Subrecursive Hierarchies and WQO Algorithms

S. Schmitz

Joint work with D. Figueira, S. Figueira, and Ph. Schnoebelen
Barbizon, June 7, 2011

Outline

well quasi orderings generic tools for termination arguments this talk beyond termination: complexity upper bounds

contents

Dickson's Lemma Length of Bad Sequences Subrecursive Hierarchies **Applications**

Dickson's Lemma Definition (wqo)

A wqo is a quasi-order (S, \leq) s.t.

$$\forall \mathbf{x} = x_0, x_1, x_2, \dots \in S^{\omega}, \ \exists i_1 < i_2, \ x_{i_1} \leqslant x_{i_2} \ .$$

Lemma (Dickson's Lemma)

If (A, \leq_A) and (B, \leq_B) are two wqo's, then $(A \times B, \leq_{\times})$ is a wgo, where \leq_{\times} is the product ordering:

$$\langle a, b \rangle \leqslant_{\times} \langle a', b' \rangle \stackrel{\text{def}}{\Leftrightarrow} a \leqslant_{A} a' \wedge b \leqslant_{B} b'$$
.

Dickson's Lemma

Definition (wqo)

Dickson's Lemma

A wqo is a quasi-order (S, \leq) s.t.

$$\forall \mathbf{x} = x_0, x_1, x_2, \dots \in S^{\omega}, \exists i_1 < i_2, x_{i_1} \leqslant x_{i_2}.$$

Lemma (Dickson's Lemma)

In this talk: $(\mathbb{N}^k, \leqslant)$ is a wqo.

Applications of Dickson's Lemma

Termination and decision of problems on

- well-structured transition systems (Finkel and Schnoebelen, 2001),
- Datalog with constraints (Revesz, 1993),
- ► Gröbner's bases (Gallo and Mishra, 1994),
- relevance logics (Urquhart, 1999),
- ► LTL with Presburger constraints (Demri, 2006),
- data logics (Demri and Lazić, 2009; Figueira and Segoufin, 2009),
- **.** . . .

Dickson's Lemma

```
SIMPLE (a,b)
c \longleftarrow 1
while a > 0 \land b > 0
         \langle a, b, c \rangle \longleftrightarrow \langle a - 1, b, 2c \rangle
    or
         \langle a, b, c \rangle \longleftarrow \langle 2c, b - 1, 1 \rangle
end
```

- in any run $\langle a_0, b_0, c_0 \rangle, \ldots, \langle a_n, b_n, c_n \rangle$, $\langle a_0, b_0 \rangle \not\leq \langle a_n, b_n \rangle$
- Dickson's Lemma: all the runs are finite
- ► How long can SIMPLE run?

Complexity of SIMPLE

Dickson's Lemma

$$\langle 3, 3, 2^{0} \rangle, \langle 2, 3, 2^{1} \rangle, \langle 1, 3, 2^{2} \rangle,$$

 $\langle 2^{3}, 2, 1 \rangle, \dots, \langle 1, 2, 2^{2^{3}-1} \rangle,$
 $\langle 2^{2^{3}}, 1, 1 \rangle, \dots, \langle 1, 1, 2^{2^{2^{3}}-1} \rangle,$
 $\langle 0, 1, 2^{2^{2^{3}}} \rangle$

- \rightarrow 3 + 2³ + 2^{2³} + 1 steps: non elementary lower
- ▶ This talk: (matching) upper bound from the use

Dickson's Lemma

$$\langle 3, 3, 2^{0} \rangle, \langle 2, 3, 2^{1} \rangle, \langle 1, 3, 2^{2} \rangle,$$

 $\langle 2^{3}, 2, 1 \rangle, \dots, \langle 1, 2, 2^{2^{3}-1} \rangle,$
 $\langle 2^{2^{3}}, 1, 1 \rangle, \dots, \langle 1, 1, 2^{2^{2^{3}}-1} \rangle,$
 $\langle 0, 1, 2^{2^{2^{3}}} \rangle$

