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Description of the training period

For this training period, the title of the subject is :

Toward verification of Time Coloured Petri Net

The description of the subject is :

The aim of this work is to explore frameworks for time coloured Petri nets. The approach
is to consider a model which subsumes both coloured Petri nets and time Petri nets, in
which intervals on transitions determine the time at which the respective transitions may
fire.
The starting point will be a survey of existing works in the field, including proposals for
time Petri nets and their numerous variants, coloured Petri nets and timed automata. The
associated analysis and verification methods for each of the above frameworks will be
considered.

A definition of coloured Petri nets will then be given in which the semantics will take
the form of timed transition systems. It will be considered how time coloured Petri nets
can be transformed syntactically into time Petri nets and/or (networks of) timed automata.
The integration of the proposed syntactic transformations into an existing toolset will be
considered and implemented.

It is envisioned that the above translations will work with the notion of coloured state.
Based on the experiences of these translations, possible solutions for the use of symbolic
states, as in the use of symbolic reachability graph method for coloured Petri nets, can be
considered in the context of time Petri nets.
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Abstract

We introduce Transitions Time Well-formed Nets (TTWN), a formalism derived from
coloured Petri nets and Time Petri Nets, which can be used for modelling real-time sys-
tems. TTWN are Well-formed Nets to which time constraints have been added in the
form of rational intervals associated with its transitions. These intervals give the earliest
and the latest time during which a transition can be fired once it has been enabled by a
marking. It is possible to build a timed automaton whose behavior is equivalent to the
behavior of the TTWN, and which can be used subsequently in the automatic verification
of the real-time system. We consider two such methods for the construction of such a
timed automaton. The implementation of one of the methods for the restricted class of
Time Petri Nets will be presented, and compared with the tool Romeo, which computes
the state class timed automaton of a Time Petri Net. Finally, we discuss the difficulties
raised by the adaptation of the theory of the symbolic reachability graph developed for
Well-formed Nets to TTWNs.
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Introduction

In order to verify the correct behavior of systems it is interesting to be able to modelize
these systems and to test their properties, because if the model is close enough of the
real system, the properties of the model are also valid for the system. In this direction,
automata and Petri Nets have appeared to be formalisms that could represent properties of
a system and on which verification methods are possible. However the properties verified
on these models do not take account of real-time issues. Since, for many systems and in
particular for real-time systems, time is an important factor, these formalisms have been
extended to deal with time parameters. In fact, automata have been extended to timed
automata, in which the time constraints are represented with the help of real-valued clocks
and constraints over these clocks. As for the Petri Nets, different formalims have been
proposed to add real-time to them. One of the methods consists in associating rational
intervals to the transitions. Furthermore in order to model larger systems which exhibit
symmetries, Petri Nets have been extended to coloured Petri Nets where the black tokens
were replaced by elements of predefined sets. In this report, we will concern ourself with
adding time constraints to a peculiar type of coloured Petri Net called Well-formed Nets,
and then we will study methods to verify properties of systems defined with this new
formalism.
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Chapter 1

State of the art

1.1 Introduction
This chapter is a copy of the bibliographic report I wrote at the beginning of the training
period. It gives a survey of different modelling techniques that permit the representation
of real-time systems, in particular timed automata and Transitions Time Petri Net.

1.2 Timed automata
In this section, we will introduce the concept of timed automata. We will first present them
in an intuitive way, then we will give the syntax and the semantics of timed automata.
Different methods to verify their behavior will also be studied, and finally we will present
some extensions of timed automata.

1.2.1 Preliminaries: Transition systems and timed transition systems
In order to understand well the origin of timed automata, it helps to have in mind the def-
inition of transition system and of their extended version with reals representing elapsed
time ([1], [7]).
A transition system is a state-transition graph, where the labels of the transitions represent
events. A transition system S can be represented by a tuple 〈Q,QO,Σ,→〉 where :

• Q is the set of the states;

• Q0 ⊆ Q are the initial states;

• Σ is the set of the events (or labels);

• →⊆ Q×Σ×Q is the transition relation (i.e. the set of transitions).

