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Timed Systems: Systems with timing constraints

@ Communication protocols,
@ Multimedia applications,

e Car/airplane components, ...

To faithfully model systems, one often

needs to talk about time.
;o=

% UMF transmission
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» We model these by Timed Automata.
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Abstract Model: Timed Automata (TA)

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]

click?

start —

single_click!
x =50

- Clocks cannot be stopped, all grow at the same rate.
- An edge is activated when its clock constraint holds.
- A clock can be reset by a transition.
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Abstract Model: Timed Automata (TA)

Timed automata = Finite automata + Analog clocks. [Alur and Dill 1994]
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Robustness Issues in Timed Automata

The semantics of timed automata is idealistic:

. . a_0.00001 b
@ No minimum delay between actions, S
@ clocks are infinitely precise. 1<x <3,

But real world systems have finite frequency, digital clocks...
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@ No minimum delay between actions, S
@ clocks are infinitely precise. 1<x <3,

But real world systems have finite frequency, digital clocks...

Two types of implementation behaviour
o Sampled semantics

o Imprecise semantics
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Robustness Issues in Timed Automata

The semantics of timed automata is idealistic:

. . a_0.00001_ b
@ No minimum delay between actions, S,
@ clocks are infinitely precise. 1<x <3,

But real world systems have finite frequency, digital clocks...

Two types of implementation behaviour

o Sampled semantics
Time domain is replaced by %N for some n € N,.
applies to digital circuits, synchronous systems..

o Imprecise semantics
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Robustness Issues in Timed Automata

The semantics of timed automata is idealistic:

. . a_0.00001 b
@ No minimum delay between actions, S
@ clocks are infinitely precise. 1< x <3,

But real world systems have finite frequency, digital clocks...

Two types of implementation behaviour
@ Sampled semantics
o Imprecise semantics
applies to programs interacting with physical environment: — next slide.
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Imprecise Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
Consider the timed automaton A:

aax<2/x:=0

cx<0Ay>?2
start — a1

b:y>2/y:=0
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Imprecise Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For A = 0.1, Imprecisep (A) is defined by,

arx<21/x:=0

c:x<01Ay>19
start — a1

b:y>19/y:=0
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Imprecise Semantics

Clock imprecisions can be modelled by enlarging the clock constraints.
For A = 0.1, Imprecisep (A) is defined by,

arx<21/x:=0

¢ x<01Ay>19
start — a1

b:y>19/y:=0

This is an over-approximation of a concrete semantics
when A is “executed” by a micro-processor.

A corresponds to the clock error and hardware frequency
[De Wulf, Doyen, Raskin 2004]
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A Non-Robust Timed System in the Imprecise Semantics
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A Non-Robust Timed System in the Imprecise Semantics

- frame 2 - frame 4 - frame 6
|

|

|

: . - 2 . " .

!

!

|

|

0 2 4 6 8 10

t

u]
)
1l
n
it
S
pe)
i)

Bouyer, Larsen, Markey, Sankur, Thrane () Timed Automata Made Implementable



A Non-Robust Timed System in the Imprecise Semantics
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A Non-Robust Timed System in the Imprecise Semantics
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A Non-Robust Timed System in the Imprecise Semantics
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A Non-Robust Timed System in the Imprecise Semantics

frame 6

Bouyer, Larsen, Markey, Sankur, Thrane () Timed Automata Made Implementable



Background: Imprecise semantics

“Imprecise semantics can add undesired behaviour to timed automata”.
[Puri 1998, DDMR 2004]

Robustness checking
Given TA A and property ¢, decide if 3A > 0, Imprecises (A) E ¢. J

Decidable for:
- Safety, [Puri 1998], [De Wulf, Doyen, Markey, Raskin 2004], [Jaubert, Reynier 2011]

- LTL, a fragment of MTL, [Bouyer, Markey, Reynier 2006 - 2008].
- Untimed language equivalence L(.A) = L(Imprecise (A)) [S. 2011]
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Background: Sampled Semantics

“Sampled semantics can remove desired behaviour from timed

automata” . [Cassez, Henzinger, Raskin 02]
Samplability checking
Given TA A and property ¢, decide if 3n € N, Sampled: (A) E ¢. J

