
TOPICS - Translation Of Programs Into Counter
Systems

User’s manual

Laboratoire Spécification et Vérification
CNRS UMR 8643
École Normale Supèrieure de Cachan
61, avenue de président Wilson
F-94245 CACHAN Cedex

EDF R&D
Département STEP
quai Watier
Chatou

Arnaud Sangnier

Contents

Contents 1

Introduction 2

1 Using TOPICS 2
1.1 Starting TOPICS . 2
1.2 Output of TOPICS . 3
1.3 How does TOPICS work . 4

2 Example 5

3 Syntax of the input files 7
3.1 Syntax of the programs . 9
3.2 Syntaxe pour les configurations initiales 12

References 14

1

Introduction

TOPICS is a tool dedicated to the verification of C-like programs. The partic-
ularity of this tool lies in the fact that it can deal with programs manipulating
dynamic data structures. In this first version, TOPICS can treat programs
working over singly linked lists, but this feature will be extended to more
complex data structures. The main feature of TOPICS is the translation
of C-like programs into a bisimilar counter system, where counter systems
correspond to finite automata extended with (unbounded) integer variables.
This translation allows to use tools which verifies counter systems in order
to check that the given program do not realize errors as memory violation,
memory leakage or out of bound error.

The translation implemented in TOPICS corresponds to the one presented
in [BFLS06]. Note that a similar translation has also been proposed in
[BBH+06]. The programs given in input of TOPICS are written in a syntaxic
fragment of the C programming language. These programs can manipu-
late integer variables, singly linked lists and arrays of integers and of lists.
Whereas there is no restriction on the size of the manipulating lists, the
arrays have to be of finite size. The user has also the possibility to give an
initial configuration to TOPICS, in which he will characterize the initial state
of the memory he wants the programs to begin with.

1 Using TOPICS

In this section, we explain how to use TOPICS.

1.1 Starting TOPICS

TOPICS is distributed a jar file for Java. It has been developed under java
1.4.2, but it should normally work with more recent version of java. Fur-
thermore it is recommended to use a version of java developed by Sun Mi-
crosystems. Note that TOPICS use the tools JFLEX [JFl] and CUP [Cup] to
parse the input files.

To run TOPICS, use either :

java -jar TOPICS.jar filename functionname confinitname

or

2

java -jar TOPICS.jar filename functionname

In this two case, filename is the name of the C file containing the program
and functionname is the name of the function belonging to the program
whose behavior will be translated into a counter system. As said previously,
the user has the possibility to give a file containing a description of the initial
configuration, this corresponds to the first case, whereas in the second case no
initial configuration is given. The syntax for the file containing the program
(filename) and for the file containing the initial configuration (confinitfile)
are given in section 3.

1.2 Output of TOPICS

TOPICS translates the behavior of a function belonging to a C-like program
into a counter system. The produced counter system is available in three
different formats :

1. in the dot format, so that a graphical representation of the counter
system can be obtain using the tool GRAPHVIZ,

2. in the format of the tool FAST,

3. in the format of the tool ASPIC.

GRAPHVIZ is a tool which , from a structural description of a graph, gener-
ates a graphical representation of this graph. This graphical representation
can then be exported in different formats. This tool is freely available at the
following URL : http://www.graphviz.org/.

FASTis a tool which automatically verifies counter systems computing their
exact reachability set from an initial configuration. Note that since this exact
computation cannot always be performed, it might be the case that the algo-
rithm implemented in FASTdoes not terminate, however this tool has proved
to be really efficient on many practical case studies. FASTis freely available
at the following URL : http://www.lsv.ens-cachan.fr/fast/. The main
characteristic of FASTare described in [BFLP03, BLP06, BFLP08].

ASPICis a tool which also verifies counter systems. This tool uses the method
of abstract interpretation [CC77] and computes an overapproximation of the
reachability set of a given counter system. The algorithm which is imple-
mented in this tool manipulates linear relations and is described in [GH06].

3

The benefif of this tool is that its computation always terminates, in oppo-
site to the one of FAST, but it can be the case that this too cannot solve a
reachability problem because of the realized overapproximations and it re-
turns then the answer “I don’t know”. This tool is freely available at the
following URL : http://laure.gonnord.org/pro/aspic/aspic.html

1.3 How does TOPICS work

Given a C-like program, the name of a function of the program and an
optional initial configuration, TOPICS realizes the following operations :

1. It builds the Control Flow Graph of the function given in input. TOPICS pro-
duces a representation in the dot format of this control flow graph, so
that the user can visualize it.

