
Robustness and Implementability
of Timed Systems

Ocan Sankur

LSV, CNRS & ENS de Cachan

Based on joint work with Patricia Bouyer, Kim Larsen, Nicolas Markey,
Claus Thrane

LABRI, 12 Janvier 2012

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 1 / 29

Timed Automata: Exact Semantics

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

idlestart

q2

q1

click?

x := 0

single click!

x = 50

click?x
<

50dou
ble

cli
ck

!

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its clock constraint holds.
- A clock can be reset by a transition.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 2 / 29

Timed Automata: Exact Semantics

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

idlestart

q2

q1

click?

x := 0

single click!

x = 50

click?x
<

50dou
ble

cli
ck

!

Runs of a timed automaton: A

(idle, x = 0)
23.7−−→ (idle, x = 23.7)

click?−−−→ (q1, x = 0)
10−→ (q1, x = 10)

click?−−−→ (q2, x = 10)
double click−−−−−−−→ (idle, x = 10) ...

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 2 / 29

Timed Automata: Program Semantics

The semantics of timed automata is idealistic:

No minimum delay between actions,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “1 ≤ x ≤ 3”.

Real-world systems have

digital clocks updated regularly:

time
... tick! tick! tick!...

≤ ∆P

nonzero reaction time:

signal?

≤ ∆R
ready!

signal?

≤ ∆R
ready!

signal?

time

Program semantics studied by [De Wulf, Doyen and Raskin 2004].

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 3 / 29

Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
Consider the timed automaton A:

q0start q1 q2

a: x ≤ 2 / x := 0

b: y ≥ 2 / y := 0

c: x ≤ 0 ∧ y ≥ 2

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 4 / 29

Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For ∆ = 0.1, A∆ is defined by,

q0start q1 q2

a: x ≤ 2.1 / x := 0

b: y ≥ 1.9 / y := 0

c: x ≤ 0.1 ∧ y ≥ 1.9

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 4 / 29

Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For ∆ = 0.1, A∆ is defined by,

q0start q1 q2

a: x ≤ 2.1 / x := 0

b: y ≥ 1.9 / y := 0

c: x ≤ 0.1 ∧ y ≥ 1.9

Relation between semantics

A v program(A∆) v A2∆

for some ∆ > 0, [De Wulf, Doyen, Raskin 2004] & [S., Bouyer, Markey 2011].

“Implementations can have more behaviours than the exact semantics”.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 4 / 29

A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

≤ 2 ≤ 2 ≤ 2 ≤ 2

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

2 + ∆ 2 + ∆ 2 + ∆ 2 + ∆

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

2 + ∆ 2 + ∆ 2 + ∆ 2 + ∆ Skip Frame

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

A Non-Robust Timed System

capt

enc

x=2
x :=0

y≤2+∆
y :=0

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

2 + ∆ 2 + ∆ 2 + ∆ 2 + ∆ Skip Frame

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 5 / 29

Dealing with Robustness

First Approach

Decide the existence of a bound on ∆ under which the automaton satisfies
some property.

 Parameterized Robust model-checking

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 6 / 29

Background

“Enlarged/Program semantics can add undesired behaviour to timed automata”.

[Puri 1998, De Wulf, Doyen, Markey, Raskin 2004]

Parameterized Robust Model-Checking

Given TA A and property φ, decide if ∃∆ > 0, A∆ |= φ.

Decidable for:
- Safety (PSPACE-c), [Puri ’98], [DDMR ’04] [Daws, Kordy ’06], [Jaubert, Reynier ’11]

- LTL (PSPACE-c), [Bouyer, Markey, Reynier 2006], [Bouyer, Markey, S. 2011]

- coFlat-MTL (EXPSPACE-c) [Bouyer, Markey, Reynier 2008]

- Untimed language equivalence (EXPSPACE) L(A) = L(A∆) [S. 2011]

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 7 / 29

Background

“Enlarged/Program semantics can add undesired behaviour to timed automata”.

[Puri 1998, De Wulf, Doyen, Markey, Raskin 2004]

Parameterized Robust Model-Checking

Given TA A and property φ, decide if ∃∆ > 0, A∆ |= φ.