- \rightarrow 3 + 2³ + 2^{2³} + 1 steps: non elementary lower
- ▶ This talk: (matching) upper bound from the use

Complexity of SIMPLE

$$\langle 2^{3}, 2, 1 \rangle, \dots, \langle 1, 2, 2^{2^{3}-1} \rangle,$$

 $\langle 2^{2^{3}}, 1, 1 \rangle, \dots, \langle 1, 1, 2^{2^{2^{3}-1}} \rangle,$
 $\langle 0, 1, 2^{2^{2^{3}}} \rangle$

► $3 + 2^3 + 2^{2^3} + 1$ steps: non elementary lower bound

 $(3,3,2^0), (2,3,2^1), (1,3,2^2),$

► This talk: (matching) upper bound from the use of Dickson's Lemma

- $\mathbf{x} = x_0, x_1, \dots$ in S^{∞} is a good sequence if $\exists i_1 < i_2, x_{i_1} \leqslant x_{i_2},$
- a bad sequence otherwise,
- (S, \leq) wgo: every bad sequence is finite

- bound the length of bad sequences
- but: choose any N, and consider the bad sequence N, N $-1, \ldots, 0$ over N
- similarly: $\langle 3, 3 \rangle$, $\langle 3, 2 \rangle$, $\langle 3, 1 \rangle$, $\langle 3, 0 \rangle$, $\langle 2, N \rangle$, $\langle 2, N - 1 \rangle$, ...

- bound the length of controlled bad sequences
- fix a control function $f: \mathbb{N} \to \mathbb{N}$
- $\mathbf{x} = x_0, x_1, \dots$ over \mathbb{N}^k is (f, t)-controlled if

$$\forall i = 0, 1, \dots, \forall 1 \leq j \leq k, x_i[j] < f(i+t)$$

for fixed k, f, t, there are finitely many (f, t)-controlled sequences over \mathbb{N}^k : maximal length

$$L_{\omega^k,f}(t)$$

$$k = 2$$
, $t = 3$, $f(x) = x + 1$

Example (SIMPLE)

$$k = 2, t = 2 = \lceil \log_2(\max(a, b)) \rceil, f(x) = 2^x + 1$$

- 1. obtain inequalities for L_{ω^k} in terms of "simpler" wqo's
- 2. define a bounding function M with $L_{\omega^k f}(t) \leqslant M_{\omega^k f}(t)$
- 3. rank $M_{\omega^k,f}$ in a hierarchy of function classes $(\mathscr{F}_{\nu})_{\nu}$

Easy Cases

$$\begin{split} L_{\omega^0,f}(t) &= 1 \\ L_{\omega^1,f}(t) &= f(t) \end{split}$$

the latter sequence being

$$f(t) - 1$$
, $f(t) - 2$, ..., 1, 0

- disjoint sums $A_1 \oplus A_2$
- wgo for the sum ordering :

$$x \leqslant x' \stackrel{\text{def}}{\Leftrightarrow} (x, x' \in A_1 \land x \leqslant_1 x')$$

 $\lor (x, x' \in A_2 \land x \leqslant_2 x')$

- ordinal notation: $\alpha = \omega^{k_1} \oplus \omega^{k_2} \oplus \cdots \oplus \omega^{k_m}$,
- shift to $L_{\alpha,f}(t)$ for $\alpha < \omega^{\omega}$

A bad sequence $\mathbf{x} = x_0, x_1, \dots, x_1$ over \mathbb{N}^k :

- control: $x_0 \leq \langle f(t) 1, \dots, f(t) 1 \rangle$
- ▶ badness: $\forall i > 0$, $\exists j \leq k$, $x_i[j] < x_0[j] \leq f(t) 1$
- \triangleright each x_i belongs to at least one region $R_{i,s}$
- $R_{i,s} = \{x \in \mathbb{N}^k \mid x[i] = s\}$
- ▶ there are $k \cdot (f(t) 1)$ regions in total

A bad sequence $\mathbf{x} = x_0, x_1, \dots, x_l$ over \mathbb{N}^k :

