Robust Reachability in Timed Automata: A Game-based Approach

Ocan Sankur

LSV, CNRS & ENS de Cachan

Joint with Patricia Bouyer and Nicolas Markey

will be presented at ICALP'12

Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 1 / 17

Reachability in Timed Automata

Reachability problem

Given a timed automaton A, and a target location ℓ, decide whether some (initial) run of A visits ℓ. ► PSPACE-complete [Alur & Dill '94].

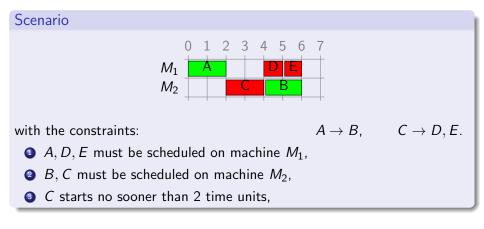
Applications of Reachability

- Safety checking does the system reaches a bad configuration?
- 2 Checking desired behaviour:
 - The system can terminate correctly.
 - Synthesize controller reaching a given state (resolve non-determinism).

• • = • • = •

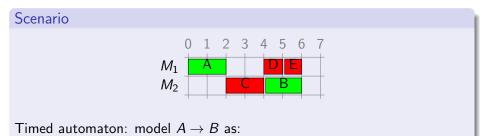
Motivation: Scheduling

Scheduling analysis with timed automata [Abdeddaim, Asarin, Maler 2006] **Goal:** analyse a *greedy* scheduling policy on given scenarios. *greedy:* no machine is idle if a task is waiting for execution



Motivation: Scheduling

Scheduling analysis with timed automata [Abdeddaim, Asarin, Maler 2006] **Goal:** analyse a *greedy* scheduling policy on given scenarios. *greedy:* no machine is idle if a task is waiting for execution



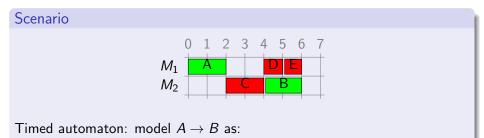
$$\xrightarrow{t:=0} (p_1) \xrightarrow{lock_1!} (p_2) \xrightarrow{unlock_1!, x_A=2} (p_3) \xrightarrow{lock_2!} (p_4) \xrightarrow{unlock_2!, x_B=2} (p_5)$$

Target location: "all tasks have been completed".

▶ Timing analysis: use a clock to measure total elapsed time.

Motivation: Scheduling

Scheduling analysis with timed automata [Abdeddaim, Asarin, Maler 2006] **Goal:** analyse a *greedy* scheduling policy on given scenarios. *greedy:* no machine is idle if a task is waiting for execution



$$\xrightarrow{t:=0} (p_1) \xrightarrow{lock_1!} (p_2) \xrightarrow{unlock_1!, x_A=2} (p_3) \xrightarrow{lock_2!} (p_4) \xrightarrow{unlock_2!, x_B=2} (p_5)$$

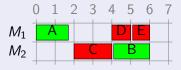
Target location: "all tasks have been completed".

▶ reachability analysis: schedulable in 6 time units.

Ocan Sankur (LSV)

Motivation: Robustness in Scheduling

 \oint Something happens \oint : duration of A is now 1.999.

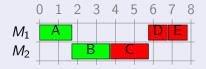


This cannot be an outcome of an algorithm (not greedy).

Best greedy scheduler is ...

Motivation: Robustness in Scheduling

 \oint Something happens \oint : duration of A is now 1.999.



Best greedy scheduler is ... which completes in 7.999 time units. Previous analysis did not capture this **timing anomaly**.

Motivation: Robustness in Scheduling

 \oint Something happens \oint : duration of A is now 1.999.



Best greedy scheduler is ... which completes in 7.999 time units. Previous analysis did not capture this **timing anomaly**.

This work

Goal: reachability despite perturbations meanly chosen by the environment.

Model the semantics as a game between Controller and Environment.

 \rightarrow can provide robust analysis, robust controller synthesis...

Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

At any state (ℓ, ν) ,

Ocan Sankur (LSV)

-

- - E

Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

At any state (ℓ, ν),

• Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,

Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

At any state (ℓ, ν),

- Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,
- 2 Environment chooses $d' \in [d \delta, d + \delta]$,

Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

At any state (ℓ, ν),

- Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,
- 2 Environment chooses $d' \in [d \delta, d + \delta]$,

3 New state is
$$(\ell', (\nu + d')[R \leftarrow 0])$$
.

Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

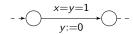
At any state (ℓ, ν),

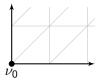
- Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,
- 2 Environment chooses $d' \in [d \delta, d + \delta]$,

• New state is $(\ell', (\nu + d')[R \leftarrow 0])$.