When (q,a,q′) ∈→, it is denoted q a→ q′ and it means that when the state of the system
is q, it can chenge to q′ on event a. The Figure 1.1 gives an example of a transition
system with Q = {q1,q2}, Q0 = {q1}, Σ = {a,b} and→= {(q1,a,q2),(q2,b,q1)}. The
transition system is drawn as a graph, where nodes represent states, and arcs represent
transitions. The initial state, q1, is labelled with an arc with no source.
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Figure 1.1: Example of a transition system

In order to be able to define parts of a system separately, it is interesting to define the
product of transistion systems. We consider two transition systems S1 = 〈Q1,Q0

1,Σ1,→1〉
and S2 = 〈Q2,Q0

2,Σ2,→2〉. To make the product, it is necessary to define the set of events
Σ that is accepted by the product. We also define a partial function f : ((Σ1∪{•})× (Σ2∪
{•})) ↪→ Σ. This function is used to represent the link between the events of S1 end the
events of S2 and it is called synchronisation function.
Then the product of the transition systems, denoted (S1 || S2) f ,Σ is a transition system
S = 〈Q,QO,Σ,→〉 with :

• Q = Q1×Q2;

• Q0 = Q0
1×Q0

2;

• → is defined by :

∀(q,q′) ∈ Q1 ×Q2 with q = (q1,q2) and q′ = (q′1,q′2) and ∀c ∈ Σ, q c→ q′ (i.e.
(q,c,q′) ∈→) if and only if there exists (a,b) ∈ (Q1∪{•})× (Q2∪{•}) such that :

(i) f (a,b) = c;
and (ii) If a = • then q1 = q′1;
and (iii) If b = • then q2 = q′2;

and (iv) If a ∈ Σ1 then q1
a→ q′1;

and (v) If b ∈ Σ2 then q2
b→ q′2.

In a more practical way, we can define a product of two transitions systems S1 = 〈Q1,Q0
1,

Σ1,→1〉 and S2 = 〈Q2,Q0
2,Σ2,→2〉 taking Σ = Σ1∪Σ2, and the synchronisation function

f : ((Σ1∪{•})× (Σ2∪{•})) ↪→ (Σ1∪Σ2) defined by :

• ∀a ∈ Σ1∩Σ2, f (a,a) = a;
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Figure 1.2: Example of a simple product of transition systems

• ∀a ∈ Σ1 \Σ2, f (a,•) = a;

• ∀b ∈ Σ2 \Σ1, f (•,b) = b.

We will denote this simple product (S1 || S2). Note that this product makes sense in
particular when Σ1∩Σ2 6= /0. The Figure 1.2 gives an example of such a product.
It has been shown that transition systems are useful to represent the behavior of a system,
but they cannot give quantitative timing information for the behavior of real-time systems,
since they only give information linked to a finite set of events. In order to represent
systems with time parameters, transition systems have been extended to timed transistion
systems. Timed transition systems are transition systems where the labels of transitions
can belong to a finite set of events Σ or can be real numbers. It means that for a timed
transition system S = 〈Q,QO,Σ,→〉, the transition relation→⊆ Q× (Σ∪R≥0)×Q. The
transitions that are labeled with an element of Σ are called discrete transitions and the
transitions that are labeled with a real positive number are called continuous transitions.
The product of timed transition systems can be defined in a similar way to the case of
untimed transition systems.

1.2.2 Syntax and semantics of timed automata
Informal introduction to timed automata

A timed automaton can be seen like a transition system to which a finite set of clocks
are added [1]. The states of the system are then called locations and the transitions are
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called switches. The switches are supposed to be instantaneous and time elapses in the
locations. For each location it is possible to define an invariant that describes the values
of the different clocks that are admitted in this location. For each switch it is possible to
define a guard, which is a necessary condition on the values of the clocks for executing
the switches, and it is also possible to define a subset of the clocks which describes the
clocks that are reset by the execution of the switches.

For instance, we may want to model the behavior of a timer for cooking eggs. When
somebody pushes the button of this timer, after 5 time units (5 minutes for instance) the
bell of the timer rings for a total duration of 1 time unit. When the button has been pushed,
it cannot be pushed again before the bell finished ringing. This system can be modelled
by the timed automaton with one clock represented on the Figure 1.3. Initially the timer
is in location l1, and it can stay in this location without any time constraint. If someone
pushes the button, it goes to the location l2 and the clock x is reset, the system has to stay
in the location l2 5 time units and not more; then it goes to location l3 where it has to stay
only 1 time unit, and finally it returns to its initial state.

Figure 1.3: Example of a timed automaton

Clock constraints and clock interpretations

As we have seen, it is possible to define guards on switches and invariants on locations
that describe possible values for the different clocks of the timed automaton. The guards
and the invariants are represented by so-called clock constraints [1]. We consider X a
set of clocks. The set Φ(X) of the clock constraints over X is defined by the following
grammar :

ϕ := x≤ c|x≥ c|x < c|x > c|ϕ1∧ϕ2
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where x ∈ X , c ∈Q≥0, ϕ ∈Φ(X) and ϕ1, ϕ2 ∈Φ(X).