- control: $x_0 \leq \langle f(t) 1, \dots, f(t) 1 \rangle$
- ▶ badness: $\forall i > 0$, $\exists j \leq k$, $x_i[j] < x_0[j] \leq f(t) 1$
- \triangleright each x_i belongs to at least one region $R_{i,s}$
- $R_{i,s} = \{x \in \mathbb{N}^k \mid x[i] = s\}$
- ▶ there are $k \cdot (f(t) 1)$ regions in total

A bad sequence $\mathbf{x} = x_0, x_1, \dots, x_l$ over \mathbb{N}^k :

- control: $x_0 \leq \langle f(t) 1, \dots, f(t) 1 \rangle$
- ▶ badness: $\forall i > 0$, $\exists j \leq k$, $x_i[j] < x_0[j] \leq f(t) 1$
- \triangleright each x_i belongs to at least one *region* $R_{i,s}$ depending on its value $s = x_i[j]$ at coordinate j
- $R_{i,s} = \{x \in \mathbb{N}^k \mid x[i] = s\}$
- ▶ there are $k \cdot (f(t) 1)$ regions in total

A bad sequence $\mathbf{x} = x_0, x_1, \dots, x_l$ over \mathbb{N}^k :

- control: $x_0 \le \langle f(t) 1, \dots, f(t) 1 \rangle$
- ▶ badness: $\forall i > 0$, $\exists j \leq k$, $x_i[j] < x_0[j] \leq f(t) 1$
- \triangleright each x_i belongs to at least one *region* $R_{i,s}$ depending on its value $s = x_i[j]$ at coordinate j
- $R_{i,s} = \{x \in \mathbb{N}^k \mid x[i] = s\}$
- there are $k \cdot (f(t) 1)$ regions in total

$$\mathbf{x} = \langle 2, 2 \rangle, \langle 1, 5 \rangle, \langle 4, 0 \rangle, \langle 1, 1 \rangle, \langle 0, 100 \rangle, \langle 0, 99 \rangle, \langle 3, 0 \rangle$$

$$\langle 2,2 \rangle, \begin{bmatrix} \langle \textbf{1},5 \rangle, & \langle \textbf{1},1 \rangle, & \langle \textbf{0},100 \rangle, \langle \textbf{0},99 \rangle, & (R_{1,0}: x[1]=0) \\ \langle \textbf{1},5 \rangle, & \langle \textbf{1},1 \rangle, & (R_{1,1}: x[1]=1) \\ \langle \textbf{4},\textbf{0} \rangle, & \langle \textbf{3},\textbf{0} \rangle & (R_{2,0}: x[2]=0) \\ & & (R_{2,1}: x[2]=1) \end{bmatrix}$$

$$\mathbf{x} = \langle 2, 2 \rangle, \langle 1, 5 \rangle, \langle 4, 0 \rangle, \langle 1, 1 \rangle, \langle 0, 100 \rangle, \langle 0, 99 \rangle, \langle 3, 0 \rangle$$

$$\langle 2,2 \rangle, \begin{bmatrix} \langle 0,100 \rangle, \langle 0,99 \rangle, & (R_{1,0}: x[1]=0) \\ \langle 1,5 \rangle, & \langle 1,1 \rangle, & (R_{1,1}: x[1]=1) \\ \langle 4,0 \rangle, & \langle 3,0 \rangle & (R_{2,0}: x[2]=0) \\ & \langle 1,1 \rangle & (R_{2,1}: x[2]=1) \end{bmatrix}$$

Example

$$\mathbf{x} = \langle 2, 2 \rangle$$
, $\langle 1, 5 \rangle$, $\langle 4, 0 \rangle$, $\langle 1, 1 \rangle$, $\langle 0, 100 \rangle$, $\langle 0, 99 \rangle$, $\langle 3, 0 \rangle$

$$\langle 2,2 \rangle, \begin{bmatrix} \langle *,5 \rangle, & \langle *,100 \rangle, \langle *,99 \rangle, & (R_{1,0}:x[1]=0) \\ \langle *,5 \rangle, & \langle *,1 \rangle, & (R_{1,1}:x[1]=1) \\ \langle 4,* \rangle, & \langle 3,* \rangle & (R_{2,0}:x[2]=0) \\ & (R_{2,1}:x[2]=1) \end{bmatrix}$$