For $\delta = 0$, this is the usual semantics.

For $\delta > 0$,





Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

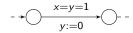
At any state (ℓ, ν),

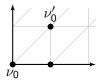
- Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,
- 2 Environment chooses $d' \in [d \delta, d + \delta]$,

3 New state is
$$(\ell', (\nu + d')[R \leftarrow 0])$$
.

For $\delta=$ 0, this is the usual semantics.

For $\delta > 0$,





Let \mathcal{A} be a timed automaton and $\delta > 0$.

Semantics $\mathcal{G}_{\delta}(\mathcal{A})$

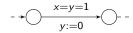
At any state (ℓ, ν),

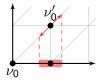
- Controller chooses a delay $d \ge \delta$, and an edge $\ell \xrightarrow{g,R} \ell'$, such that $\nu + d \models g$,
- 2 Environment chooses $d' \in [d \delta, d + \delta]$,

3 New state is
$$(\ell', (\nu + d')[R \leftarrow 0])$$
.

For $\delta=$ 0, this is the usual semantics.

For $\delta > 0$,





(Parameterized) Robust Reachability

Given a timed automaton \mathcal{A} and target location ℓ , Does there exist $\delta_0 > 0$, such that Controller has a strategy reaching ℓ in $\mathcal{G}_{\delta}(\mathcal{A})$ for all $\delta \in [0, \delta_0)$?

Main result

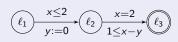
Robust reachability is EXPTIME-complete.

- We provide an upper bound for $\delta_0 > 0$,
- Winning strategies are computed as *parameterized DBMs*, where δ is the parameter: uniform representation for all $\delta > 0$.

Previous work: Chatterjee, Henzinger, Prabhu 2008: for **fixed** $\delta > 0$.

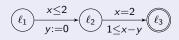
Two challenges

1 Accumulation of perturbations.



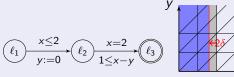
Two challenges

1 Accumulation of perturbations.



Two challenges

1 Accumulation of perturbations.



2 New regions become reachable

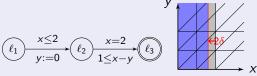
x=y=1

X

-

Two challenges

1 Accumulation of perturbations.



2 New regions become reachable

Algorithm:

Based on an extension of region construction

Provides information on the accumulation of perturbations

Ocan Sankur (LSV)

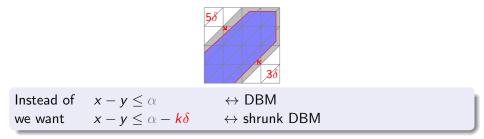
Robust Reachability in Timed Automata

April 19, 2012 7 / 17

Data structure to represent winning states

As in previous examples, winning states can be shown to be always zones whose facets are **shrunk** by $k\delta$ for some $k \in \mathbb{N}$.

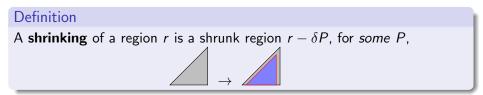
These sets will be represented by **shrunk difference-bound matrices** (DBMs), with parameter δ . [S., Bouyer, Markey, FSTTCS'11]



Shrunk zones can be described by a DBM *M*, and an integer matrix *P*. Then, for any $\delta > 0$, $M - \delta P$ describes the above shrunk zone.

Algorithm overview

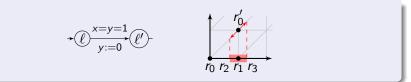
- (Forward) Construct an equivalent finite turn-based game, region-based
- Solve it,
- **③** (Backward) Construct winning states in $\mathcal{G}_{\delta}(\mathcal{A})$, and deduce δ_0 .



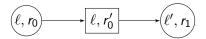
Winning strategies will be described by shrinkings of regions:

One can win from a region $r \Leftrightarrow$ one can win from a *shrinking* of r.

Construction of the finite turn-based game



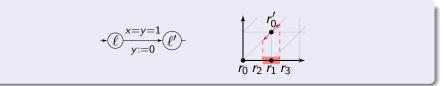
region automaton:



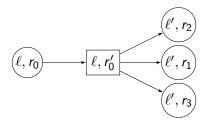
3. 3

< E.