In order to describe the values of the different clocks, clock interpretations are used. A
clock interpretation v for a set of clocks X assigns to each clock a real value. Formally,
a clock interpretation v is a total function X 7→ R≥0. A clock interpretation v is said to
satisfy a clock constraint ϕ over a set of clocks X if and only if ϕ is true for the clock
values given by v. We also need two notations on the clock interpretations. Let consider v
a clock interpretation for the set of clocks X , then :

• ∀δ ∈ R≥0, v + δ is the clock interpretation u such that ∀x ∈ X ,u(x) = v(x)+ δ (rep-
resenting the passage of δ time units);

• ∀Y ⊆ X , v[Y := 0] defines the clock interpretation u such that ∀x ∈ Y , u(x) = 0 and
∀x ∈ X \Y , u(x) = v(x) (this is used to reset some clocks).

We will denote V (X) the set of the clock interpretations and we define
_
0 the clock inter-

pretation over X such that ∀x ∈ X ,
_
0(x) = 0.

Syntax of timed automata

We will now give the syntax of the timed automata [1]. A timed automaton A is a tuple
〈L,L0,Σ,X , I,E〉 where :

• L is a finite set of locations;

• L0 ⊆ L is a set of the initial locations;

• Σ is a finite set of labels;

• X is a finite set of clocks;

• I is a total function L 7→ Φ(X) that associates to each location an invariant (i.e. a
clock constraint);

• E ⊆ L×Σ×Φ(X)× 2X × L represents the set of the switches. If we consider a
switch t = (s,a,ϕ,λ,s′) ∈ E, it represents a switch from s to s′ on the label (or
event) a; ϕ is the clock constraint (or guard) associated to this switch and λ ⊆ X
gives the set of clocks that have to be reset when the switch is executed.

Semantics of timed automata

The semantics of such a timed automaton A = 〈L,L0,Σ,X , I,E〉 can be described [1] with
a timed transition system SA = 〈QA,Q0

A,Σ,→〉. First, we define QA by QA = {(s,v) ∈
L×V (X)|v |= I(s)}. A state of SA is a pair (s,v) where s is a location of A and v is a clock
interpretation such that v satisfies the invariant I(s) of s. The set of initial states of SA is
the set Q0

A = {(s,
_
0)|s ∈ L0and

_
0 |= I(s)}, which means that (s,v) is a initial state of SA

if and only if s is an initial location of A, ∀x ∈ X ,v(x) = 0 and the clock interpretation v
satisfies I(s). The transition relation→⊆ QA× (Σ∪R≥0)×QA is defined by:
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• for the continuous transition :
∀δ ∈ R≥0,(s,v)

δ→ (s,v + δ) if ∀δ′ ∈ [0,δ],v + δ′ satisfies I(s);

• for the discrete transition :
for all states (s,v) of SA and for all switches (s,a,ϕ,λ,s′) such that v satisfies ϕ,
there is the transition (s,v)

a→ (s′,v[λ := 0]).

For example, some sample transitions of the timed transition system associated to the
timed automaton of the Figure 1.3 are:

(l1,0)
1.5→ (l1,1.5)

Push→ (l2,0)
3.2→ (l2,3.2)

1.8→ (l2,5)
Ring→ (l3,5)

1→ (l3,6)
Stop→ (l1,6)

where the value of the clock x is written as the second component of each state, instead
of the associated clock interpretation. For three states q,q′,q′′ of SA such that q δ→ q′ and
q′ ε→ q′′ with δ,ε ∈ R, we also have q ε+δ→ q′′ (time-additivity property).
We also remark that since the labels on continuous transitions are real numbers, as are
the clock values, the timed transition system SA associated with a timed automaton A has
infinitely many states and infinitely many symbols.

