conservative ambiguity detection in context-free gram-
mars. In Lars Arge, Christian Cachin, Tomasz Jurdziński, and An-
drzej Tarlecki, editors, ICALP’07, volume 4596 of Lecture Notes in Com-
puter Science, pages 692–703. Springer, 2007. ISBN 978-3-540-73419-2.
doi: 10.1007/978-3-540-73420-8 60.

[39] Sylvain Schmitz. Noncanonical LALR(1) parsing. In Zhe Dang and
Oscar H. Ibarra, editors, DLT’06, volume 4036 of Lecture Notes in
Computer Science, pages 95–107. Springer, 2006. ISBN 3-540-35428-X.
doi: 10.1007/11779148 10.

[40] Friedrich Wilhelm Schröer. AMBER, an ambiguity checker for context-
free grammars. Technical report, compilertools.net, 2001. URL
http://accent.compilertools.net/Amber.html.

[41] Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM
Transactions on Programming Languages and Systems, 28(4):577–618,
2006. ISSN 0164-0925. doi: 10.1145/1146809.1146810.

[42] Thomas G. Szymanski and John H. Williams. Noncanonical extensions of
bottom-up parsing techniques. SIAM Journal on Computing, 5(2):231–250,
1976. ISSN 0097-5397. doi: 10.1137/0205019.

Preprint

http://citeseer.ist.psu.edu/mohri00regular.html
http://dx.doi.org/10.1016/0022-0000(79)90031-X
http://dx.doi.org/10.1007/BF01933232
http://dx.doi.org/10.1186/1471-2105-6-153
http://ps.uni-sb.de/Papers/paper_info.php?label=sml-defects
http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://dx.doi.org/10.1007/11779148_10
http://accent.compilertools.net/Amber.html
http://dx.doi.org/10.1145/1146809.1146810
http://dx.doi.org/10.1137/0205019

An Experimental Ambiguity Detection Tool 23

[43] Kuo-Chung Tai. Noncanonical SLR(1) grammars. ACM Transactions on
Programming Languages and Systems, 1(2):295–320, 1979. ISSN 0164-0925.
doi: 10.1145/357073.357083.

[44] Masaru Tomita. Efficient Parsing for Natural Language. Kluwer Academic
Publishers, 1986. ISBN 0-89838-202-5.

[45] Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco
Visser. Disambiguation filters for scannerless generalized LR parsers. In
R. Nigel Horspool, editor, CC’02, volume 2304 of Lecture Notes in Com-
puter Science, pages 143–158. Springer, 2002. ISBN 3-540-43369-4. URL
http://www.springerlink.com/content/03359k0cerupftfh/.

Preprint

http://dx.doi.org/10.1145/357073.357083
http://www.springerlink.com/content/03359k0cerupftfh/

	Introduction
	A Difficult Syntactic Issue
	Case Expressions in Standard ML
	The Conflict
	General Parsing
	Merge Functions
	A Detailed Knowledge of Ambiguities

	Detecting Ambiguities
	Overview
	Example Run
	Presentation of the Algorithm
	Implementation Details
	NFA Size Optimization
	Static Disambiguation
	Ordering Conflicts

	Experimental Comparisons
	Other Conservative Algorithms
	LR(k) Construction
	LR-Regular Construction
	Horizontal and Vertical Ambiguity
	Precision Settings

	Experiments on Grammars for Programming Languages
	Micro-Benchmarks
	Basten's Results
	A Larger Collection

	Current Limitations
	Ambiguity Report
	Running Time
	Dynamic Disambiguation Filters

	Conclusions
	Acknowledgements

