Timed Automata Can Always Be Made Implementable

Patricia Bouyer¹, Kim Larsen², Nicolas Markey¹, **Ocan Sankur**¹, Claus Thrane²

¹ LSV, CNRS & Ecole Normale Supérieure de Cachan ² Dept. of Computer Science, Aalborg University

> CONCUR 2011 September 6, 2011

Timed Systems: Systems with timing constraints

- Communication protocols,
- Multimedia applications,
- Car/airplane components, ...

To faithfully model systems, one often needs to talk about **time**.

► We model these by *Timed Automata*.

Abstract Model: Timed Automata (TA)

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its clock constraint holds.
- A clock can be reset by a transition.

Abstract Model: Timed Automata (TA)

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

Runs of a timed automaton

$$\begin{array}{l} (\mathsf{idle}, x = 0) \xrightarrow{23.7} (\mathsf{idle}, x = 23.7) \xrightarrow{\mathsf{click?}} (q_1, x = 0) \xrightarrow{10} (q_1, x = 10) \\ \xrightarrow{\mathsf{click?}} (q_2, x = 10) \xrightarrow{\mathsf{double_click}} (\mathsf{idle}, x = 10) \dots \end{array}$$

The semantics of timed automata is idealistic:

- No minimum delay between actions, $\xrightarrow{a} \xrightarrow{0.00001} \xrightarrow{b}$.
- clocks are infinitely precise. " $1 \le x \le 3$ ".

But real world systems have finite frequency, digital clocks...

The semantics of timed automata is idealistic:

- No minimum delay between actions, $\xrightarrow{a} \xrightarrow{0.00001} \xrightarrow{b}$.
- clocks are infinitely precise. " $1 \le x \le 3$ ".

But real world systems have finite frequency, digital clocks...

Two types of implementation behaviour

- Sampled semantics
- Imprecise semantics

The semantics of timed automata is idealistic:

- No minimum delay between actions,
- clocks are infinitely precise. $"1 \le x \le 3"$.

But real world systems have finite frequency, digital clocks...

 $\xrightarrow{a} 0.00001 \xrightarrow{b}$

Two types of implementation behaviour

Sampled semantics

Time domain is replaced by $\frac{1}{n}\mathbb{N}$ for some $n \in \mathbb{N}_+$. applies to digital circuits, synchronous systems..

Imprecise semantics

The semantics of timed automata is idealistic:

- No minimum delay between actions, $\xrightarrow{a} \xrightarrow{0.00001} \xrightarrow{b}$.
- clocks are infinitely precise. $"1 \le x \le 3"$.

But real world systems have finite frequency, digital clocks...

Two types of implementation behaviour

- Sampled semantics
- Imprecise semantics

applies to programs interacting with physical environment: - next slide.

Imprecise Semantics

Clock imprecisions can be modelled by **enlarging** the clock constraints. Consider the timed automaton A:

Imprecise Semantics

Clock imprecisions can be modelled by **enlarging** the clock constraints. For $\Delta = 0.1$, Imprecise_{Δ}(A) is defined by,

Imprecise Semantics

Clock imprecisions can be modelled by **enlarging** the clock constraints. For $\Delta = 0.1$, Imprecise_{Δ}(A) is defined by,

This is an over-approximation of a concrete semantics when A is "executed" by a micro-processor.

 Δ corresponds to the *clock error* and *hardware frequency* [De Wulf, Doyen, Raskin 2004]

A 🕨

frame 1	frame 2	frame 3	frame 4	frame 5	frame 6	
end	:1 en	c 2 en	c 3 end	e 4 enc	5	
) /	2	4	6	R 1	0	$\longrightarrow t$

< 67 ▶

A 🖓

3

- ∢ ≣ →

47 ▶

Background: Imprecise semantics

"Imprecise semantics can **add undesired** behaviour to timed automata". [Puri 1998, DDMR 2004]

Robustness checking

Given TA \mathcal{A} and property ϕ , decide if $\exists \Delta > 0$, Imprecise_{Δ}(\mathcal{A}) $\models \phi$.

Decidable for:

- Safety, [Puri 1998], [De Wulf, Doyen, Markey, Raskin 2004], [Jaubert, Reynier 2011]
- LTL, a fragment of MTL, [Bouyer, Markey, Reynier 2006 2008].
- Untimed language equivalence $L(A) = L(Imprecise_{\Delta}(A))$ [S. 2011]

▲ 伊 ▶ ▲ 田 ▶ ▲ 田 ▶ ― 田

Background: Sampled Semantics

"Sampled semantics can **remove desired** behaviour from timed automata". [Cassez, Henzinger, Raskin 02]

Samplability checking

Given TA \mathcal{A} and property ϕ , decide if $\exists n \in \mathbb{N}_+$, Sampled $\underline{1}(\mathcal{A}) \models \phi$.

Decidable for:

- Reachability, [Krčál, Pelánek 2005]
- Untimed language equivalence, [Abdulla, Krčál, Yi 2010] Undecidable for:
- Safety, [Cassez, Henzinger, Raskin 2002]

In this work: Instead of robustness/samplability checking transform any timed automaton into an "equivalent" one that is robust/samplable.