Figure 1.4: Example of a simple product of two timed automata

Product of timed automata

Such as for the transition systems, it appears to be useful to define a product on timed
automata [1], [7], that will allow to describe a global system with different timed au-
tomata. Our presentation is based on [7]. To build this product, we consider two timed
automata A1 = 〈L1,L0

1,Σ1,X1, I1,E1〉 and A2 = 〈L2,L0
2,Σ2,X2, I2,E2〉, a set of events Σ
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and a synchronisation function f : ((Σ1∪{•})× (Σ2∪{•})) ↪→ Σ. We suppose that the
two sets of clocks X1 and X2 are disjoint. Then the product of the two timed automata
A1 and A2 taking account of Σ and f and denoted (A1 || A2) f ,Σ is a timed automaton
A = 〈L1×L2,L0

1×L0
2,Σ,X1∪X2, I,E〉 where I is defined by :

∀(s1,s2) ∈ L1×L2, I(s1,s2) = I1(s1)∧ I2(s2)

and E is defined by :

(i) ∀c ∈ Σ such that there exists (a,b) ∈ Σ1×Σ2 that verifies f (a,b) = c then :
∀(s1,a,ϕ1,λ1,s′1) ∈ E1 and ∀(s2,b,ϕ2,λ2,s′2) ∈ E2,
((s1,s2),c,ϕ1∧ϕ2,λ1∪λ2,(s′1,s′2)) ∈ E;

(ii) ∀c ∈ Σ such that there exists a ∈ Σ1 that verifies f (a,•) = c then :
∀(s1,a,ϕ1,λ1,s′1) ∈ E1 and ∀s2 ∈ L2,
((s1,s2),c,ϕ1,λ1,(s′1,s2)) ∈ E;

(iii) ∀c ∈ Σ such that there exists b ∈ Σ2 that verifies f (•,b) = c then :
∀(s2,b,ϕ2,λ2,s′2) ∈ E2 and ∀s1 ∈ L1,
((s1,s2),c,ϕ2,λ2,(s1,s′2)) ∈ E.

As for the transition systems, we can make a simple product taking Σ = Σ1∪Σ2 and the
same synchronisation function f as the one given for the simple product of two transition
systems. We will denote this simple product (A1 || A2). Figure 1.4 gives an example
of such a product. We remark that for a set of labels Σ and a synchronisation function
S(A1||A2) f ,Σ = (SA1 || SA2) f ,Σ.

1.2.3 Reachability analysis of timed automata
Presentation of the problem

In this section, we will study methods used to solve the so-called reachability problem. In
fact, to ensure safety properties on the system, it is interesting to know if the system can
be in some states that do not verify a property. A location s′ of a timed automaton is said to
be reachable from a state q if there exists a run in the associated timed transitions system
SA which begins in q and which leads to q′ = (s′,v′) for some clock interpretations v′. A
run r of a timed transition system SA associated to a timed automaton A = 〈L,L0,Σ,X , I,E〉
is an infinite sequence of states and of transitions, such that :

r = q0
l0→ q1

l1→ q2...qi
li→ qi+1...

with ∀i ∈ N, li ∈ Σ∪R≥0 and qi ∈ QA.

We will denote RA(q) the set of the runs of SA (also called runs of A by extension)
starting at q ∈QA. The reachability problem consists in finding the states q′ of the system
reachable from a state q. We denote ReachA(q) the set of the states of A reachable from q
and so we have :

ReachA(q) = {q′ ∈ QA|∃r = q0
l0→ q1

l1→ q2... ∈ RA(q),∃i ∈ N,qi = q′}
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The set of reachable states of A is deoted a ReachA =
S

q∈Q0
A

ReachA(q). A location l of A
is reachable if there exists a state in ReachA with location l.
As we have seen before, the timed transition system SA associated to a timed automaton
A has infinitely many states and infinitely many symbols and therefore it is not possible
to compute the reachable states directly on this timed transition sytem.

Time abstract transition systems and stable quotients

To solve the problem of the inifinite numbers of states and symbols of a timed transition
system SA associated with a timed automaton A, the concept of time-abstract transition
system has been introduced [1]. The time abstract transition system associated with a
timed automaton A and denoted UA is a transition system 〈Q,Q0,Σ,⇒〉 where :

• Q = QA;

• Q0 = Q0
A

• Σ is the set of labels of A;

• the transition relation⇒ is defined by :

q a⇒ q′′ with (q,a,q′′) ∈ Q×Σ×Q if, and only if,∃q′ ∈ Q and δ ∈ R≥0 such that
q δ→ q′ a→ q′′ exists in SA.

