Robustness and Implementability of Timed Systems

Ocan Sankur

LSV, CNRS & ENS de Cachan

Based on joint work with Patricia Bouyer, Kim Larsen, Nicolas Markey, Claus Thrane

LABRI, 12 Janvier 2012

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 1 / 29

Timed Automata: Exact Semantics

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its clock constraint holds.
- A clock can be reset by a transition.

Ocan Sankur (ENS Cachan)

Timed Automata: Exact Semantics

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

Runs of a timed automaton:
$$\mathcal{A}$$

(idle, $x = 0$) $\xrightarrow{23.7}$ (idle, $x = 23.7$) $\xrightarrow{click?}$ ($q_1, x = 0$) $\xrightarrow{10}$ ($q_1, x = 10$)
 $\xrightarrow{click?}$ ($q_2, x = 10$) $\xrightarrow{double_click}$ (idle, $x = 10$) ...

Ocan Sankur (ENS Cachan)

Robustness and Implementability

Timed Automata: Program Semantics

The semantics of timed automata is idealistic:

- No minimum delay between actions,
- clocks are infinitely precise. $1 \le x \le 3$ ".

 $\xrightarrow{a} 0.00001 \xrightarrow{b}$

Program semantics studied by [De Wulf, Doyen and Raskin 2004].

Ocan Sankur (ENS Cachan)

イロト 不得下 イヨト イヨト

Clock imprecisions can be modelled by **enlarging** the clock constraints. Consider the timed automaton A:

Ocan Sankur (ENS Cachan)

Clock imprecisions can be modelled by **enlarging** the clock constraints. For $\Delta = 0.1$, \mathcal{A}_{Δ} is defined by,

Ocan Sankur (ENS Cachan)

January 12, 2012 4 / 29

< 同 ト く ヨ ト く ヨ ト

Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by **enlarging** the clock constraints. For $\Delta = 0.1$, \mathcal{A}_{Δ} is defined by,

Relation between semantics

 $\mathcal{A} \sqsubseteq \mathsf{program}(\mathcal{A}_\Delta) \sqsubseteq \mathcal{A}_{2\Delta}$

for some $\Delta > 0$, [De Wulf, Doyen, Raskin 2004] & [S., Bouyer, Markey 2011].

"Implementations can have more behaviours than the exact semantics".

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 4 / 29

	frame 1	frame 2	frame 3	frame 4	frame 5	frame 6	
			1 	1 	1 		
(2	4 (5	3 1	0	$\longrightarrow t$

< (T) > <

э

fram	ie 1	fram	e 2	fram	ie 3	fram	e 4	fram	e 5	fram	e 6	
	enc	: 1	enc	: 2	enc	: 3	enc	: 4	enc	5		
)	•			1	6	5	8	3	1	0		 → t

3

3

(日) (同) (三) (三)

3

(日) (同) (三) (三)

3

A D A D A D A

3

・ 同 ト ・ ヨ ト ・ ヨ ト

First Approach

Decide the existence of a bound on Δ under which the automaton satisfies some property.

~ Parameterized Robust model-checking

Ocan Sankur (ENS Cachan)

Robustness and Implementability

12 N 4 12 N

Background

"Enlarged/Program semantics can **add undesired** behaviour to timed automata". [Puri 1998, De Wulf, Doyen, Markey, Raskin 2004]

Parameterized Robust Model-Checking

Given TA \mathcal{A} and property ϕ , decide if $\exists \Delta > 0$, $\mathcal{A}_{\Delta} \models \phi$.

Decidable for:

- Safety (PSPACE-c), [Puri '98], [DDMR '04] [Daws, Kordy '06], [Jaubert, Reynier '11] - LTL (PSPACE-c). [Bouyer, Markey, Reynier 2006], [Bouyer, Markey, S. 2011] - coFlat-MTL (EXPSPACE-c) [Bouyer, Markey, Reynier 2008]
- Untimed language equivalence (EXPSPACE) $L(\mathcal{A}) = L(\mathcal{A}_{\Lambda})$ [S. 2011]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Background

"Enlarged/Program semantics can **add undesired** behaviour to timed automata". [Puri 1998, De Wulf, Doyen, Markey, Raskin 2004]

Parameterized Robust Model-Checking

Given TA \mathcal{A} and property ϕ , decide if $\exists \Delta > 0$, $\mathcal{A}_{\Delta} \models \phi$.