Decidable for:
- Safety (PSPACE-c), [Puri ’98], [DDMR ’04] [Daws, Kordy ’06], [Jaubert, Reynier ’11]

- LTL (PSPACE-c), [Bouyer, Markey, Reynier 2006], [Bouyer, Markey, S. 2011]

- coFlat-MTL (EXPSPACE-c) [Bouyer, Markey, Reynier 2008]

- Untimed language equivalence (EXPSPACE) L(A) = L(A∆) [S. 2011]

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 7 / 29

Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

But A∆0 is an ordinary timed automaton

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 8 / 29

Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

But A∆0 is an ordinary timed automaton
I Use your favorite model-checker to check robustness.

Promising preliminary experimental results!

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 8 / 29

Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

I Use your favorite model-checker to check robustness.

N.B. An algorithm for this problem was known before for TAs

1 whose all cycles reset all clocks + bounded clocks,

2 based on a modification of the region construction
(one couldn’t directly use existing model-checkers).

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 8 / 29

A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist ∆ > 0 s.t. Luntime(A∆) = Luntime(A).

Theorem (S. 2011)

Untimed language preservation is decidable in EXPSPACE in general, and
in PSPACE for a deterministic subclass.

The algorithm: For any A, there exists some ∆0 > 0 such that

∃∆ > 0, Luntime(A∆) = Luntime(A) ⇔ Luntime(A∆0) = Luntime(A).

I Only check whether Luntime(A∆0) = Luntime(A)

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 9 / 29

A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist ∆ > 0 s.t. Luntime(A∆) = Luntime(A).

Theorem (S. 2011)

Untimed language preservation is decidable in EXPSPACE in general, and
in PSPACE for a deterministic subclass.

The algorithm: For any A, there exists some ∆0 > 0 such that

∃∆ > 0, Luntime(A∆) = Luntime(A) ⇔ Luntime(A∆0) = Luntime(A).

I Only check whether Luntime(A∆0) = Luntime(A)

N.B. Untimed language universality (thus equiv.) is EXPSPACE-complete
[Brenguier, Göller, S. 2011 - unpublished].

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 9 / 29

Param. Robust Model-checking: Summary

Conclusion

Imprecisions /unexpected delays always add additional behaviour in
implementation.

Param. robust model-checking: check whether the additional
behaviours are “harmless”.

Same theoretical complexity as for model-checking timed automata.

It is still open whether one can derive efficient algorithms.

Next: Prevent additional behaviours to appear in implementation.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 10 / 29

Param. Robust Model-checking: Summary

Conclusion

Imprecisions /unexpected delays always add additional behaviour in
implementation.

Param. robust model-checking: check whether the additional
behaviours are “harmless”.

Same theoretical complexity as for model-checking timed automata.

It is still open whether one can derive efficient algorithms.

Next: Prevent additional behaviours to appear in implementation.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 10 / 29

Dealing with Robustness

Second Approach

Transform a given timed automaton into a robust one.

Robust implementation /refinement

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 11 / 29

Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,

In practice: Design / model-check A, then “compile to” A′.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 12 / 29

Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,
A′ ∼ε A′∆ for all 0 ≤ ∆ < O(ε),

We get A ∼ε A′∆.

In practice: Design / model-check A, then “compile to” A′.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 12 / 29

Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem 2 [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,
Same locations reachable in A′ and A′∆ for all 0 ≤ ∆ < O(ε),

We get A is safe ⇒ A′ is safe.

In practice: Design / model-check A, then “compile to” A′.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 12 / 29

Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

A : ... ` `′

...

φ

Consider the reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 13 / 29

Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

A∆ : ... ` `′

...

φ∆

Consider the reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 13 / 29

Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

... ` `′

...

φ∆

Consider the reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 13 / 29

Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

... ` `′

...

φ∆

Consider the reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 13 / 29

Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

... ` `′

...

φ∆

Consider the reachable states in `: `′ reachable

k∆

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 13 / 29

Approximate implementation: Safety

Define A′ as follows:

A′ : ... ` `′

...

Reach` φ

Reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 14 / 29

Approximate implementation: Safety

Define A′ as follows:

A′∆ : ... ` `′

...

(Reach`)∆ φ∆

Reachable states in `: `′ not reachable in A′∆.

≤ ∆

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 14 / 29

Approximate implementation: Safety

Define A′ as follows:

A′∆ : ... ` `′

...