2. From the initial configuration, TOPICS builds an initial configuration
for the produced counter system.

3. Using the algorithm of translation presented in [BFLS06], TOPICS builds
a counter system, which is bisimilar to the function given in input. It
produces a file in the dot format so that the counter system can be
visualized. It also produces files in the format of FAST and ASPIC.
The produced counter system might have four special control states,
one for each possible errors :

(a) the control state SegF which is reachable if the initialized program
realizes a memory violation,

(b) the control state MemL which is reachable if the inititalized pro-
gram realized a memory leakage,

(c) the control state OOBound which is reachable if the inititalized
program realized an overflow of indexes when working over an
array,

(d) the control state Undef which is reachable if the initialized pro-
gram tests during its execution the value of a variable which has
not been previously defined.

The file produced into the format of FAST contains then a property to check
which is whether one of this state is reachable or not. TOPICS can generate
more than one file for ASPIC, it generates one file for each possible error. In
fact, the syntax of ASPIC only allows to give an initial configuration and

4

a bad configuration, for which ASPIC check if it is reachable or not, that
is why for each of the special control state present in the generated counter
system, TOPICS produces a file to the format of ASPIC.

Note that when a user wants to verify a given program with TOPICS, the
verification process is done in two steps. The first step consists in giving the
program to TOPICS which translates it into a counter system. After this
step, some properties might already been established. For instance, if the
control state SegF is not present in the counter system, then it is sure that
the program do not realize any memory violation and there is no need to
analyze the counter system with FAST or ASPIC to test this. In the other
case, if one the special control state is present in the counter system, then
the user should use FAST or ASPIC to check if this control state is reachable
or not.

2 Example

In this section, we present a simple example of programs to show how
TOPICS can be used. The figure 1 gives an example of a program written in
the syntax of TOPICS. Assume this program is store in the file mainReverse.c.
In this program there are two functions, the function reverse and the func-
tion main which calls the function reverse. Note that in the body of the
function main we use the special symbol any to do a non deterministic loop
in order to build single linked lists of any size. The user can then choose to
analyze one of these two functions.

For the analysis of the function main there is no need to give an initial
configuration, so the user can executing TOPICS doing :

java -jar TOPICS.jar mainReverse.c main

This will produce the following files :

• main_automaton.dot which contains the control flow graph of the func-
tion main, this control flow graph is given by the figure 2,

• mainCA.dot which contains the produced counter system in the dot

format,

• main.fst which contains the produced counter system in format of
FAST,

5

typedef struct List {

struct List *next;

}* Liste;

void main(){

Liste y,z;

y=NULL;

while(any){

z=malloc(sizeof(struct List));

z->next=y;

y=z;

}

y=reverse(z);

}

Liste reverse(Liste x){

Liste u,v;

u=NULL;

while(!(x==NULL)){

v=x;

x=x->next;

v->next=u;

u=v;

}

return u;

}

Figure 1: A C program written in the syntax of TOPICS

6

• main_Undef_aspic.fst which contains the produced counter system
in format of ASPIC to test if the Undef state is reachable,

• main_MemL_aspic.fst which contains the produced counter system in
format of ASPIC to test if the MemL state is reachable.

Hence TOPICStells us that the function main does not realize any memory
violation or out of bound error, but the program might realizes a memory
leakage or an error due to a test of an undefined variable. in fact, if the
loop in the main function is never done, then no list is created, and when it
calls the function reverse it calls it on an undefined list which realizes an
error. To test this, the user has to use the tools FAST or ASPIC with the
corresponding files.

The user has also the possibility to analyze the reverse function with an
initial configuration. For instance, it could use the following initial configu-
ration which characterizes any list of even length :

counter k;

abstract node n[k];

abstract node n2[k];

pointer x->n;

succ n=n2;

succ n2=NULL;

In fact, with this description, we say that the initial configuration contains
two abstract nodes which corresponds to k real nodes, and that the variable
x points to the first node. So the entire list has length 2k where k is a strictly
positive integer. If this configuration is described in a file conf.init, then
the use launch TOPICS with the command :

java -jar TOPICS.jar mainReverse.c reverse conf.init

3 Syntax of the input files

As we have said TOPICS takes two files in input :

1. a program written in a syntaxic fragment of the C programming lan-
guage, and,

2. a file which contains a description of the initial configuration.