Decidable for:

- Safety (PSPACE-c), [Puri '98], [DDMR '04] [Daws, Kordy '06], [Jaubert, Reynier '11] - LTL (PSPACE-c), [Bouyer, Markey, Reynier 2006], [Bouyer, Markey, S. 2011] - coFlat-MTL (EXPSPACE-c) [Bouyer, Markey, Reynier 2008] - Untimed language equivalence (EXPSPACE) $L(A) = L(A_{\Lambda})$ [S. 2011]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω -regular properties can be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) $\Delta_0 > 0$ s.t.

$$\exists \Delta > 0, \mathcal{A}_{\Delta} \models \phi \quad \Leftrightarrow \quad \mathcal{A}_{\Delta_0} \models \phi.$$

But \mathcal{A}_{Δ_0} is an ordinary timed automaton

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω -regular properties can be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) $\Delta_0 > 0$ s.t.

$$\exists \Delta > 0, \mathcal{A}_{\Delta} \models \phi \quad \Leftrightarrow \quad \mathcal{A}_{\Delta_0} \models \phi.$$

But A_{∆₀} is an ordinary timed automaton
Use your favorite model-checker to check robustness.

Promising preliminary experimental results!

Param. Robust Model-Checking: ω -regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω -regular properties can be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) $\Delta_0 > 0$ s.t.

$$\exists \Delta > 0, \mathcal{A}_{\Delta} \models \phi \quad \Leftrightarrow \quad \mathcal{A}_{\Delta_0} \models \phi.$$

▶ Use your favorite model-checker to check robustness.

N.B. An algorithm for this problem was known before for TAs

- whose all cycles reset all clocks + bounded clocks,
- based on a modification of the region construction (one couldn't directly use existing model-checkers).

・ロト ・ 同ト ・ ヨト ・ ヨト

A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist $\Delta > 0$ s.t. $L_{\text{untime}}(\mathcal{A}_{\Delta}) = L_{\text{untime}}(\mathcal{A})$.

Ocan Sankur (ENS Cachan)

くほと くほと くほと

A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist $\Delta > 0$ s.t. $L_{untime}(\mathcal{A}_{\Delta}) = L_{untime}(\mathcal{A})$.

Theorem (S. 2011)

Untimed language preservation is decidable in EXPSPACE in general, and in PSPACE for a deterministic subclass.

The algorithm: For any A, there exists some $\Delta_0 > 0$ such that

 $\exists \Delta > 0, L_{untime}(\mathcal{A}_{\Delta}) = L_{untime}(\mathcal{A}) \quad \Leftrightarrow \quad L_{untime}(\mathcal{A}_{\Delta_0}) = L_{untime}(\mathcal{A}).$

▶ Only check whether $L_{untime}(A_{\Delta_0}) = L_{untime}(A)$

N.B. Untimed language universality (thus equiv.) is EXPSPACE-complete [Brenguier, Göller, S. 2011 - unpublished].

Ocan Sankur (ENS Cachan)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conclusion

Imprecisions /unexpected delays always add additional behaviour in implementation.

Param. robust model-checking: check whether the additional behaviours are "harmless".

Same theoretical complexity as for model-checking timed automata.

It is still **open** whether one can derive efficient algorithms.

くほと くほと くほと

Conclusion

Imprecisions /unexpected delays always add additional behaviour in implementation.

Param. robust model-checking: check whether the additional behaviours are "harmless".

Same theoretical complexity as for model-checking timed automata.

It is still **open** whether one can derive efficient algorithms.

Next: Prevent additional behaviours to appear in implementation.

くほと くほと くほと

Second Approach

Transform a given timed automaton into a robust one.

Robust implementation /refinement

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 11 / 29

3

- 4 同 6 4 日 6 4 日 6

Preliminary definition: Two states are ϵ -**bisimilar** if there is a bisimulation in which delays differ by at most ϵ . — denoted by \sim_{ϵ}

- 3

(日) (周) (三) (三)

Preliminary definition: Two states are ϵ -**bisimilar** if there is a bisimulation in which delays differ by at most ϵ . — denoted by \sim_{ϵ}

Theorem [Bouyer, Larsen, Markey, S., Thrane 2011] Given any timed automaton \mathcal{A} , any $\epsilon > 0$, one can compute \mathcal{A}' such that • $\mathcal{A} \sim_0 \mathcal{A}'$, • $\mathcal{A}' \sim_{\epsilon} \mathcal{A}'_{\Delta}$ for all $0 \le \Delta < O(\epsilon)$, We get $\mathcal{A} \sim_{\epsilon} \mathcal{A}'_{\Delta}$.