Suffix: a *bad* sequence over

 $\mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N} \oplus \mathbb{N}$

Example

$$\mathbf{x} = \langle 2, 2 \rangle$$
, $\langle 1, 5 \rangle$, $\langle 4, 0 \rangle$, $\langle 1, 1 \rangle$, $\langle 0, 100 \rangle$, $\langle 0, 99 \rangle$, $\langle 3, 0 \rangle$

$$\langle 2,2 \rangle, \begin{bmatrix} \langle 100 \rangle, \langle 99 \rangle, & (R_{1,0}:x[1]=0) \\ \langle 5 \rangle, & \langle 1 \rangle, & (R_{1,1}:x[1]=1) \\ \langle 4 \rangle, & \langle 3 \rangle & (R_{2,0}:x[2]=0) \\ & (R_{2,1}:x[2]=1) \end{bmatrix}$$

Suffix: an (f, t + 1)-controlled bad sequence:

$$L_{\omega^{k},f}(t) \leq 1 + L_{\omega^{k-1}\cdot k(f(t)-1),f}(t+1)$$

Inequality for $\bigoplus_i \omega^{k_i}$

$$\alpha = \omega^2 \oplus \omega^2 \oplus \omega^1$$
:

$$\left[\langle 2, 2 \rangle, \langle 1, 5 \rangle, \langle 4, 0 \rangle, \langle 3 \rangle, \langle 1, 1 \rangle, \langle 3, 5 \rangle \langle 0, 100 \rangle, \langle 0, 99 \rangle, \langle 3, 0 \rangle \right]$$

$$\langle 2,2 \rangle \begin{bmatrix} \langle 5 \rangle, & \langle 3 \rangle, & & \langle *,100 \rangle, \langle *,99 \rangle, \\ \langle *,5 \rangle, & \langle *,1 \rangle, & & \langle 3,* \rangle \end{bmatrix}$$

Inequality for $\bigoplus_i \omega^{k_i}$

$$\alpha = \omega^2 \oplus \omega^2 \oplus \omega^1$$
:

$$\left[\langle 2,2\rangle, \langle 1,5\rangle, \langle 4,0\rangle, \langle 3\rangle, \langle 1,1\rangle, \langle 3,5\rangle \langle 0,100\rangle, \langle 0,99\rangle, \langle 3,0\rangle\right]$$

$$\langle 2,2 \rangle \begin{bmatrix} \langle 5 \rangle, & \langle 3 \rangle, & & \langle *,100 \rangle, \langle *,99 \rangle, \\ & \langle *,5 \rangle, & \langle *,1 \rangle, & & \langle 3,* \rangle \end{bmatrix} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & &$$

Inequality for $\bigoplus_i \omega^{k_i}$

$$\langle 2,2 \rangle \begin{bmatrix} \langle 5 \rangle, & \langle 3 \rangle, & & \langle *,100 \rangle, \langle *,99 \rangle, \\ & \langle *,5 \rangle, & \langle *,1 \rangle, & & \langle 3,* \rangle \end{bmatrix}$$
$$\langle 12,1 \rangle, & \langle 3,5 \rangle$$

$$\begin{split} & \partial_{x}\alpha = \{\gamma \oplus \omega^{k-1} \cdot k(x-1) \mid \alpha = \gamma \oplus \omega^{k}\} \\ & L_{\alpha,f}(t) \leqslant \max_{\alpha' \in \vartheta_{f(t)}\alpha} \{1 + L_{\alpha',f}(t+1)\} \end{split}$$

A Bounding Function

$$M_{\alpha,f}(t) \stackrel{\text{\tiny def}}{=} \max_{\alpha' \in \vartheta_{f(t)}\alpha} \{1 + M_{\alpha',f}(t+1)\} \,.$$