We now give the syntax that should satisfy these two files.

7

0

1

2

True? y := NULL

3

True? SKIP

4

True? SKIP

7

True? x := z

5

True? z := malloc

6

True? z->next := y

True? y := z

8

True? u := NULL

9

NOT (NOT ((x = NULL)))? SKIP

10

NOT ((x = NULL))? SKIP

True? y := u

11

True? v := x

12

True? x := x->next

13

True? v->next := u

True? u := v

Figure 2: Control flow graph of the function main of the program of the
figure 1

8

3.1 Syntax of the programs

In the file corresponding to the program to be verified, the user can declare
some types of data structures, some global variables and can give the the
definition of functions. The syntax of the programs which can be analyzed
with TOPICS is given by the figure 3 to 5.

program ::=
{

declaration
}

∗

declaration ::= type-declaration
| var-declaration
| function-declaration
| function-definition

type-declaration ::= typedef type-name * identifier ;

| typedef struct identifier {
{

struct-field
}

∗

} * identifier ;

struct-field ::= type-name identifier ;

| struct identifier * identifier ;

type-name ::= int
| identifier

var-declaration ::= type-name identifier
{

, identifier
}

∗

;

function-declaration ::= return-type identifier (
[

fpar
{

, fpar
}

∗
]

) ;

return-type ::= type-name
| void

fpar ::= type-name identifier

function-definition ::= return-type identifier (
[

fpar
{

, fpar
}

∗
]

) block

Figure 3: Declarations

Except the use of the special symbol any, this syntax corresponds to a re-
striction of the language C. As we have seen with the previous example, we
have introduced this symbol in order to allow the user to implement some
non-deterministic tests, which can be useful to give to TOPICS a program
which corresponds to an abstraction of a more complex program. In fact,
when this symbol is used inside a guard, this means that one does not know
whether the guard is satisfied or not, and TOPICS hence supposed it can be
true or false.

With this syntax, a user is able to declare some data structures more complex

9

block ::= { { statement } }

statement ::= var-declaration
| /* empty */ ;

| lvalue-expression = rvalue-expression ;

| identifier = malloc (malloc-expression) ;

| free (identifier) ;

|
[

lvalue-expression =
]

identifier (
[

term
{

, term
}

∗
]

) ;

| break ;

| continue ;

| goto label ;

| return
[

term
]

;

| if (boolean-expression) statement

| if (boolean-expression) statement else statement

| while (boolean-expression) statement

| label : statement
| block

Figure 4: Instructions

than single linked lists and can also define some recursive functions, anyway
TOPICS check if the input program satisfied some conditions such as :

• The program has at most three different types of data structures :

1. A type to define single linked lists in which each cell only contains
the pointer to the successor cell.

2. A type to declare arrays of integers.

3. A type to declare arrays of single linked lists.

• The defined functions should not be recursive.

Whenever one of these conditions is not satisfied, TOPICS detects it and
returns an error message to the user. It will be also the case when the given
program will not respect the input syntax or some classical rules of program-
ming, such as the use of undeclared variables. Note that TOPICS does not
verify is the program is well-typed, however an user could check this using a
C compiler.

10

malloc-expression ::= size-expression-point
| integer * size-expression-tab
| size-expression-tab * integer

size-expression-point ::= sizeof (struct identifier)

size-expression-tab ::= sizeof (type-name)

index-expression ::= integer
| identifier

lvalue-expression ::= identifier
| identifier [index-expression]

| identifier -> identifier
term ::= lvalue-expression

| integer
| NULL

rvalue-expression ::= term
| term + term
| term - term
| any

boolean-expression ::= term == term
| term != term
| term <= term
| term >= term
| term < term
| term > term
| any

| ! boolean-expression
| boolean-expression && boolean-expression
| boolean-expression || boolean-expression

| (boolean-expression)