Decidable for:

- Reachability, [Kréal, Peldnek 2005]

- Untimed language equivalence, [Abdulla, Kr&al, Yi 2010]
Undecidable for:

- Safety, [Cassez, Henzinger, Raskin 2002]
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Results

In this work: Instead of robustness/samplability checking
transform any timed automaton into an “equivalent” one that is
robust/samplable.
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Results

Preliminary definition: Two states are e-bisimilar if there is a bisimulation
in which delays differ by at most e. — denoted by ~.
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Results

Theorem (Robustness construction)

Given any timed automaton A, any € > 0, there exists A’ such that
o A~o A,
o A’ ~ Imprecisep (A’) for all 0 < A < O(e),
o A’ ~, Sampled: (A) for any 0 < L < O(e).

> We get A ~¢ Imprecise, (A’) and A ~¢ Sampled (A).

Practical meaning: Model-check A, then implement A’
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Results

Theorem (Robustness construction)

Given any timed automaton A, any € > 0, there exists A’ such that
o A~o A,
o A’ ~ Imprecisep (A’) for all 0 < A < O(e),
o A"~ Sampled: (A) for any 0 < L < O(e).

> We get A ~¢ Imprecise, (A’) and A ~¢ Sampled (A).

Practical meaning: Model-check A, then implement A’.

Next: Simple Case: Robustness construction for safety

o An~g A,
e A does not reach a location = neither does Imprecisep (A").
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Idea of the construction

Consider a timed automaton A with clocks x, y,
such that location ¢’ is not reachable:

A (o) i 4
@ @

Consider the reachable states in ¢:

y
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Idea of the construction

Consider a timed automaton A with clocks x, y,
such that location ¢’ is not reachable:

/E\% v
@ O

Consider the reachable states in ¢:

y
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Idea of the construction

Consider a timed automaton A with clocks x, y,
such that location ¢’ is not reachable:

\@ - @

Consider the reachable states in ¢:

y
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Idea of the construction

Consider a timed automaton A with clocks x, y,
such that location ¢’ is not reachable:

\@ - @

Consider the reachable states in ¢: ¢ reachable

kA

X
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Idea of the

Define A’ as follows:

Reachable states in

y

construction

Reach,
A

£:
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Idea of the construction
Define A’ as follows

(Reachy)a
Al

(o)

\\[J

Reachable states in ¢

¢’ not reachable in A/
<A
y

X
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Construction for Safety-Robustness

For a timed automaton A,
@ Compute the set of reachable states Reachy at each location /.

@ Replace each edge
10) ¢ N Reachy
Oo——-~_~ , O——©

The resulting automaton A’ satisfies
o A~ A,
o A does not reach /¢ = neither does Ay V0 < A < i

» For the bisimulation construction, one needs to split each location to
regions.
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Property Preservation

Back to bisimulation...
What does A ~. A, and A ~. Sampled:(A’) imply?

Preservation of untimed properties, but also more...

Proposition (Property preservation)

We consider a quantitative extension of CTL [Fahrenberg, Larsen, Thrane
2010].
e.g. EXE’5]T

» c-bisimulation preserves satisfaction values of the formulas, up to e.
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Property Preservation

Back to bisimulation...
What does A ~. A\ and A ~, Sampled:(A") imply?

Preservation of untimed properties, but also more...

Proposition (Property preservation)

We consider a quantitative extension of CTL [Fahrenberg, Larsen, Thrane
2010].

AN, \/}Qs/ | EXE,b]QS | AXLS,b](b | E(bUEf’b]g[)' | A¢U£f’b]¢/

» c-bisimulation preserves satisfaction values of the formulas, up to e.
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Conclusion

Conclusion

@ We obtain arbitrarily close approximations of any timed automaton in
implementation.

@ Two constructions: safety (simpler), bisimulation.

@ Design advice for robust safety:

“Write explicitly all implied invariants in clock constraints.”

Next

@ Alternative approach: shrink the clock constraints
[S., Bouyer, Markey 2011]

@ Robust controller synthesis

@ Probabilistic models for imprecisions
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