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Timed Automata: Exact Semantics

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

idlestart

q2

q1

click?

x := 0

single click!

x = 50

click?x
<

50dou
ble

cli
ck

!

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its clock constraint holds.
- A clock can be reset by a transition.
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Runs of a timed automaton: A

(idle, x = 0)
23.7−−→ (idle, x = 23.7)

click?−−−→ (q1, x = 0)
10−→ (q1, x = 10)

click?−−−→ (q2, x = 10)
double click−−−−−−−→ (idle, x = 10) ...

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 2 / 29



Timed Automata: Program Semantics

The semantics of timed automata is idealistic:

No minimum delay between actions,
a−→ 0.00001−−−−→ b−→.

clocks are infinitely precise. “1 ≤ x ≤ 3”.

Real-world systems have

digital clocks updated regularly:

time
... tick! tick! tick!...

≤ ∆P

nonzero reaction time:

signal?

≤ ∆R
ready!

signal?

≤ ∆R
ready!

signal?

time

Program semantics studied by [De Wulf, Doyen and Raskin 2004].
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Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
Consider the timed automaton A:

q0start q1 q2

a: x ≤ 2 / x := 0

b: y ≥ 2 / y := 0

c: x ≤ 0 ∧ y ≥ 2
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Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For ∆ = 0.1, A∆ is defined by,

q0start q1 q2

a: x ≤ 2.1 / x := 0

b: y ≥ 1.9 / y := 0

c: x ≤ 0.1 ∧ y ≥ 1.9
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Timed Automata: Enlarged Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For ∆ = 0.1, A∆ is defined by,

q0start q1 q2

a: x ≤ 2.1 / x := 0

b: y ≥ 1.9 / y := 0

c: x ≤ 0.1 ∧ y ≥ 1.9

Relation between semantics

A v program(A∆) v A2∆

for some ∆ > 0, [De Wulf, Doyen, Raskin 2004] & [S., Bouyer, Markey 2011].

“Implementations can have more behaviours than the exact semantics”.

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 4 / 29



A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...
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A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

≤ 2 ≤ 2 ≤ 2 ≤ 2
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A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

2 + ∆ 2 + ∆ 2 + ∆ 2 + ∆
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A Non-Robust Timed System

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...
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A Non-Robust Timed System

capt

enc

x=2
x :=0

y≤2+∆
y :=0

t
0 2 4 6 8 10

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 ...

enc 1 enc 2 enc 3 enc 4 enc 5

2 + ∆ 2 + ∆ 2 + ∆ 2 + ∆ Skip Frame
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Dealing with Robustness

First Approach

Decide the existence of a bound on ∆ under which the automaton satisfies
some property.

 Parameterized Robust model-checking
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Background

“Enlarged/Program semantics can add undesired behaviour to timed automata”.

[Puri 1998, De Wulf, Doyen, Markey, Raskin 2004]

Parameterized Robust Model-Checking

Given TA A and property φ, decide if ∃∆ > 0, A∆ |= φ.

Decidable for:
- Safety (PSPACE-c), [Puri ’98], [DDMR ’04] [Daws, Kordy ’06], [Jaubert, Reynier ’11]

- LTL (PSPACE-c), [Bouyer, Markey, Reynier 2006], [Bouyer, Markey, S. 2011]

- coFlat-MTL (EXPSPACE-c) [Bouyer, Markey, Reynier 2008]

- Untimed language equivalence (EXPSPACE) L(A) = L(A∆) [S. 2011]
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Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

But A∆0 is an ordinary timed automaton
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Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

But A∆0 is an ordinary timed automaton
I Use your favorite model-checker to check robustness.

Promising preliminary experimental results!
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Param. Robust Model-Checking: ω-regular properties

Theorem (Bouyer, Markey, S. 2011)

Robust model-checking timed automata against ω-regular properties can
be reduced to classical model-checking with optimal complexity (PSPACE).