Construction of the finite turn-based game



Extended region automaton:

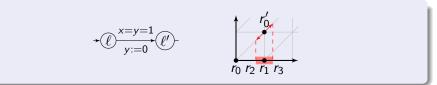


Idea: We win from *some* shrinking of r_0 , if, and only if we win from *some* shrinkings of r_1 , r_2 , r_3 .

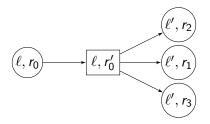
Ocan Sankur (LSV)

A B A A B A

Construction of the finite turn-based game



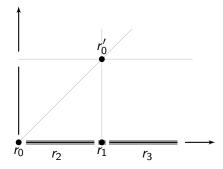
Extended region automaton:



Idea: We win from *some* shrinking of r_0 , if, and only if we win from *some* shrinkings of r_1 , r_2 , r_3 . Note quite.

• • = • • = •

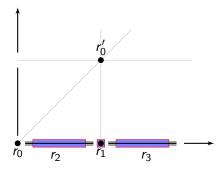
Assume that we have we can win from **some** shrinkings of r_1, r_2, r_3 .



April 19, 2012 11 / 17

3

Assume that we have we can win from **some** shrinkings of r_1, r_2, r_3 .

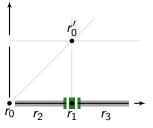


Can these be combined to a winning strategy from r_0 ? No: we don't have a strategy for valuations around r_1 .

A **constrained region** is a region with some of its facets marked. A shrinking of a constrained region **does not shrink** from marked facets.

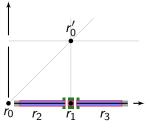
A **constrained region** is a region with some of its facets marked. A shrinking of a constrained region **does not shrink** from marked facets.

We win from r_0 iff we win from shrinkings of **constrained** r_1, r_2, r_3 .

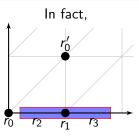


A **constrained region** is a region with some of its facets marked. A shrinking of a constrained region **does not shrink** from marked facets.

We win from r_0 iff we win from shrinkings of **constrained** r_1, r_2, r_3 .



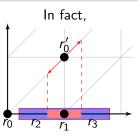
A **constrained region** is a region with some of its facets marked. A shrinking of a constrained region **does not shrink** from marked facets.



Ocan Sankur (LSV)

April 19, 2012 12 / 17

A **constrained region** is a region with some of its facets marked. A shrinking of a constrained region **does not shrink** from marked facets.

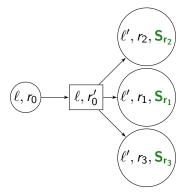


OK, we have a strategy for all the points in the red area.

Ocan Sankur (LSV)

Finite game F(A)

Shrinking constraint for region r is represented by a boolean matrix S_r .



Theorem

Controller wins $\mathcal{G}_{\delta}(\mathcal{A})$ for all $\delta \in [0, \delta_0]$ for some $\delta_0 > 0$, iff

Controller wins F(A).

Details on the definition of F(A)

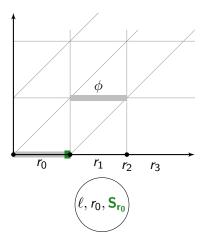
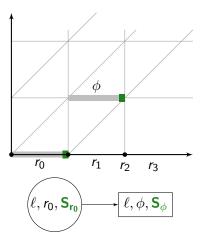


표 문 문

▲ 周 → - ▲ 三

Details on the definition of F(A)



S_{ϕ} is defined such that:

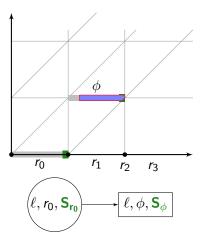
Controller wins from *some* shrinking of (ϕ, S_{ϕ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 14 / 17

Details on the definition of F(A)



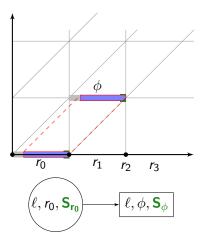
S_{ϕ} is defined such that:

Controller wins from *some* shrinking of (ϕ, S_{ϕ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 14 / 17



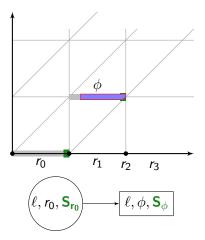
S_{ϕ} is defined such that:

Controller wins from *some* shrinking of (ϕ, S_{ϕ}) iff Controller wins from *some* shrinking of (r_0, S_{r_0}) .