• Then for all α and t

$$L_{\alpha,f}(t)\leqslant M_{\alpha,f}(t)$$

find the functional complexity of M

(Löb and Wainer, 1970)

Hierarchy of functions $(F_{\alpha})_{\alpha}$ indexed by ordinals; we only need the *finite* fragment.

$$F_0(x) \stackrel{\text{def}}{=} x + 1$$

$$F_{n+1}(x) \stackrel{\text{def}}{=} F_n^{x+1}(x)$$

$$F_1(x) = 2x + 1$$

$$F_2(x) = (x + 1) \cdot 2^{x+1} - 1$$

 $F_0(x) \stackrel{\text{def}}{=} x + 1$

(Löb and Wainer, 1970)

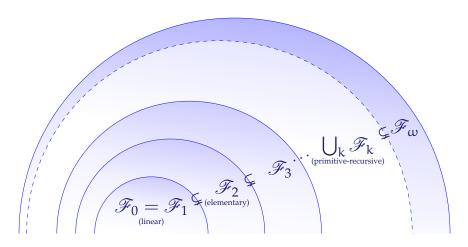
Hierarchy of functions $(F_{\alpha})_{\alpha}$ indexed by ordinals; we only need the *finite* fragment.

$$\begin{aligned} F_{n+1}(x) &\stackrel{\mathrm{def}}{=} F_n^{x+1}(x) \\ F_1(x) &= 2x+1 \\ F_2(x) &= (x+1) \cdot 2^{x+1} - 1 \\ F_3 \text{ is non elementary} \\ F_{\omega} &\stackrel{\mathrm{def}}{=} \lambda x. F_x(x) \text{ is non primitive-recursive} \end{aligned}$$

Fast Growing Hierarchy: $(\mathscr{F}_{\alpha})_{\alpha}$

(Löb and Wainer, 1970)

Elementary-recursive closure of the $(F_{\alpha})_{\alpha}$



Complexity Results

Proposition (Upper Bound)

Let k, $r \ge 1$ be natural numbers and $\gamma \ge 1$. If f is a monotone unary function of \mathscr{F}_{ν} with $f(x) \ge \max(1, x)$ for all x, then $M_{\omega^{k,r}}$ is in $\mathscr{F}_{\gamma+k-1}$.

Proposition (Lower Bound)

Let k, $r \ge 1$ be natural numbers and $\gamma \ge 0$ with $\gamma + k \geqslant 3.$ Then $L_{\omega^k \cdot r, F_{\nu}}$ is bounded below by a function which is **not** in $\mathscr{F}_{\nu+k-2}$.

Applications of our Bounds

Termination and decision of problems on

- well-structured transition systems (Finkel and Schnoebelen, 2001),
- Datalog with constraints (Revesz, 1993),
- ► Gröbner's bases (Gallo and Mishra, 1994),
- relevance logics (Urquhart, 1999),
- ► LTL with Presburger constraints (Demri, 2006),
- data logics (Demri and Lazić, 2009; Figueira and Segoufin, 2009),
- **.** . . .

(Podelski and Rybalchenko, 2004)

Monolithic Termination Argument

- prove that the program's transition relation R is well-founded
- ranking function ρ from program configurations $\mathbf{x} = \mathbf{x}_0, \mathbf{x}_1, \dots$ into a wqo s.t. $R \subseteq \{(x_i, x_i) \mid \rho(x_i) \nleq \rho(x_i)\}$
- for simple: $\rho(a,b,c) = \omega^b + a$

Program Termination Proofs

(Podelski and Rybalchenko, 2004)