In practice: Design / model-check A, then "compile to" A'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Preliminary definition: Two states are ϵ -**bisimilar** if there is a bisimulation in which delays differ by at most ϵ . — denoted by \sim_{ϵ}

Theorem 2 [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton \mathcal{A} , any $\epsilon > 0$, one can compute \mathcal{A}' such that

• $\mathcal{A}\sim_0 \mathcal{A}'$,

• Same locations reachable in \mathcal{A}' and \mathcal{A}'_{Δ} for all $0 \leq \Delta < O(\epsilon)$,

We get \mathcal{A} is safe $\Rightarrow \mathcal{A}'$ is safe.

In practice: Design / model-check A, then "compile to" A'.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Consider a timed automaton A with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ :

Х

Consider a timed automaton A with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ :

Consider a timed automaton A with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ :

Ocan Sankur (ENS Cachan)

January 12, 2012 13 / 29

Consider a timed automaton A with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ :

Ocan Sankur (ENS Cachan)

Х

January 12, 2012 13 / 29

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ : ℓ' reachable

Define \mathcal{A}' as follows:

Reachable states in ℓ :

3

Define \mathcal{A}' as follows:

Ocan Sankur (ENS Cachan)

Х

January 12, 2012 14 / 29

3

(日) (周) (三) (三)

Define \mathcal{A}' as follows:

Reachable states in ℓ : ℓ' **not** reachable in \mathcal{A}'_{Λ} .

No cheating

We do not **remove** the edge $\ell \xrightarrow{\phi} \ell'$.

Ready simulation: $\mathcal{A}'_{\Delta} \sqsubseteq^{\mathsf{Bad}} \mathcal{A}_{\Delta}$.

"Any run of \mathcal{A}'_{Δ} can be imitated in \mathcal{A}_{Δ} without enabling **bad** transitions."

Approximate implementation: Bisimulation

Constructing \mathcal{A}' s.t. $\mathcal{A}' \sim_{\epsilon} \mathcal{A}'_{\Delta}$: split locations to regions

$$\mathcal{A}: \quad \cdots \xrightarrow{\phi} \underbrace{\ell} \xrightarrow{\phi'} \underbrace{\ell'}$$

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 15 / 29

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●
Approximate implementation: Bisimulation

 $\text{Constructing } \mathcal{A}' \text{ s.t. } \mathcal{A}' \sim_{\epsilon} \mathcal{A}'_{\Delta} \text{:} \quad \text{ split locations to regions}$

Approximate implementation: Bisimulation

 $\mbox{Constructing \mathcal{A}' s.t. $\mathcal{A}'\sim_{\epsilon}\mathcal{A}'_{\Delta}$: split locations to bisimulation classes} }$

Approximate implementation: Summary

Pros

- **(**) One can choose arbitrarily small ϵ ,
- Works for all timed automata,
- We preserve time-abstract behaviour + approximate timings.
- Same result for the semantics under sampling:

Sampled
$$\frac{1}{n}(\mathcal{A}) \sqsubseteq \mathcal{A}$$
.

We construct \mathcal{A}' such that $\operatorname{Sampled}_{\frac{1}{2}}(\mathcal{A}') \sim_{\epsilon} \mathcal{A}$.

Ocan Sankur (ENS Cachan)

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximate implementation: Summary

Pros

- One can choose arbitrarily small ϵ ,
- Works for all timed automata,
- We preserve time-abstract behaviour + approximate timings.
- Same result for the semantics under sampling:

Cons

- Size blow-up although safety construction could do well in practice,
- **②** Timings are not strictly preserved (but only upto ϵ) We still allow additional behaviours.
- Solution of the second seco

Next: "Strong" implementation of (1) same size, (2) with strict timings, (3) behaviour is preserved in the program semantics.