The algorithm: For any A, there exists some (computable) ∆0 > 0 s.t.

∃∆ > 0,A∆ |= φ ⇔ A∆0 |= φ.

I Use your favorite model-checker to check robustness.

N.B. An algorithm for this problem was known before for TAs

1 whose all cycles reset all clocks + bounded clocks,

2 based on a modification of the region construction
(one couldn’t directly use existing model-checkers).
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A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist ∆ > 0 s.t. Luntime(A∆) = Luntime(A).

Theorem (S. 2011)

Untimed language preservation is decidable in EXPSPACE in general, and
in PSPACE for a deterministic subclass.

The algorithm: For any A, there exists some ∆0 > 0 such that

∃∆ > 0, Luntime(A∆) = Luntime(A) ⇔ Luntime(A∆0) = Luntime(A).

I Only check whether Luntime(A∆0) = Luntime(A)
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A Stronger Notion: Untimed Language Preservation

Untimed Language Preservation

Does there exist ∆ > 0 s.t. Luntime(A∆) = Luntime(A).

Theorem (S. 2011)

Untimed language preservation is decidable in EXPSPACE in general, and
in PSPACE for a deterministic subclass.

The algorithm: For any A, there exists some ∆0 > 0 such that

∃∆ > 0, Luntime(A∆) = Luntime(A) ⇔ Luntime(A∆0) = Luntime(A).

I Only check whether Luntime(A∆0) = Luntime(A)

N.B. Untimed language universality (thus equiv.) is EXPSPACE-complete
[Brenguier, Göller, S. 2011 - unpublished].
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Param. Robust Model-checking: Summary

Conclusion

Imprecisions /unexpected delays always add additional behaviour in
implementation.

Param. robust model-checking: check whether the additional
behaviours are “harmless”.

Same theoretical complexity as for model-checking timed automata.

It is still open whether one can derive efficient algorithms.

Next: Prevent additional behaviours to appear in implementation.
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Dealing with Robustness

Second Approach

Transform a given timed automaton into a robust one.

Robust implementation /refinement
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Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,

In practice: Design / model-check A, then “compile to” A′.
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Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,
A′ ∼ε A′∆ for all 0 ≤ ∆ < O(ε),

We get A ∼ε A′∆.

In practice: Design / model-check A, then “compile to” A′.
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Approximate implementation

Preliminary definition: Two states are ε-bisimilar if there is a bisimulation
in which delays differ by at most ε. — denoted by ∼ε

Theorem 2 [Bouyer, Larsen, Markey, S., Thrane 2011]

Given any timed automaton A, any ε > 0, one can compute A′ such that

A ∼0 A′,
Same locations reachable in A′ and A′∆ for all 0 ≤ ∆ < O(ε),

We get A is safe ⇒ A′ is safe.

In practice: Design / model-check A, then “compile to” A′.
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Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

A : ... ` `′

...

φ

Consider the reachable states in `:

φ

`
y

x
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Approximate implementation: Safety

Consider a timed automaton A with clocks x , y ,
such that location `′ is not reachable:

... ` `′

...

φ∆

Consider the reachable states in `: `′ reachable

k∆

φ

`
y

x
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Approximate implementation: Safety

Define A′ as follows:

A′ : ... ` `′

...

Reach` φ

Reachable states in `:

φ

`
y

x

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 14 / 29



Approximate implementation: Safety

Define A′ as follows:

A′∆ : ... ` `′

...

(Reach`)∆ φ∆

Reachable states in `: `′ not reachable in A′∆.

≤ ∆

φ

`
y

x
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Approximate implementation: Safety

Define A′ as follows:

A′∆ : ... ` `′

...

(Reach`)∆ φ∆

Reachable states in `: `′ not reachable in A′∆.

No cheating

We do not remove the edge `
φ−→ `′.

Ready simulation: A′∆ vBad A∆.