Disjunctive Termination Argument

- find well-founded relations $T_1, ..., T_k$ on program configurations
- ▶ prove $R^+ \subseteq T_1 \cup \cdots \cup T_k$
- for simple:

$$\begin{split} & T_1 = \{(\langle \alpha, b, c \rangle, \langle \alpha', b', c' \rangle) \mid \alpha > 0 \wedge \alpha' < \alpha\} \\ & T_2 = \{(\langle \alpha, b, c \rangle, \langle \alpha', b', c' \rangle) \mid b > 0 \wedge b' < b\} \end{split}$$

at the heart of the Terminator tool

Termination by Dickson's Lemma

- each T_j shown well-founded thanks to a ranking function ρ_j into a wqo (S_j, \leqslant_j)
- map any sequence of program configurations

$$\mathbf{x} = \mathbf{x}_0, \mathbf{x}_1, \dots$$

to a sequence of tuples

$$\mathbf{y} = \langle \rho_1(\mathbf{x}_0), \dots, \rho_k(\mathbf{x}_0) \rangle, \langle \rho_1(\mathbf{x}_1), \dots, \rho_k(\mathbf{x}_1) \rangle, \dots$$

in
$$S_1 \times \cdots \times S_k$$

• y is bad: if $i_1 < i_2$, there exists j s.t.

$$(x_{i_1}, x_{i_2}) \in R^+ \cap T$$

but

$$\rho_i(x_{i_1}) \nleq \rho_i(x_{i_2})$$

- each T_i shown well-founded thanks to a ranking function ρ_i into a wqo (S_i, \leq_i)
- map any sequence of program configurations

$$\mathbf{x} = \mathbf{x}_0, \mathbf{x}_1, \dots$$

to a sequence of tuples

$$\mathbf{y} = \langle \rho_1(\mathbf{x}_0), \dots, \rho_k(\mathbf{x}_0) \rangle, \langle \rho_1(\mathbf{x}_1), \dots, \rho_k(\mathbf{x}_1) \rangle, \dots$$

in
$$S_1 \times \cdots \times S_k$$

• **y** is *bad*: if $i_1 < i_2$, there exists j s.t.

$$(x_{i_1}, x_{i_2}) \in R^+ \cap T_j$$

but

$$\rho_{j}(x_{i_{1}}) \nleq \rho_{j}(x_{i_{2}})$$

Make some assumptions:

- complexity bound g on atomic program operations
 - for instance polynomial
- complexity bound ρ on ranking functions into $\mathbb N$
 - for instance polynomial
- \mathbf{y} controlled by $g^{i} \circ \rho$ in some \mathscr{F}_{γ}
 - in this case an exponential function in \mathscr{F}_2
- time complexity in $\mathscr{F}_{\gamma+k-1}$
 - in this case \mathcal{F}_{k+1}
- ► matches the lower bound (expand SIMPLE to dimension k instead of 2)

Bounds on Program Complexity

Make some assumptions:

- complexity bound g on atomic program operations
 - for instance polynomial
- complexity bound ρ on ranking functions into $\mathbb N$
 - for instance polynomial
- \mathbf{y} controlled by $g^{i} \circ \rho$ in some \mathscr{F}_{γ}
 - in this case an exponential function in \mathcal{F}_2
- time complexity in $\mathscr{F}_{\gamma+k-1}$
 - in this case \mathcal{F}_{k+1}
- ► matches the lower bound (expand SIMPLE to dimension k instead of 2)

Bounds on Program Complexity

Make some assumptions:

- complexity bound g on atomic program operations
 - for instance polynomial
- complexity bound ρ on ranking functions into $\mathbb N$
 - for instance polynomial
- \mathbf{y} controlled by $g^{i} \circ \rho$ in some \mathscr{F}_{γ}
 - in this case an exponential function in \mathscr{F}_2
- time complexity in $\mathscr{F}_{\gamma+k-1}$
 - in this case \mathcal{F}_{k+1}
- ► matches the lower bound (expand SIMPLE to dimension k instead of 2)

Concluding Remarks

- practical applications of wqo's yield upper bounds!
- out-of-the-box upper bounds
- "essentially" matching lower bounds for decision problems on monotone counter systems (lossy counter systems, reset or transfer Petri nets)
- ▶ the future: Higman's Lemma

practical applications of wqo's yield upper bounds! References

- out-of-the-box upper bounds
- "essentially" matching lower bounds for decision problems on monotone counter systems (lossy counter systems, reset or transfer Petri nets)
- the future: Higman's Lemma

Dickson's Lemma

McAloon, K., 1984. Petri nets and large finite sets. *Theor. Comput. Sci.*, 32 (1–2):173–183. doi:10.1016/0304-3975(84)90029-X.