Ocan Sankur (LSV)

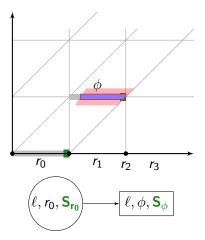
Robust Reachability in Timed Automata

April 19, 2012 14 / 17



April 19, 2012 14 / 17

3. 3

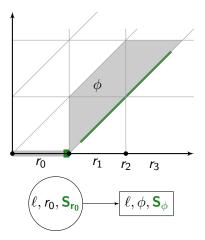


April 19, 2012 14 / 17

3

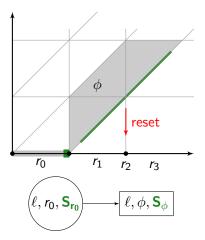
э.

A⊒ ▶ < ∃



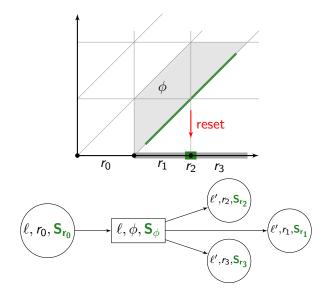
April 19, 2012 14 / 17

3. 3



April 19, 2012 14 / 17

3. 3



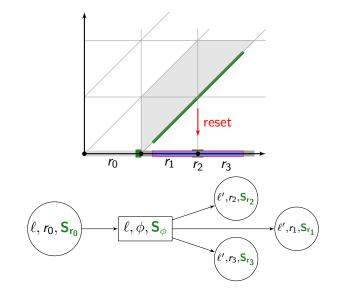
Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 14 / 17

3

- ∢ ≣ →



Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 15 / 17

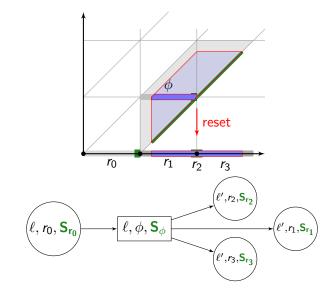
3

- < ∃ →



3. 3

→ ★ Ξ:

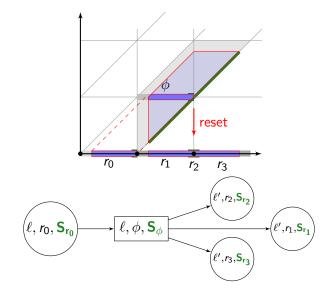


Ocan Sankur (LSV)

Robust Reachability in Timed Automata

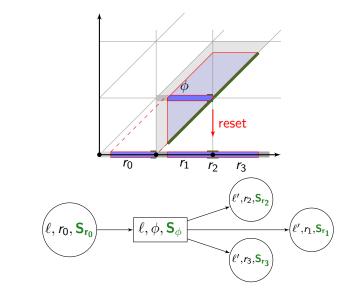
April 19, 2012 15 / 17

3. 3



3. 3

→ ★ Ξ:



 \blacktriangleright Each step of the backward propagation gives an upper bound on δ_{\pm} $_{\odot}$

Ocan Sankur (LSV)

Robust Reachability in Timed Automata

April 19, 2012 15 / 17

EXPTIME-hardness

Usual semantics in TA can encode reachability in linearly bounded Turing machines (PSPACE-complete).

Robust semantics in TA can encode reachability in **alternating** linearly bounded Turing machines (EXPTIME-complete).

The encoding is similar as in the PSPACE-hardness proofs for TA. **Alternation:** simulated by the perturbating player

Conclusion

- $\bullet\,$ Game semantics for robust reachability in timed automata with ${\bf unknown}\;\delta$
- Results generalize to two-player timed games → (parameterized) robust controller synthesis
- Winning sets are described by parameterized shrunk DBMs Uniform representation of strategies for all small δ > 0.

 \rightarrow A good tool for reasoning with small parameterized perturbations in timed automata

Future work

- Zone-based algorithm
- Probabilistic semantics
- Safety

通 ト イヨ ト イヨト

Conclusion

- $\bullet\,$ Game semantics for robust reachability in timed automata with ${\bf unknown}\;\delta$
- Results generalize to two-player timed games → (parameterized) robust controller synthesis
- Winning sets are described by parameterized shrunk DBMs Uniform representation of strategies for all small δ > 0.

 \rightarrow A good tool for reasoning with small parameterized perturbations in timed automata

Future work

- Zone-based algorithm
- Probabilistic semantics
- Safety

Thank you!