“Any run of A′∆ can be imitated in A∆ without enabling bad transitions.”
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Approximate implementation: Bisimulation

Constructing A′ s.t. A′ ∼ε A′∆: split locations to regions

A : ... ` `′
φ φ′

A′ : ... `, r1

`, r2

`, r3

`, r4

φ ∧ φr1

φ ∧ φr2

φ ∧ φr3

φ ∧ φr4

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

`′, r′1

φ′ ∧ φr ′1
φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr3

φ′ ∧ φr ′3φ′ ∧ φr ′3
φ′ ∧ φr ′2
φ′ ∧ φr ′2φ′ ∧ φr ′2
φ′ ∧ φr ′2
φ′ ∧ φr ′2
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Approximate implementation: Bisimulation

Constructing A′ s.t. A′ ∼ε A′∆: split locations to bisimulation classes

A : ... ` `′
φ φ′

A′ : ... `, r1

`, r2

`, r3

`, r4

φ ∧ φr1

φ ∧ φr2

φ ∧ φr3
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`′, r′1
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Approximate implementation: Summary

Pros
1 One can choose arbitrarily small ε,

2 Works for all timed automata,

3 We preserve time-abstract behaviour + approximate timings.

4 Same result for the semantics under sampling:

Sampled 1
n
(A) v A.

We construct A′ such that Sampled 1
n
(A′) ∼ε A.
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Approximate implementation: Summary

Pros
1 One can choose arbitrarily small ε,

2 Works for all timed automata,

3 We preserve time-abstract behaviour + approximate timings.

4 Same result for the semantics under sampling:

Cons
1 Size blow-up – although safety construction could do well in practice,

2 Timings are not strictly preserved (but only upto ε)
We still allow additional behaviours.

3 Not clear whether the behaviour is preserved in the program
semantics.

Next: “Strong” implementation of (1) same size, (2) with strict timings,
(3) behaviour is preserved in the program semantics.
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Strong Implementation: Shrinking Timed Automata

Abstract model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

Ocan Sankur (ENS Cachan) Robustness and Implementability January 12, 2012 17 / 29



Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′
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Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′

1 ≤ 1 + δ′−∆ ≤ x ≤ 2− δ+∆ ≤ 2 when δ, δ′ ≥ ∆.

Shrink the clock constraints in the model, to prevent additional behaviour
in implementation.
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Strong Implementation: Shrinking Timed Automata

Abstract Model Real-world behaviour

`
1≤x≤2−−−−→ `′ `

1−∆≤x≤2+∆−−−−−−−−−→ `′

`
1+δ′≤x≤2−δ−−−−−−−−→ `′ `

1+δ′−∆≤x≤2−δ+∆−−−−−−−−−−−−−→ `′

1 ≤ 1 + δ′−∆ ≤ x ≤ 2− δ+∆ ≤ 2 when δ, δ′ ≥ ∆.

We consider a separate shrinking parameter for each atomic clock
constraint: k1δ, k2δ, . . . where δ > 0 and ~k ∈ N>0

Looking for ~δ ∈ Qn
>0 ⇔ looking for δ~k, where δ ∈ Q>0 and ~k ∈ Nn

>0.

The shrunk automaton is written A−δ~k .
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Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v

program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

I The behaviour of the real-world system program(A−δ~k) is included in
that of the abstract model A.
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Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v

program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

Problem: Shrinkability

Find δ~k such that program(A−δ~k+∆
) satisfies:

A vt.a. program(A−δ~k+∆
),

and it is non-blocking.
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Strong Implementation: Shrinkability of Timed Automata

We have

A vt.a.? A−δ~k v program(A−δ~k+∆
) v A.

for appropriate 0 < 2∆ < min δ~k .

Theorem (Shrinkability) [S., Bouyer, Markey 2011]

One can decide the existence of δ~k , and compute the “least” solution, for
which,

A vt.a. A−δ~k , in EXPTIME,

A−δ~k is non-blocking. in PSPACE, and NP for bounded-branching

and both at the same time in EXPTIME.