Then UA has a finite number of symbols, but the number of states still be infinite because
it the same as SA.
To solve this problem, a solution is to regroup the states into different equivalence classes
and to do that an equivalence relation on QA can be defined. If this relation is stable, then
it can be used to solve the reachability problem. An equivalence relation∼ on QA is stable
if and only if, if q ∼ u and q a⇒ q′ with q,q′,u ∈ QA and a ∈ Σ, then ∃u′ ∈ QA such that
u a⇒ u′ and u′ ∼ q′. A stable equivalence can also be called a bisimulation of the time
abstract transition system. For a stable equivalence relation ∼, we can build a transition
system, denoted [UA]∼ and called stable quotient of UA according to the stable partition
∼, defined by :

• the states are the equivalent classes defined by ∼;

• the initial states are the equivalence classes that contain an initial state of UA;

• the set of labels is Σ (the set of labels of A);

• the transition relation→ is defined by :

π a→ π′ belongs to [UA]∼ if ∃q ∈ π and q′ ∈ π′ such that q a⇒ q′ belongs to UA.

To solve the reachability problem for a set of locations LF ⊆ L, which means determining
if the locations in LF are reachable from the initial states, a sufficient condition is that the
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considered equivalence relation∼ is stable but also that it is LF -sensitive. An equivalence
relation ∼ is said to be LF -sensitive if when (s,v) ∼ (s′,v′), s,s′ ∈ LF or s,s′ /∈ LF . The
LF -sensibility ensures that target locations and non-target locations will not be regrouped
in a same equivalence class.
This leads to a proposition on the stable quotient graph according to a stable LF -sensitive
partition.

Proposition ([1]) Let A be a timed-automaton, ∼ be an equivalence relation over QA,
and LF be a set of locations of A such that ∼ is stable and LF -sensitive. Then a location
in LF is reachable if and only if there exists an equivalence class π of ∼ such that π is
reachable in the quotient [UA]∼ and π contains a state whose location is in LF .

This proposition has the consequence that to solve the reachability problem, if there is
an equivalence relation∼ which is stable and LF -sensitive (and which has a finite number
of equivalence classes), the computation of the reachability can be done on the corre-
sponding quotient graph.

Remark In the next sections, we assume that the constants that appear in the clock con-
straints of the timed automata are defined with respect to non-negative integer values.
This can be done, because with a multiplication on all the elements of a finite set in Q, it
is possible to obtain a set in N.

Region equivalence and region automaton

In this part, we will define an equivalence relation, which is called region equivalence
[1]. This equivalence relation groups the states of QA that have the same location taking
account of the integer part and of the fractional part of the clocks’ values. The integer part
is used to know if a clock constraint is encountered for the clock considered (the constants
in the clock constraint are in fact integers) and the fractional part is used to know which
clocks will change first its integer part.
So, ∀δ ∈ R≥0, we define bδc the integer part of δ and f r(δ) the fractional part of δ such
that δ = [δ]+ f r(δ). We also define, ∀x ∈ X (the set of clocks of the timed automaton), cx
the largest integer that appears in the clock constraints featuring the clock x.

The equivalence relation on the clock interpretations, denoted u and called region equiv-
alence, is defined by :

∀v,v′ ∈V (X),vu v′ if and only if :

(i) ∀x ∈ X ,[v(x)] = [v′(x)] or (v(x)> cx and v′(x)> cx);

(ii) ∀x,y ∈ X such that v(x) ≤ cx and v(y) ≤ cy, f r(v(x)) ≤ f r(v(y)) ⇔ f r(v′(x)) ≤
f r(v′(y));

(iii) ∀x ∈ X such that v(x)≤ cx, f r(v(x)) = 0⇔ f r(v′(x)) = 0.

The equivalence classes of this equivalence relation are called clock regions.

16



Figure 1.5: Clock regions for two clocks x and y

Figure 1.5 gives an example of clocks region with two clocks x and y with cx = 2 and
cy = 1. In this figure, each open-line segment, corner point or open region is a clock re-
gion. For instance [(0,1)],[0< x = y< 1] and [0< x< y< 1] are clock regions.

Region equivalence u can be extended to the state space QA by the following definitions:

∀(s,v),(s′,v′) ∈ QA,(s,v)u (s′,v′)⇔ s = s′∧ vu v′.

Region equivalence so defined over QA is stable and furthermore is LF -sensitive for any
LF ⊆ L. Consequently, it is possible to work in the quotient graph [UA]u,called the re-
gion automaton R(A) , to solve the reachability problem. Since solving the reachability
problem for a timed automaton A and for a set of locations LF consists in computing the
(finite) region graph, it has been proven that this problem is decidable. It has also been
shown that this problem is PSPACE-complete.