Ocan Sankur (ENS Cachan)

Robustness and Implementability

Abstract model	Real-world behaviour
$\ell \xrightarrow{1 \le x \le 2} \ell'$	$\ell \xrightarrow{1-\Delta \leq x \leq 2+\Delta} \ell'$

3

(日) (周) (三) (三)

Abstract Model	Real-world behaviour
$\ell \xrightarrow{1 \leq x \leq 2} \ell'$	$\ell \xrightarrow{1-\Delta \leq x \leq 2+\Delta} \ell'$
$\ell \xrightarrow{1+\delta' \leq x \leq 2-\delta} \ell'$	$\ell \xrightarrow{1+\delta' - \Delta \leq x \leq 2-\delta + \Delta} \ell'$

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 17 / 29

3

(日) (周) (三) (三)

$1 \leq 1 + \delta' - \Delta \leq x \leq 2 - \delta + \Delta \leq 2 \quad \text{when } \delta, \delta' \geq \Delta.$

Shrink the clock constraints in the model, to prevent additional behaviour in implementation.

Abstract Model	Real-world behaviour
$\ell \xrightarrow{1 \leq x \leq 2} \ell'$	$\ell \xrightarrow{1-\Delta \leq x \leq 2+\Delta} \ell'$
$\ell \xrightarrow{1+\delta' \leq x \leq 2-\delta} \ell'$	$\ell \xrightarrow{1+\delta' - \Delta \leq x \leq 2-\delta + \Delta} \ell'$

 $1 \leq 1 + \delta' - \Delta \leq x \leq 2 - \delta + \Delta \leq 2 \quad \text{when } \delta, \delta' \geq \Delta.$

We consider a separate **shrinking parameter** for each atomic clock constraint: $k_1\delta, k_2\delta, \ldots$ where $\delta > 0$ and $\vec{k} \in \mathbb{N}_{>0}$

 $\text{Looking for } \vec{\delta} \in \mathbb{Q}_{>0}^n \quad \Leftrightarrow \quad \text{looking for } \delta \vec{k} \text{, where } \delta \in \mathbb{Q}_{>0} \text{ and } \vec{k} \in \mathbb{N}_{>0}^n.$

The **shrunk automaton** is written $\mathcal{A}_{-\delta \vec{k}}$.

▲日▼ ▲冊▼ ▲ヨ▼ ▲ヨ▼ ヨー つぬの

We have

$$\mathsf{program}(\mathcal{A}_{-\deltaec{k}+\Delta}) \hspace{0.1in} \sqsubseteq \hspace{0.1in} \mathcal{A}_{\cdot}$$

for appropriate $0 < 2\Delta < \min \delta \vec{k}$.

► The behaviour of the **real-world system** program($\mathcal{A}_{-\delta \vec{k}}$) is included in that of the **abstract model** \mathcal{A} .

< 回 ト < 三 ト < 三 ト

We have

$$\operatorname{program}(\mathcal{A}_{-\delta \vec{k} + \Delta}) \subseteq \mathcal{A}$$

for appropriate $0 < 2\Delta < \min \delta \vec{k}$.

Problem: Shrinkability

Find $\delta \vec{k}$ such that **program** $(\mathcal{A}_{-\delta \vec{k}+\Delta})$ satisfies:

•
$$\mathcal{A} \sqsubseteq_{\mathsf{t.a.}} \mathsf{program}(\mathcal{A}_{-\delta \vec{k} + \Delta})$$
,

and it is non-blocking.

Ocan Sankur (ENS Cachan)

・ 同 ト ・ ヨ ト ・ ヨ ト

We have

$$\mathcal{A}_{-\delta ec{k}} \sqsubseteq \mathsf{program}(\mathcal{A}_{-\delta ec{k}+\Delta}) \sqsubseteq \mathcal{A}$$

for appropriate $0 < 2\Delta < \min \delta \vec{k}$.

Problem: Shrinkability

Find $\delta \vec{k}$ such that **program** $(\mathcal{A}_{-\delta \vec{k}+\Delta})$ satisfies:

•
$$\mathcal{A} \sqsubseteq_{\mathsf{t.a.}} \mathsf{program}(\mathcal{A}_{-\delta \vec{k} + \Delta})$$
,

and it is non-blocking.

Ocan Sankur (ENS Cachan)

< 回 ト < 三 ト < 三 ト

We have

$$\mathcal{A} \sqsubseteq_{\mathsf{t.a.}} \mathcal{A}_{-\delta \vec{k}} \sqsubseteq \mathsf{program}(\mathcal{A}_{-\delta \vec{k}+\Delta}) \sqsubseteq \mathcal{A}$$

for appropriate $0 < 2\Delta < \min \delta \vec{k}$.