⇒ program(A−δ~k+∆
) is non-blocking.
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Example of Shrinking

A shrinkable automaton

`1 `2 `3 `4

y≤1∧u≥0

u,y :=0

y≤1∧1≤x

u≥0 u,x :=0

u≥0∧y≤1

u,y :=0

u,x ,y :=0
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Example of Shrinking

A shrunk automaton

`1 `2 `3 `4

3δ≤x∧y≤1−δ∧u≥δ

y−x≤1−4δ∧u≥δ, u,y :=0

y≤1−2δ∧1+δ≤x

u≥δ∧x−y≥3δ, u,x :=0

u≥δ∧y≤1−δ

u,y :=0

u,x ,y :=0

A vt.a. A−δ~k v A.

and non-blocking, for all δ ∈ [0, 1
4 ]
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Interpretation of Shrinking

Developer’s guide to shrinking

`1 `2

3+2δ≤x≤7−4δ

I If the edge is controllable by the system, do the action 2δ later than
allowed, and 4δ before the deadline.

I If the edge is uncontrollable (e.g. execution of task), the guard
corresponds to BCET ≤ x ≤WCET:
adjust your timing analysis to ensure 3+2δ ≤ x ≤ 7−4δ.
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Non-blocking Timed Automata

Definition: Non-blockingness

l1 l2 l3

l ′3

σ σ′

σ′′

Whenever σ is taken, either σ′ or σ′′ are eventually firable.

Fix-point characterization

Let Gσ denote the guards of the timed automaton. It is non-blocking iff,

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ(Pretime(JGσ′K)).
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

JGσK ⊆ UnresetRσ(Pretime(JGσ′K)).
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

⊆ Unresety

 Pretime






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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

⊆ X
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK)) ?

Determine ~k
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ Unresety


Pretime



k1δ

k2δk3δ

k4δ





for all δ < 1
2 mini

1
ki

.
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ Unresety


(k1 + k3)δ

(k2 + k4)δ



for all δ < 1
2 min

(
1

k1+k3
, 1
k2+k4

,mini
1
ki

)
.
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Technique for Computing Shrinking Parameters

l1 l2 l3
σ σ′

k5δ

⊆ (k1 + k3)δ

Then, ~k should satisfy

k5 = max(k5, k1 + k3).

for all δ < 1
2 min

(
1

k1+k3
, 1
k2+k4

,mini
1
ki

)
.
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Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).
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Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

In fact,
let f be any operation among Pretime, ∩, Unreset,
and let M = f (N).

Then, for any parameters ~k , there exists ~l such that

〈M〉−~lδ = f (〈N〉−~kδ),

for all small enough δ > 0,
where ~l can be expressed by a max-plus expression of ~k .
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Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Key Theorem

Let ~M = f ( ~M) be a fixpoint equation on zones, and ~M a solution.
f uses Pretime(), ∩, Unreset·().

For any ~k ∈ Nn
>0,

〈 ~M〉−~kδ = f (〈 ~M〉−~kδ) ∀ small δ > 0

⇔
~k = φ(~k),

where φ is a max-plus expression.
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Technique for Computing Shrinking Parameters

J〈Gσ〉−~kδK ⊆ UnresetRσ(Pretime(J〈Gσ′〉−~kδK))

⇔
k5 = max(k5, k1 + k3).

Key Theorem

Let ~M = f ( ~M) be a fixpoint equation on zones, and ~M a solution.
f uses Pretime(), ∩, Unreset·().

For any ~k ∈ Nn
>0,

〈 ~M〉−~kδ = f (〈 ~M〉−~kδ) ∀ small δ > 0

⇔
~k = φ(~k),

where φ is a max-plus expression.