Figure 1.6: Timed automaton A0 with one clock

The Figures 1.6 and 1.7 give an example of a timed automaton and its associated region
automaton.

Region-graph based algorithm

In the reachability problem, we want to find if a target location s (or a set of target lo-
cations) will be reached from the initial configuration of the system. There are two types
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Figure 1.7: Region automaton R(A0) associated with A0

of algorithm to solve this problem, the forward traversal algorithm and the backward
traversal algorithm. Our presentation is adapted from [25].
First we will consider, the forward traversal algorithm. We denote Qu the set of the states
of the quotient graph [UA]u, Q0

u the set of its initial states and→u its transition relation.
We define ∀i ∈ N :

F0 = Q0
u

Fi+1 = Fi∪Suc(Fi)

where Suc(Fi) = {π′ ∈ Qu|∃π ∈ Fi,∃a ∈ Σ,π a→u π′}.
Then a target location s is reachable if, and only if, there exists a state π of Qu such that
the location of π is s and π ∈Si≥0 Fi.

For the backward traversal algortihm, we define ∀i ∈ N :

B0 = {π ∈ Qu|loc(π) = s}

Bi+1 = Bi∪Pre(Bi)

where the function loc : Qu 7→ L gives for each equivalence class its associated location
and where Pre(Bi) = {π ∈ Qu|∃π′ ∈ Bi,∃a ∈ Σ,π a→u π′}.
The target location s is reachable if and only if (

S
i≥0 Bi)∩Q0

u 6= /0.

Analysis using representatives

In order to manipulate easily the region automaton [UA]u, a possibility is to use repre-
sentatives of the different equivalent classes [25]. The set of representatives is a finite set
D⊂QA such that ∀Π ∈Qu, π∩D 6= /0. The set of the representatives of a state π of [UA]u
is denoted rep(π) and is defined by rep(π) = π∩D. It is then possible to build a transition
system 〈D,D0,Σ,→〉 associated to D with :

• D0 ⊆ D is the set of representatives of the initial states of [UA]u;

• the transition relation→ is defined by :
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1. ∀d,d′ ∈ D,∀a ∈ Σ, if d a→ d′ then π a→ π′ where π is the equivalence class of
d and π′ is the equivalence class of d ′;

2. ∀π,π′ ∈ Qu,∀a ∈ Σ, if π a→ π′ then ∀d ∈ rep(π), ∃d′ ∈ rep(π′) such that d a→
d′.

The Figure 1.8 gives an example of a discretization of the clock region space in order to
obtain representatives of regions (where the black squares denote representatives).

Just as for the region automaton, to solve the reachability problem it is possible to use
forward or backward traversal algorithms on the transition sytem defined above.

Figure 1.8: Example of representatives of clocks regions

Analysis using time abstracting equivalence

In this section, we will see that it is sometimes possible to use an equivalence relation that
gives the coarsest partition of the states space QA [25].

A time-abstracting bisimulation over QA is a binary symmetric relation B ⊆ QA×QA
such that ∀(q1,q2) ∈ QA×QA,(q1,q2) ∈ B if :

1. ∀a ∈ σ, if ∃q′1 ∈ QA such that q1
a→ q′1, then ∃q′2 ∈ QA such that q2

a→ q′2 and
(q′1,q′2) ∈ B;

2. ∀δ ∈ R≥0, if ∃q′1 ∈ QA such that q1
δ→ q′1, then ∃δ′ ∈ R≥0 and ∃q′2 ∈ QA such that

q2
δ′→ q′2 and (q′1,q′2) ∈ B.

Note that the region equivalence is a time-abstracting bisimulation. The problem consists
in finding the largest time-abstracting bisimulation, which is called the time abstracting
equivalence; this largest bisimulation is the one that gives the coarsest partition. The time
abstracting equivalence is an equivalence relation over QA and we remark by definition
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that it is stable.

To find this coarsest partition, there exist algorithms based for instance on the compu-
tation of reachable states and on the testing of stability (see [25]).

Zone automata

Another method consists in reducing the number of states of the region automaton by
performing convex union of clocks region. A clock zone (see [1]) represents in fact such
an union. The set of clock zones can be defined by the following grammar Ψ(X) :

ψ := x< c|x≤ c|x≥ c|x> c|x− y< c|x− y≤ c|ψ1∧ψ2

where x and y represent clocks of X , c is an integer constant and ψ1 and ψ2 belongs to
Ψ(X). We will also denote ψ a clock zone defined by ψ.