Preliminary definition: Two states are ϵ -**bisimilar** if there is a bisimulation in which delays differ by at most ϵ . — denoted by \sim_{ϵ}

A (10) F (10)

Theorem (Robustness construction)

Given any timed automaton $\mathcal A,$ any $\epsilon>0,$ there exists $\mathcal A'$ such that

•
$$\mathcal{A} \sim_0 \mathcal{A}'$$
,
• $\mathcal{A}' \sim_{\epsilon} \operatorname{Imprecise}_{\Delta}(\mathcal{A}')$ for all $0 \leq \Delta < O(\epsilon)$,
• $\mathcal{A}' \sim_{\epsilon} \operatorname{Sampled}_{\frac{1}{n}}(\mathcal{A}')$ for any $0 < \frac{1}{n} < O(\epsilon)$.
• We get $\mathcal{A} \sim_{\epsilon} \operatorname{Imprecise}_{\Delta}(\mathcal{A}')$ and $\mathcal{A} \sim_{\epsilon} \operatorname{Sampled}_{\frac{1}{n}}(\mathcal{A}')$.

Practical meaning: Model-check \mathcal{A} , then implement \mathcal{A}' .

A 🖓 h

3

Theorem (Robustness construction)

Given any timed automaton $\mathcal A,$ any $\epsilon>$ 0, there exists $\mathcal A'$ such that

•
$$\mathcal{A} \sim_0 \mathcal{A}'$$
,
• $\mathcal{A}' \sim_{\epsilon} \operatorname{Imprecise}_{\Delta}(\mathcal{A}')$ for all $0 \leq \Delta < O(\epsilon)$,
• $\mathcal{A}' \sim_{\epsilon} \operatorname{Sampled}_{\frac{1}{n}}(\mathcal{A}')$ for any $0 < \frac{1}{n} < O(\epsilon)$.
• We get $\mathcal{A} \sim_{\epsilon} \operatorname{Imprecise}_{\Delta}(\mathcal{A}')$ and $\mathcal{A} \sim_{\epsilon} \operatorname{Sampled}_{\frac{1}{n}}(\mathcal{A}')$.

Practical meaning: Model-check \mathcal{A} , then implement \mathcal{A}' .

Next: Simple Case: Robustness construction for safety

•
$$\mathcal{A}\sim_0 \mathcal{A}'$$
,

• \mathcal{A} does not reach a location \Rightarrow neither does Imprecise_{Δ}(\mathcal{A}').

- 31

< 回 ト < 三 ト < 三 ト

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider a timed automaton \mathcal{A} with clocks x, y, such that location ℓ' is not reachable:

Consider the **reachable states** in ℓ : ℓ' reachable

Define \mathcal{A}' as follows:

Reachable states in ℓ :

Define \mathcal{A}' as follows:

3

Construction for Safety-Robustness

For a timed automaton \mathcal{A} ,

- Compute the set of reachable states Reach_ℓ at each location $\ell.$
- Replace each edge

The resulting automaton \mathcal{A}' satisfies

- $\mathcal{A}\sim_{0}\mathcal{A}'$,
- \mathcal{A} does not reach $\ell \implies$ neither does $\mathcal{A}'_{\Delta} \forall 0 < \Delta < \frac{1}{2c}$

► For the **bisimulation** construction, one needs to split each location to regions.

Property Preservation

Back to bisimulation

What does $\mathcal{A} \sim_{\epsilon} \mathcal{A}'_{\Delta}$ and $\mathcal{A} \sim_{\epsilon} \mathsf{Sampled}_{\underline{1}}(\mathcal{A}')$ imply?

Preservation of **untimed** properties, but also more...

Proposition (Property preservation)

We consider a quantitative extension of CTL [Fahrenberg, Larsen, Thrane 2010].

e.g.
$$\mathsf{EX}^{[2,5]}_{\sigma} op$$

 \blacktriangleright ϵ -bisimulation preserves satisfaction values of the formulas, up to ϵ .

Property Preservation

Back to bisimulation... What does $\mathcal{A} \sim_{\epsilon} \mathcal{A}'_{\Delta}$ and $\mathcal{A} \sim_{\epsilon} \text{Sampled}_{\frac{1}{2}}(\mathcal{A}')$ imply?

Preservation of untimed properties, but also more ...

Proposition (Property preservation)

We consider a quantitative extension of CTL [Fahrenberg, Larsen, Thrane 2010].

$$\phi\{\wedge,\vee\}\phi'\mid \mathsf{EX}_{\sigma}^{[a,b]}\phi\mid \mathsf{AX}_{\sigma}^{[a,b]}\phi\mid \mathsf{E}\phi\mathsf{U}_{\sigma}^{[a,b]}\phi'\mid \mathsf{A}\phi\mathsf{U}_{\sigma}^{[a,b]}\phi'$$

 \blacktriangleright ϵ -bisimulation preserves satisfaction values of the formulas, up to ϵ .

Conclusion

Conclusion

- We obtain arbitrarily close approximations of any timed automaton in implementation.
- Two constructions: safety (simpler), bisimulation.
- Design advice for robust safety:

"Write explicitly all implied invariants in clock constraints."

Next

- Alternative approach: **shrink** the clock constraints
 - [S., Bouyer, Markey 2011]
- Robust controller synthesis
- Probabilistic models for imprecisions