(Reach`)∆ φ∆

Reachable states in `: `′ not reachable in A′∆.

No cheating

We do not remove the edge `
φ−→ `′.

Ready simulation: A′∆ vBad A∆.

“Any run of A′∆ can be imitated in A∆ without enabling bad transitions.”

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 14 / 29

Approximate implementation: Bisimulation

Constructing A′ s.t. A′ ∼ε A′∆: split locations to regions

A : ... ` `′
φ φ′

A′ : ... `, r1

`, r2

`, r3

`, r4

φ ∧ φr1

φ ∧ φr2

φ ∧ φr3

φ ∧ φr4

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

φ′ ∧ φr ′1
φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr3

φ′ ∧ φr ′3φ′ ∧ φr ′3
φ′ ∧ φr ′2
φ′ ∧ φr ′2φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr ′2

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 15 / 29

Approximate implementation: Bisimulation

Constructing A′ s.t. A′ ∼ε A′∆: split locations to regions

A : ... ` `′
φ φ′

A′ : ... `, r1

`, r2

`, r3

`, r4

φ ∧ φr1

φ ∧ φr2

φ ∧ φr3

φ ∧ φr4

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

φ′ ∧ φr ′1
φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr3

φ′ ∧ φr ′3φ′ ∧ φr ′3
φ′ ∧ φr ′2
φ′ ∧ φr ′2φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr ′2

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 15 / 29

Approximate implementation: Bisimulation

Constructing A′ s.t. A′ ∼ε A′∆: split locations to bisimulation classes

A : ... ` `′
φ φ′

A′ : ... `, r1

`, r2

`, r3

`, r4

φ ∧ φr1

φ ∧ φr2

φ ∧ φr3

φ ∧ φr4

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

φ′ ∧ φr ′1
φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr3

φ′ ∧ φr ′3φ′ ∧ φr ′3
φ′ ∧ φr ′2
φ′ ∧ φr ′2φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr ′2

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 15 / 29

Approximate implementation: Summary

Pros
1 One can choose arbitrarily small ε,

2 Works for all timed automata,

3 We preserve time-abstract behaviour + approximate timings.

4 Same result for the semantics under sampling:

Sampled 1
n
(A) v A.

We construct A′ such that Sampled 1
n
(A′) ∼ε A.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 16 / 29

Approximate implementation: Summary

Pros
1 One can choose arbitrarily small ε,

2 Works for all timed automata,

3 We preserve time-abstract behaviour + approximate timings.

4 Same result for the semantics under sampling:

Cons
1 Size blow-up – although safety construction could do well in practice,

2 Timings are not strictly preserved (but only upto ε)
We still allow additional behaviours.

3 Not clear whether the behaviour is preserved in the program
semantics.

Next: “Strong” implementation of (1) same size, (2) with strict timings,
(3) behaviour is preserved in the program semantics.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 16 / 29

Strong Implementation: Shrinking Timed Automata

Abstract model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 17 / 29

Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 17 / 29

Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′

1 ≤ 1 + δ′−∆ ≤ x ≤ 2− δ+∆ ≤ 2 when δ, δ′ ≥ ∆.

Shrink the clock constraints in the model, to prevent additional behaviour
in implementation.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 17 / 29

Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′

1 ≤ 1 + δ′−∆ ≤ x ≤ 2− δ+∆ ≤ 2 when δ, δ′ ≥ ∆.

We consider a separate shrinking parameter for each atomic clock
constraint: k1δ, k2δ, . . . where δ > 0 and ~k ∈ N>0

Looking for ~δ ∈ Qn
>0 ⇔ looking for δ~k, where δ ∈ Q>0 and ~k ∈ Nn

>0.

The shrunk automaton is written A−δ~k .

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 17 / 29

Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v

program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

I The behaviour of the real-world system program(A−δ~k) is included in
that of the abstract model A.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 18 / 29

Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v

program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

Problem: Shrinkability

Find δ~k such that program(A−δ~k+∆
) satisfies:

A vt.a. program(A−δ~k+∆
),

and it is non-blocking.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 18 / 29

Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.?