Theorem (Shrinkability) [S., Bouyer, Markey 2011]

One can decide the existence of $\delta \vec{k}$, and compute the "least" solution, for which,

• $\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-\delta \vec{k}}$, in **EXPTIME**,

• $\mathcal{A}_{-\delta \vec{k}}$ is non-blocking. in **PSPACE**, and **NP** for bounded-branching and both at the same time in **EXPTIME**.

$$\Rightarrow$$
 program($\mathcal{A}_{-\delta \vec{k} + \Delta}$) is non-blocking.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example of Shrinking

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 19 / 29

3

イロト イポト イヨト イヨト

Example of Shrinking

$$\mathcal{A} \sqsubseteq_{\mathsf{t.a.}} \mathcal{A}_{-\delta \vec{k}} \sqsubseteq \mathcal{A}.$$

and non-blocking, for all $\delta \in [0, \frac{1}{4}]$

Ocan Sankur (ENS Cachan)

イロト 不得下 イヨト イヨト 二日

 ℓ_4

Interpretation of Shrinking

Developer's guide to shrinking

$$\underbrace{\ell_1} \xrightarrow{3+2\delta \leq x \leq 7-4\delta} \underbrace{\ell_2}$$

► If the edge is **controllable** by the system, do the action 2δ later than allowed, and 4δ before the deadline.

► If the edge is **uncontrollable** (e.g. execution of task), the guard corresponds to BCET $\leq x \leq$ WCET: adjust your timing analysis to ensure $3+2\delta \leq x \leq 7-4\delta$.

Ocan Sankur (ENS Cachan)

Non-blocking Timed Automata

Whenever σ is taken, either σ' or σ'' are eventually firable.

Fix-point characterization

Let G_{σ} denote the **guards** of the timed automaton. It is non-blocking iff,

$$\forall \sigma, \quad \llbracket G_{\sigma} \rrbracket \subseteq \bigcup_{l_1 \xrightarrow{\sigma} l_2 \xrightarrow{\sigma'} l_3} \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket G_{\sigma'} \rrbracket)).$$

< 4 → <

 $\llbracket G_{\sigma} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket G_{\sigma'} \rrbracket)).$

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 22 / 29

3

(日) (周) (三) (三)

< 🗇 🕨 < 🖃 🕨

22 / 29

3

January 12, 2012 22 / 29

3

A (10) < A (10) </p>

3

Image: A math a math

$$(l_1) \xrightarrow{\sigma} (l_2) \xrightarrow{\sigma'} (l_3)$$

 $\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket))$?

Determine \vec{k}

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 23 / 29

- 32

(日) (周) (三) (三)

for all
$$\delta < \frac{1}{2} \min_i \frac{1}{k_i}$$
.

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 23 / 29

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

for all
$$\delta < \frac{1}{2} \min\left(\frac{1}{k_1+k_3}, \frac{1}{k_2+k_4}, \min_i \frac{1}{k_i}\right)$$
.

Ocan Sankur (ENS Cachan)

Robustness and Implementability

-January 12, 2012 23 / 29

< 67 ▶

3

for all
$$\delta < \frac{1}{2} \min \left(\frac{1}{k_1 + k_3}, \frac{1}{k_2 + k_4}, \min_i \frac{1}{k_i} \right)$$
.

Ocan Sankur (ENS Cachan)

Robustness and Implementability

-January 12, 2012 23 / 29

3

▲ @ ▶ < ∃ ▶</p>

Then, \vec{k} should satisfy

 $k_5 = \max(k_5, k_1 + k_3).$

for all
$$\delta < \frac{1}{2} \min\left(\frac{1}{k_1+k_3}, \frac{1}{k_2+k_4}, \min_i \frac{1}{k_i}\right)$$
.

Ocan Sankur (ENS Cachan)

Robustness and Implementability

January 12, 2012 23 / 29

A 1

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

Ocan Sankur (ENS Cachan)

January 12, 2012 24 / 29

< 67 ▶

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

In fact,

let f be any operation among **Pretime**, \cap , **Unreset**, and let M = f(N). Then, for any parameters \vec{k} , there exists \vec{l} such that

$$\langle M \rangle_{-\vec{l}\delta} = f(\langle N \rangle_{-\vec{k}\delta}),$$

for all small enough $\delta > 0$, where \vec{l} can be expressed by a max-plus expression of \vec{k} .