The set of the clock zones generated by the grammar Ψ(X) is then a convex set of the
k-dimensional euclidian space (where k represents the number of clocks in X) which ver-
ifies the properties :

1. Each clock region is a clock zone ;

2. The intersection of two clock zones is a clock zone;

3. The clock constraints of a timed automaton are clock zones;

4. Let ψ1 and ψ2 be two clock zones: if the union ψ1∪ψ2 is convex, then it is a clock
zone.

For the analysis of reachability, the three following operations on clock zones are usefull :

1. Let ψ1 and ψ2 be two clock zones; then the intersection of these two zones is the
clock zone defined by ψ1∧ψ2;

2. For a clock zone ψ, we denote ψ ⇑ the set of clock interpetations v + δ with v ∈ ψ
and δ ∈ R≥0;
then ψ ⇑ is a clock zone;

3. Let λ be a subset of clocks (i.e. λ⊆ X) and ψ a clock zone, then ψ[λ := 0] is the set
of clock interpretations such that ∀v ∈ ψ, v[λ := 0];
then ψ[λ := 0] is a clock zone.

Then a zone is a pair (s,ψ) where s is a location of the timed automaton A = 〈L,L0,Σ,X , I,E〉
and ψ is a clock zone defined over the set of clocks X of A. For a switch e = (s,a,ϕ,λ,s′)
and a zone (s,ψ), succ(ψ,e) is the set of clock interpretations v′ such that there exists
v ∈ ψ and the state (s′,v′) (with s′ a location of A) can be reached from (s,v) by let-
ting time elapse and by executing e. Then succ(ψ,e) can be computed by the following
formula :

succ(ψ,e) = (((ψ∧ I(s)) ⇑)∧ I(s)∧ϕ)[λ := 0]
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Proposition ([1]) For a zone clock ψ and a switch e of a timed automaton A, succ(ψ,e) is
a clock zone.

For a timed automaton A = 〈L,L0,Σ,X , I,E〉, it is possible to build a so-called zone au-
tomaton Z(A), which is a transition system 〈Q,Q0,Σ,→〉 defined by :

• Q⊆ L×Ψ(X);

• Q0 = {(s,
_
0)|s ∈ L0};

• The relation transition→ is defined by :

for each switch e = (s,a,ϕ,λ,s′) of A and each clock zone ψ, there is a transition
(s,ψ)

a→ (s′,succ(ψ,e)).

Figure 1.9: The reachable zone automaton Z(A0) of A0

The Figure 1.9 gives the reachable zone automaton of the automaton A0 represented by
the Figure 1.6. We can notice that this zone automaton is smaller than the corresponding
region automaton R(A0) of Figure 1.7 since it has less vertices and as well less transitions,
but it still represents the behavior of A0. However, in some cases the zone automaton is
no smaller than the region graph.

Difference Bound Matrices : a data structure for timed automata

To represent a clock zone, it is possible to use a data structure called the Difference Bound
Matrix (see [1]) and which is in fact a matrix over the set D= (Z×{<,≤})∪{∞}. Each
clock zone ψ of Ψ(X) where X is a set of clocks can be represented by a (k +1)× (k +1)
matrix D whose elements are in D (where k is a number of clocks in X). We denote D(X)
the set of difference bound matrices on X . For all d ∈ Z×{<,≤} we will denote by (d)1
the projection of d on Z and by (d)2 the projection of d on {<,≤}. We index the set of
clocks X such that X = {x1,x2, ...,xk} and we define x0 = 0. A Difference Bound Matrix
D ∈ D(X) is defined by :

∀v ∈V (X), v belongs to the clock zone represented by D if and only if ∀i, j ∈ [|0,k|]

(i) If Di j ∈ Z×{<,≤} and (Di j)2 =< then xi− x j < (Di, j)1;

(ii) If Di j ∈ Z×{<,≤} and (Di j)2 =≤ then xi− x j ≤ (Di, j)1;

(iii) If Di j ∈ {∞} then xi− x j < ∞.
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For instance, the clock zone ψ = (0≤ x1 < 2)∧ (0< x2 < 1)∧ (x1−x2 ≥ 0) on the set of
clocks X = {x1,x2} can be represented by the difference bound matrix D :

D =




∞ (0,≤) (0,<))
(2,<) ∞ ∞
(1,<) (0,≤) ∞




We denote that the difference bound matrice D′ :

D′ =




(0,≤) (0,≤) (0,<))
(2,<) (0,≤) (2,<)
(1,<) (0,≤) (0,≤)




represents the same clock zone as D. In order to do the analysis of reachability directly on
the difference bound matrices, it is necessary to define a canonical form.The two following
operations on D are needed :

1. Addition over D defined by :

• ∀d ∈ D, d + ∞ = ∞;
• ∀d,e ∈ Z×{<,≤}, d + e = ((d)1 + (e)1,(d)2 ∧ (e)2) (with (< ∧ <) =< ,

(≤ ∧≤) =≤ and (< ∧ ≤) = (≤ ∧<) =<).