A−δ~k v program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

Problem: Shrinkability

Find δ~k such that program(A−δ~k+∆
) satisfies:

A vt.a. program(A−δ~k+∆
),

and it is non-blocking.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 18 / 29

Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

Theorem (Shrinkability) [S., Bouyer, Markey 2011]

One can decide the existence of δ~k , and compute the “least” solution, for
which,

A vt.a. A−δ~k , in EXPTIME,

A−δ~k is non-blocking. in PSPACE, and NP for bounded-branching

and both at the same time in EXPTIME.

⇒ program(A−δ~k+∆
) is non-blocking.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 18 / 29

Example of Shrinking

A shrinkable automaton

`1 `2 `3 `4

y≤1∧u≥0

u,y :=0

y≤1∧1≤x

u≥0 u,x :=0

u≥0∧y≤1

u,y :=0

u,x ,y :=0

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 19 / 29

Example of Shrinking

A shrunk automaton

`1 `2 `3 `4

3δ≤x∧y≤1−δ∧u≥δ

y−x≤1−4δ∧u≥δ, u,y :=0

y≤1−2δ∧1+δ≤x

u≥δ∧x−y≥3δ, u,x :=0

u≥δ∧y≤1−δ

u,y :=0

u,x ,y :=0

A vt.a. A−δ~k v A.

and non-blocking, for all δ ∈ [0, 1
4]

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 19 / 29

Interpretation of Shrinking

Developer’s guide to shrinking

`1 `2

3+2δ≤x≤7−4δ

I If the edge is controllable by the system, do the action 2δ later than
allowed, and 4δ before the deadline.

I If the edge is uncontrollable (e.g. execution of task), the guard
corresponds to BCET ≤ x ≤WCET:
adjust your timing analysis to ensure 3+2δ ≤ x ≤ 7−4δ.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 20 / 29

Non-blocking Timed Automata

Definition: Non-blockingness

l1 l2 l3

l ′3

σ σ′

σ′′

Whenever σ is taken, either σ′ or σ′′ are eventually firable.

Fix-point characterization

Let Gσ denote the guards of the timed automaton. It is non-blocking iff,

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ(Pretime(JGσ′K)).

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 21 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

JGσK ⊆ UnresetRσ(Pretime(JGσ′K)).

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 22 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

⊆ Unresety

 Pretime







Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 22 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

⊆ Unresety





Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 22 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

⊆ X

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 22 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK)) ?

Determine ~k

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 23 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ Unresety


Pretime



k1δ

k2δk3δ

k4δ





for all δ < 1
2 mini

1
ki

.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 23 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ Unresety


(k1 + k3)δ

(k2 + k4)δ



for all δ < 1
2 min

(
1

k1+k3
, 1
k2+k4

,mini
1
ki

)
.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 23 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ (k1 + k3)δ

for all δ < 1
2 min

(
1

k1+k3
, 1
k2+k4

,mini
1
ki

)
.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 23 / 29

Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ (k1 + k3)δ

Then, ~k should satisfy

k5 = max(k5, k1 + k3).

for all δ < 1
2 min

(
1

k1+k3
, 1
k2+k4

,mini
1
ki

)
.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 23 / 29

Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 24 / 29

Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

In fact,
let f be any operation among Pretime, ∩, Unreset,
and let M = f (N).

Then, for any parameters ~k , there exists ~l such that

〈M〉−~lδ = f (〈N〉−~kδ),

for all small enough δ > 0,
where ~l can be expressed by a max-plus expression of ~k .

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 24 / 29

Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Key Theorem

Let ~M = f (~M) be a fixpoint equation on zones, and ~M a solution.
f uses Pretime(), ∩, Unreset·().

For any ~k ∈ Nn
>0,

〈 ~M〉−~kδ = f (〈 ~M〉−~kδ) ∀ small δ > 0

⇔
~k = φ(~k),

where φ is a max-plus expression.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 24 / 29

Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Key Theorem

Let ~M = f (~M) be a fixpoint equation on zones, and ~M a solution.
f uses Pretime(), ∩, Unreset·().

For any ~k ∈ Nn
>0,

〈 ~M〉−~kδ = f (〈 ~M〉−~kδ) ∀ small δ > 0

⇔
~k = φ(~k),

where φ is a max-plus expression.