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_5 = \max(k_5, k_1 + k_3).$$

Key Theorem

Let $\vec{M} = f(\vec{M})$ be a fixpoint equation on zones, and \vec{M} a solution. f uses $Pre_{time}(), \cap, Unreset()$. For any $\vec{k} \in \mathbb{N}_{>0}^{n}$,

$$egin{aligned} &\langle ec{M}
angle_{-ec{k}\delta} = f(\langle ec{M}
angle_{-ec{k}\delta}) & orall \; \delta > 0 \ &\Leftrightarrow \ &ec{k} = \phi(ec{k}), \end{aligned}$$

where ϕ is a **max-plus expression**.

(日) (同) (三) (三)

$$\llbracket \langle G_{\sigma} \rangle_{-\vec{k}\delta} \rrbracket \subseteq \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket \langle G_{\sigma'} \rangle_{-\vec{k}\delta} \rrbracket)) \\ \Leftrightarrow \\ k_{5} = \max(k_{5}, k_{1} + k_{3}).$$

Key Theorem

Let $\vec{M} = f(\vec{M})$ be a fixpoint equation on zones, and \vec{M} a solution. f uses $Pre_{time}(), \cap, Unreset.()$. For any $\vec{k} \in \mathbb{N}_{>0}^{n}$,

$$egin{aligned} &\langle ec{M}
angle_{-ec{k}\delta} = f(\langle ec{M}
angle_{-ec{k}\delta}) & orall \; \delta > 0 \ &\Leftrightarrow \ &ec{k} = \phi(ec{k}), \end{aligned}$$

24 / 29

where ϕ is a max-plus expression.

► Max-plus algebra: We prove that such fixpoint equations can be solved in polynomial time.

Need to solve:

$$\forall \sigma, \quad \mathcal{G}_{\sigma} \subseteq \bigcup_{(\sigma, \sigma')} \mathsf{Unreset}_{\mathcal{R}_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\mathcal{G}_{\sigma'})).$$

but theorem doesn't allow union.

3

∃ → < ∃</p>

< (T) > <

Need to solve:

$$\forall \sigma, \quad G_{\sigma} = \bigcup_{(\sigma, \sigma')} \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(G_{\sigma'})) \cap G_{\sigma}.$$

but theorem doesn't allow union.

3

∃ → < ∃</p>

< (T) > <

Equivalently, solve:

$$\begin{array}{ll} \forall \sigma, \sigma', & G_{\sigma} = \bigcup_{\sigma, \sigma'} M_{\sigma, \sigma'}, \\ & M_{\sigma, \sigma'} = \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(G_{\sigma'})) \cap G_{\sigma}. \end{array}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

$$\begin{array}{ll} \forall \sigma, \sigma', & \mathcal{G}_{\sigma} = \bigcup_{\sigma, \sigma'} \mathcal{M}_{\sigma, \sigma'}, \\ \mathcal{M}_{\sigma, \sigma'} = \mathsf{Unreset}_{\mathcal{R}_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\mathcal{G}_{\sigma'})) \cap \mathcal{G}_{\sigma}. \end{array}$$

Lemma

Consider any equation of the form $G = \bigcup_i M_i$, and $k_1, \ldots, k_n \in \mathbb{N}_{>0}$ such that $\langle G \rangle_{-\delta \vec{k}} = \bigcup_i \langle M_i \rangle_{-\delta \vec{k}}$ for small enough $\delta > 0$. Consider

$$k_{\alpha(1)} \leq k_{\alpha(2)} \leq \ldots \leq k_{\alpha(n)},$$
 for some perm. α .

Then for any $k_1', \ldots, k_n' \in \mathbb{N}_{>0}$ with the same ordering, i.e.

$$k'_{\alpha(1)} \leq k'_{\alpha(2)} \leq \ldots \leq k'_{\alpha(n)},$$

we have $\langle G \rangle_{-\delta \vec{k'}} = \bigcup_i \langle M_i \rangle_{-\delta \vec{k'}}$ for small enough $\delta > 0$.