Clote, P., 1986. On the finite containment problem for Petri nets. *Theor. Comput. Sci.*, 43:99–105. doi:10.1016/0304-3975(86)90169-6.

Higman's Lemma

Cichoń, E.A. and Tahhan Bittar, E., 1998. Ordinal recursive bounds for Higman's Theorem. *Theor. Comput. Sci.*, 201(1–2):63–84. doi:10.1016/S0304-3975(97)00009-1.

Kruskal's Theorem

Weiermann, A., 1994. Complexity bounds for some finite forms of Kruskal's Theorem. *J. Symb. Comput.*, 18(5):463–488. doi:10.1006/jsco.1994.1059.

References

Fast Growing Hierarchy

Löb, M. and Wainer, S., 1970. Hierarchies of number theoretic functions, I. *Arch. Math. Logic*, 13:39–51. doi:10.1007/BF01967649.

WSTS

- Abdulla, P.A., Čerāns, K., Jonsson, B., and Tsay, Y.K., 2000. Algorithmic analysis of programs with well quasi-ordered domains. *Inform. and Comput.*, 160(1–2):109–127. doi:10.1006/inco.1999.2843.
- Finkel, A. and Schnoebelen, Ph., 2001. Well-structured transition systems everywhere! *Theor. Comput. Sci.*, 256(1–2):63–92. doi:10.1016/S0304-3975(00)00102-X.

Lower Bounds

Schnoebelen, Ph., 2010. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In *MFCS 2010*, volume 6281 of *LNCS*, pages 616–628. Springer. doi:10.1007/978-3-642-15155-2.54.

References: Applications

- Demri, S., 2006. Linear-time temporal logics with Presburger constraints: An overview. J. Appl. Non-Classical Log., 16(3–4):311–347. doi:10.3166/jancl.16.311-347.
- Demri, S. and Lazić, R., 2009. LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic, 10(3). doi:10.1145/1507244.1507246.
- Figueira, D. and Segoufin, L., 2009. Future-looking logics on data words and trees. In MFCS 2009, volume 5734 of LNCS, pages 331–343. Springer. doi:10.1007/978-3-642-03816-7_29.
- Gallo, G. and Mishra, B., 1994. A solution to Kronecker's Problem. Appl. Algebr. Eng. Comm., 5(6):343-370.
- Podelski, A. and Rybalchenko, A., 2004. Transition invariants. In LICS 2004, pages 32-41. IEEE. doi:10.1109/LICS.2004.1319598.
- Revesz, P.Z., 1993. A closed-form evaluation for Datalog queries with integer (gap)-order constraints. Theor. Comput. Sci., 116(1):117–149. doi:10.1016/0304-3975(93)90222-F.
- Urquhart, A., 1999. The complexity of decision procedures in relevance logic II. J. Symb. Log., 64(4):1774–1802. doi:10.2307/2586811.

Specific sequence, bad for $(\mathbb{N}^k, \leq_{\text{lex}})$, of length $\ell_{k,f}(t)$. Example

$$k = 2$$
, $t = 1$, $f(x) = x + 3$:

$$5 = 1 + 4 = 1 + \ell_{1,f}(1)$$

$$13 = 5 + 8 = 5 + \ell_{1,f}(5)$$

$$29 = 16 + 13 = 13 + \ell_{1,f}(13)$$

References

Lower Bound

Specific sequence, bad for $(\mathbb{N}^k, \leq_{\text{lex}})$, of length $\ell_{k,f}(t)$. In general, on the k + 1th coordinate:

$$\underbrace{\frac{f(t)-1\,f(t)-1\,\cdots\,f(t)-1}{\ell_{k,f}(t)\,\text{times}}}_{\begin{array}{c}\ell_{k,f}(o_{k,f}(t))\\ \end{array}\underbrace{\frac{f(t)-2,\,f(t)-2,\,\cdots,\,f(t)-2}{\ell_{k,f}(o_{k,f}(t))\,\text{times}}}_{\begin{array}{c}\ell_{k,f}\left(o_{k,f}^{f(t)-1}(t)\right)\,\text{times}\end{array}}$$

$$\begin{split} o_{k,f}(t) &\stackrel{\text{def}}{=} t + \ell_{k,f}(t) \\ \ell_{k+1,f}(t) &= \sum_{i-1}^{f(t)} \ell_{k,f} \Big(o_{k,f}^{j-1}(t) \Big) \end{split}$$

Lower Bound

Specific sequence, bad for $(\mathbb{N}^k, \leq_{lex})$, of length $\ell_{k,f}(t)$. One can have $\ell_{k,f}(t) < L(\omega^k, t)$: let f(x) = 2x and t = 1,

$$\langle 1, 1 \rangle, \langle 1, 0 \rangle, \langle 0, 5 \rangle, \langle 0, 4 \rangle, \langle 0, 3 \rangle, \langle 0, 2 \rangle, \langle 0, 1 \rangle, \langle 0, 0 \rangle$$

 $\langle 1, 1 \rangle, \langle 0, 3 \rangle, \langle 0, 2 \rangle, \langle 0, 1 \rangle, \langle 9, 0 \rangle, \langle 8, 0 \rangle, \langle 7, 0 \rangle, \langle 6, 0 \rangle, \langle 5, 0 \rangle, \dots, \langle 0, 0 \rangle$

$$\ell_{2,f}(1) = 8$$
 $L_{\omega^2 f}(1) \geqslant 14$

Well-structured transition systems

transition systems (Q, →, q₀) with a wqo ≤ on Q compatible with transitions:

$$\forall p,q,p' \in Q, (p \xrightarrow{\alpha} q \land p \leqslant p') \Rightarrow \exists q', (q \leqslant q' \land p' \xrightarrow{\alpha} q')$$

- a generic framework for decidability results: safety, termination, EF model checking, ...
- many classes of concrete systems are WSTS:
 - over (\mathbb{N}^k, \leq) : vector addition systems, resets/transfer Petri nets, increasing counter systems, ...
 - over (Σ^*, \sqsubseteq) : lossy channel systems, ...
 - beyond: data nets, ...

- given (Q, \rightarrow, q_0) , decide whether there exists an infinite run $q_0 \rightarrow q_1 \rightarrow \cdots$
- ▶ holds iff there exists $q_i \leq q_i$ with $q_0 \to^* q_i \to^+ q_i$
- thanks to wgo, termination is both r.e. and co-r.e.
- what is the complexity?

- ▶ given (Q, \rightarrow, q_0) , decide whether there exists an infinite run $q_0 \rightarrow q_1 \rightarrow \cdots$
- ▶ holds iff there exists $q_i \leqslant q_j$ with $q_0 \rightarrow^* q_i \rightarrow^+ q_j$
- thanks to wqo, termination is both r.e. and co-r.e.
- what is the complexity?

- $ightharpoonup C = \langle Q, k, \delta, m_0 \rangle$
- transitions (q, q, q') where g(x) = Ax + B an affine function, $A \in \mathbb{N}^{k \times k}$, $B \in \mathbb{Z}^k$
- $\mathfrak{m}_0 \in \mathbb{N}^k$
- generalize reset/transfer Petri nets, broadcast protocols,...

Termination for ACS

Given $\langle \mathcal{C} \rangle$ a k-ACS, does every run of \mathcal{C} terminate?

- exponential control in \mathscr{F}_{2}
- $t < |m_0| < |C|$
- upper bound: \mathscr{F}_{k+1}
- ▶ lower bound: $\mathscr{F}_{k-O(1)}$ (Schnoebelen, 2010)
- if k is not fixed, non-primitive recursive, with an upper bound in \mathscr{F}_{ω}