I Max-plus algebra: We prove that such fixpoint equations can be
solved in polynomial time.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 24 / 29

Shrinking Algorithm for Non-blockingness

Need to solve:

∀σ, Gσ ⊆
⋃

(σ,σ′)UnresetRσ(Pretime(Gσ′)).

but theorem doesn’t allow union.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 25 / 29

Shrinking Algorithm for Non-blockingness

Need to solve:

∀σ, Gσ =
⋃

(σ,σ′)UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

but theorem doesn’t allow union.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 25 / 29

Shrinking Algorithm for Non-blockingness

Equivalently, solve:

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 25 / 29

Shrinking Algorithm for Non-blockingness

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

Lemma

Consider any equation of the form G =
⋃

i Mi , and k1, . . . , kn ∈ N>0 such
that 〈G 〉−δ~k =

⋃
i 〈Mi 〉−δ~k for small enough δ > 0. Consider

kα(1) ≤ kα(2) ≤ . . . ≤ kα(n), for some perm. α.

Then for any k ′1, . . . , k
′
n ∈ N>0 with the same ordering, i.e.

k ′α(1) ≤ k ′α(2) ≤ . . . ≤ k ′α(n),

we have 〈G 〉−δ ~k ′ =
⋃

i 〈Mi 〉−δ ~k ′ for small enough δ > 0.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 25 / 29

Shrinking Algorithm for Non-blockingness

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

Lemma

Given G =
⋃

i Mi , whether a vector ~k satisfies

〈G 〉−δ~k =
⋃
i

〈Mi 〉−δ~k for small enough δ > 0,

only depends on the ordering of ki ’s.

Overall Algorithm:
1) Guess the ordering (polynomially many guesses),
2) Solve above equation augmented with this ordering,
3) Verify union. (in PSPACE or NP if bounded nb of edges per location)

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 25 / 29

Summary of the Fixpoint Equations

Deciding implementability

Apply theorem to following fix-point equations:

Non-blockingness:

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ(Pretime(JGσ′K)).

(Do technical work to remove the union)

Time-abstract simulation (A vt.a. A−δ~k):

JMl ,r K =
⋂
σ∈Σ

⋂
(l ,r)

σ−→(l ′,r ′)

Pretime(UnresetRσ(JMl ′,r ′K) ∩ JGσK),

where Ml ,r is the time-abstract simulator set of the region (l , r).

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 26 / 29

Shrinking: Summary

Summary

Shrinking always ensures Imp v Spec.

Shrinking parameters can be synthesized automatically so that
Spec v Imp, and Imp non-blocking.

Complexity: NP, PSPACE, EXPTIME.

These properties preserved in the program semantics.

→ Can be used to define the implementation or in the timing analysis.

Technics

Zones + parameters ↔ max-plus algebra.

New data structure: DBMs w/ parameterized max-plus exp..
Application to other problems: e.g. robust controller synthesis.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 27 / 29

Conclusion

Robustness Analysis

“Parameterized robust model-checking has same theoretical complexity as
model-checking for timed automata.”

safety, LTL, coFlat-MTL, untimed language equiv., ...

Some work on symbolic algorithms e.g. [Daws, Cordy ’06], [Jaubert, Reynier ’11]

Robust Implementation

Approximate Implementation: All timed automata can be compiled
into a larger system, with approximately the same behaviour.
Shrinking: Parameter synthesis for adjusting timing constraints.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 28 / 29

Future Work

1 Efficient algorithms:
I for approximate implementation w.r.t. safety.
I for shrinkability.

2 Compositionality.

3 Robust reachability in timed games:

Player 1 chooses a delay d ≥ 0 and an edge σ,
Player 2 adds a perturbation: d + ε where ε ∈ [−δ, δ].

Thm: Reachability is EXPTIME-complete.
Winning sets are described by shrunk zones.

How about safety and Büchi properties?

4 Similar semantics with probabilistic perturbation.

Thank you!

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 29 / 29

Future Work

1 Efficient algorithms:
I for approximate implementation w.r.t. safety.
I for shrinkability.

2 Compositionality.

3 Robust reachability in timed games:

Player 1 chooses a delay d ≥ 0 and an edge σ,
Player 2 adds a perturbation: d + ε where ε ∈ [−δ, δ].

Thm: Reachability is EXPTIME-complete.
Winning sets are described by shrunk zones.

How about safety and Büchi properties?

4 Similar semantics with probabilistic perturbation.

Thank you!

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 29 / 29