イロト 不得下 イヨト イヨト 二日

$$\begin{array}{ll} \forall \sigma, \sigma', & \mathcal{G}_{\sigma} = \bigcup_{\sigma, \sigma'} \mathcal{M}_{\sigma, \sigma'}, \\ \mathcal{M}_{\sigma, \sigma'} = \mathsf{Unreset}_{\mathcal{R}_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\mathcal{G}_{\sigma'})) \cap \mathcal{G}_{\sigma}. \end{array}$$

Lemma

Given $G = \bigcup_i M_i$, whether a vector \vec{k} satisfies

$$\langle G \rangle_{-\delta \vec{k}} = \bigcup_{i} \langle M_i \rangle_{-\delta \vec{k}}$$
 for small enough $\delta > 0$,

only depends on the **ordering** of k_i 's.

Overall Algorithm:

- 1) Guess the ordering (polynomially many guesses),
- 2) Solve above equation augmented with this ordering,
- 3) Verify union. (in PSPACE or NP if bounded nb of edges per location)

∃ → (∃ →

Summary of the Fixpoint Equations

Deciding implementability

Apply theorem to following fix-point equations:

Non-blockingness:

$$\forall \sigma, \quad \llbracket G_{\sigma} \rrbracket \subseteq \bigcup_{l_1 \xrightarrow{\sigma} l_2 \xrightarrow{\sigma'} l_3} \mathsf{Unreset}_{R_{\sigma}}(\mathsf{Pre}_{\mathsf{time}}(\llbracket G_{\sigma'} \rrbracket)).$$

(Do technical work to remove the union)

• Time-abstract simulation $(\mathcal{A} \sqsubseteq_{t.a.} \mathcal{A}_{-\delta \vec{k}})$:

 $\llbracket M_{l,r} \rrbracket = \bigcap_{\sigma \in \Sigma} \bigcap_{(l,r) \xrightarrow{\sigma} (l',r')} \mathsf{Pre}_{\mathsf{time}}(\mathsf{Unreset}_{R_{\sigma}}(\llbracket M_{l',r'} \rrbracket) \cap \llbracket G_{\sigma} \rrbracket),$

where $M_{I,r}$ is the time-abstract simulator set of the region (I, r).

Ocan Sankur (ENS Cachan)

イロト 不得下 イヨト イヨト 二日

Shrinking: Summary

Summary

- Shrinking always ensures Imp \sqsubseteq Spec.
- Complexity: NP, PSPACE, EXPTIME.
- These properties preserved in the program semantics.
- \rightarrow Can be used to define the implementation or in the timing analysis.

Technics

- Zones + parameters \leftrightarrow max-plus algebra.
- New data structure: **DBMs w/ parameterized max-plus exp.**. Application to other problems: e.g. robust controller synthesis.

イロト 不得下 イヨト イヨト 二日
Conclusion

Robustness Analysis

"Parameterized robust model-checking has same theoretical complexity as model-checking for timed automata."

safety, LTL, coFlat-MTL, untimed language equiv., ...

Some work on symbolic algorithms e.g. [Daws, Cordy '06], [Jaubert, Reynier '11]

Robust Implementation

Approximate Implementation: All timed automata can be compiled into a larger system, with approximately the same behaviour.Shrinking: Parameter synthesis for adjusting timing constraints.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Future Work

- Efficient algorithms:
 - for approximate implementation w.r.t. safety.
 - for shrinkability.
- Ompositionality.
- Sobust reachability in timed games:

Player 1 chooses a delay $d \ge 0$ and an edge σ , Player 2 adds a perturbation: $d + \epsilon$ where $\epsilon \in [-\delta, \delta]$.

Thm: Reachability is EXPTIME-complete. Winning sets are described by shrunk zones.

How about safety and Büchi properties?

Similar semantics with probabilistic perturbation.

くほと くほと くほと

Future Work

- Efficient algorithms:
 - for approximate implementation w.r.t. safety.
 - for shrinkability.
- Ompositionality.
- Sobust reachability in timed games:

Player 1 chooses a delay $d \ge 0$ and an edge σ , Player 2 adds a perturbation: $d + \epsilon$ where $\epsilon \in [-\delta, \delta]$.

Thm: Reachability is EXPTIME-complete. Winning sets are described by shrunk zones.

How about safety and Büchi properties?

Similar semantics with probabilistic perturbation.

Thank you!

Ocan Sankur (ENS Cachan)

- 4 週 ト - 4 三 ト - 4 三 ト