Figure 5: Expressions

11

3.2 Syntax for the initial configurations

The syntax of the files containing the description of the initial configuration
is given by the figure 6. With this language, the user can give the initial val-
ues for the pointer variables, the arrays and the integers of the programs. It
can also use counters whose values is implicitly strictly positive. To describe
the initial state of the memory heap, the user declare some nodes or some
abstract nodes which are labeled by counters. These counters tell how many
nodes are represented in the list segment characterized by the abstract node.
Hence when an abstract node is labeled with a counter k, then this node
corresponds to a succession of k nodes. The user can also define constraints
over these counters saying that the values of two counters are equal or that
the value of a counter is strictly greater than an integer. For what concerned
the use of arrays, the user can tell which is the size of an array and define the
values of the different elements contained in the array. In the case of array
of integers, the user can also use counters if he wants to specify that the
value of an elements is any strictly positive value. With the same method,
the user can associate a counter to an integer variable. Using these counters,
the user can verify programs with parameters.

We have seen with the previous example, how this syntax allows to describe
some arithmetic properties over the length of single linked lists. We now
present an other example. To describe an initial configuration in which an
array t is of size 3 and each of its element is any integer strictly greater than
its position in the array, the user can use the following description :

counter k0;

counter k1;

counter k2;

int tab size t=3;

value t[0]=k0;

value t[1]=k1;

value t[2]=k2;

constraint k0>0;

constraint k1>1;

constraint k2>2;

If the initial configuration file uses variables which are not variables of the
given program, TOPICS will return an error message. This will also happen
if the graph given to describe an initial configuration of the memory heap
contains some nodes which are not reachable by pointer variables or if indexes
used in an array are greater than the size of the array.

12

configuration ::=
{

description
}

∗

description ::= counter-declaration
| node-delaration
| abstract-node-declaration
| succ-declaration
| pointer-declaration
| tab-int-declaration
| tab-list-declaration
| tab-declaration
| value-declaration
| constraint-declaration

counter-declaration ::= counter identifier ;

node-delaration ::= node identifier ;

abstract-node-declaration ::= abstract node identifier [identifier] ;

succ-declaration ::= succ identifier = identifier ;

| succ identifier = NULL ;

pointer-declaration ::= pointer identifier -> identifier ;

| pointer identifier -> NULL ;

tab-int-declaration ::= int tab size identifier = integer ;

tab-list-declaration ::= list tab size identifier = integer ;

tab-declaration ::= tab identifier = identifier ;

value-declaration ::= value identifier [integer] = identifier ;

| value identifier [integer] = integer ;

| value identifier [integer] = NULL ;

| value identifier = identifier ;

| value identifier = integer ;

constraint-declaration ::= constraint identifier > integer ;

| constraint identifier = identifier ;

Figure 6: Syntax of TOPICSfor the initial configuration

13

References

[BBH+06] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif,
Pierre Moro, and Tomáš Vojnar. Programs with lists are counter
automata. In Proceedings of the 18th International Conference on
Computer Aided Verification (CAV’06), volume 4144 of Lecture
Notes in Computer Science, pages 517–531. Springer, 2006.

[BFLP03] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure
Petrucci. Fast: Fast acceleration of symbolic transition systems.
In Proceedings of the 15th International Conference on Computer
Aided Verification (CAV’03), volume 2725 of Lecture Notes in
Computer Science, pages 118–121. Springer, 2003.

[BFLP08] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure
Petrucci. FAST: Acceleration from theory to practice. Interna-
tional Journal on Software Tools for Technology Transfer, 2008.
To appear.

[BFLS06] Sébastien Bardin, Alain Finkel, Étienne Lozes, and Arnaud Sang-
nier. From pointer systems to counter systems using shape anal-
ysis. In 5th International Workshop on Automated Verification of
Infinite-State Systems (AVIS’06), Vienna, Austria, 2006.

[BLP06] Sébastien Bardin, Jérôme Leroux, and Gérald Point. FAST ex-
tended release. In Proceedings of the 18th International Confer-
ence on Computer Aided Verification (CAV’06), volume 4144 of
Lecture Notes in Computer Science, pages 63–66, 2006.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles Of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

[Cup] CUP - LALR Parser Generator in Java.
http://www2.cs.tum.edu/projects/cup/.

[GH06] Laure Gonnord and Nicolas Halbwachs. Combining widening and
acceleration in linear relation analysis. In 13th Iternational Con-
ference Symposium Static Analysis, volume 4134 of Lecture Notes
in Computer Science, pages 144–160. Springer, 2006.

14

[JFl] JFlex - The Fast Scanner Generator for Java. http://jflex.de/.

15