I Max-plus algebra: We prove that such fixpoint equations can be
solved in polynomial time.
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Shrinking Algorithm for Non-blockingness

Need to solve:

∀σ, Gσ ⊆
⋃

(σ,σ′)UnresetRσ(Pretime(Gσ′)).

but theorem doesn’t allow union.
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Need to solve:
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(σ,σ′)UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

but theorem doesn’t allow union.
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Shrinking Algorithm for Non-blockingness

Equivalently, solve:

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.
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Shrinking Algorithm for Non-blockingness

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

Lemma

Consider any equation of the form G =
⋃

i Mi , and k1, . . . , kn ∈ N>0 such
that 〈G 〉−δ~k =

⋃
i 〈Mi 〉−δ~k for small enough δ > 0. Consider

kα(1) ≤ kα(2) ≤ . . . ≤ kα(n), for some perm. α.

Then for any k ′1, . . . , k
′
n ∈ N>0 with the same ordering, i.e.

k ′α(1) ≤ k ′α(2) ≤ . . . ≤ k ′α(n),

we have 〈G 〉−δ ~k ′ =
⋃

i 〈Mi 〉−δ ~k ′ for small enough δ > 0.
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Shrinking Algorithm for Non-blockingness

∀σ, σ′, Gσ =
⋃
σ,σ′Mσ,σ′ ,

Mσ,σ′ = UnresetRσ(Pretime(Gσ′)) ∩ Gσ.

Lemma

Given G =
⋃

i Mi , whether a vector ~k satisfies

〈G 〉−δ~k =
⋃
i

〈Mi 〉−δ~k for small enough δ > 0,

only depends on the ordering of ki ’s.

Overall Algorithm:
1) Guess the ordering (polynomially many guesses),
2) Solve above equation augmented with this ordering,
3) Verify union. (in PSPACE or NP if bounded nb of edges per location)
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Summary of the Fixpoint Equations

Deciding implementability

Apply theorem to following fix-point equations:

Non-blockingness:

∀σ, JGσK ⊆
⋃

l1
σ−→l2

σ′−→l3

UnresetRσ(Pretime(JGσ′K)).

(Do technical work to remove the union)

Time-abstract simulation (A vt.a. A−δ~k):

JMl ,r K =
⋂
σ∈Σ

⋂
(l ,r)

σ−→(l ′,r ′)

Pretime(UnresetRσ(JMl ′,r ′K) ∩ JGσK),

where Ml ,r is the time-abstract simulator set of the region (l , r).
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Shrinking: Summary

Summary

Shrinking always ensures Imp v Spec.

Shrinking parameters can be synthesized automatically so that
Spec v Imp, and Imp non-blocking.

Complexity: NP, PSPACE, EXPTIME.

These properties preserved in the program semantics.

→ Can be used to define the implementation or in the timing analysis.

Technics

Zones + parameters ↔ max-plus algebra.

New data structure: DBMs w/ parameterized max-plus exp..
Application to other problems: e.g. robust controller synthesis.
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Conclusion

Robustness Analysis

“Parameterized robust model-checking has same theoretical complexity as
model-checking for timed automata.”

safety, LTL, coFlat-MTL, untimed language equiv., ...

Some work on symbolic algorithms e.g. [Daws, Cordy ’06], [Jaubert, Reynier ’11]

Robust Implementation

Approximate Implementation: All timed automata can be compiled
into a larger system, with approximately the same behaviour.
Shrinking: Parameter synthesis for adjusting timing constraints.
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Future Work

1 Efficient algorithms:
I for approximate implementation w.r.t. safety.
I for shrinkability.

2 Compositionality.

3 Robust reachability in timed games:

Player 1 chooses a delay d ≥ 0 and an edge σ,
Player 2 adds a perturbation: d + ε where ε ∈ [−δ, δ].

Thm: Reachability is EXPTIME-complete.
Winning sets are described by shrunk zones.

How about safety and Büchi properties?

4 Similar semantics with probabilistic perturbation.

Thank you!
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