2. Comparaison over D defined by :

• ∀d ∈ D, d ≤ ∞;
• ∀d,e ∈ Z×{<,≤}, d < e⇔ (d)1 < (e)1 or ((d)1 = (e)1 and (d)2 < (e)2)

(with ”<” < ”≤”).

It is then possible to present definitions and properties over the difference bound matrices
:

1. A difference bound matrix D is satisfiable, if it represents a nonempty clock zone;

2. D is unsatisfiable⇔∃i1, ..., i j ∈ [|0,k|] such that (Di1i2 +Di2i3 + ...+Di ji1)< (0,≤);

3. D is canonical⇔∀i, j, l ∈ [|0,k|],Dil ≤ Di j + D jl;

4. If a difference bound matrix is satisfiable, it has an equivalent canonical difference
bound matrix;

5. Two canonical difference bound matrices D and D′ are equivalent if and only if
∀i, j ∈ [|0,k|],Di j = D′i j.

To realize the analysis of reachability with difference bound matrices it is then possible to
extend the operations on the clock zones (taking account that the clock constraints can be
represented as clock zones and consequently as difference bound matrices) to difference
bound matrices as follow :
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• Intersection Let D and D′ be two canonical difference bound matrices. The inter-
section D′′ of D and D′ is the difference bound matrix defined by ∀i, j∈ [|0,k|],D′′i j =

min(Di j,D′i j); then it is necessary to verify if D′′ is satisfiable, and in the positive
case to give its canonical form;

• Elapsing of the time D ⇑ is the matrix defined by ∀(i, j) ∈ [|0,k|]× [|1,k|],D ⇑i j=
Di j and ∀i ∈ [|0,k|],D ⇑i0= ∞ and then it is necessary to put D ⇑ in its canonical
form;

• Clock reset D[λ := 0] is the matrix D′ defined by :

(i) For xi ∈ λ, D′i0 = D′0i = (0,≤);
(ii) For xi,x j ∈ λ, D′i j = (0,≤);
(iii) For xi ∈ λ, x j /∈ λ, D′i j = D0 j and D′ji = D j0;
(iii) For the other cases, D′i j = Di j.

As for the other operations, the resulting matrix has to be made canonical.

For each of these operations, the difference bound matrix has to be transformed into its
canonical form, for which there exist algorithms. With these operations, it is possible to
extend the function Succ presented for the computation of the zone automata to the case
of the difference bound matrices.

Remark In this part we present the difference bound matrices as a data structure to rep-
resent the zones, but in fact in the literature, it appears that other data structures can be
used, for instance extensions of the BDDs (Binary Decision Diagrams).

Extensions of timed automata

In the literature, for instance in [25], it appears that the definition of timed automata and
in particular of the form of the clock constraints is not always the same as the one we gave
in this report and which corresponds to timed automata with diagonal-free constraints. A
diagonal constraint is a constraint of the form x−y< c. Using such constraints, as shown
in [5] does not increase the expressiveness of the model and furthermore complicates the
building of the clock regions. In our study we limit ourselves to the simplest model of
timed automata, which is why we also did not introduce updates of clocks on switches
of the form x := y which were also presented in [25] and in [5]. We will see in the
part dedicated to the transformation of a time Petri net into a timed automaton, that such
updates are not necessary in the context in which we want to work. Finally, in [6] it is
proven that the diagonal-free timed automata guarantee decidability of the reachability
problem.

23



1.3 Time Petri nets
In this part, we will introduce the concept of time Petri nets. We will describe them
in an intuitive way, then we will give their syntax and semantic; we will also study some
methods to build their state space and we will finally see a method that allows to transform
a time Petri net into a timed automaton.

1.3.1 Presentation
In recent years, the Petri nets have appeared as a practical formalism to describe dis-
tributed systems, and consequently extensions have been proposed to include time param-
eters into this formalism in order to model real-time systems. There are two main classes
of Petri nets that take account of time parameters :

1. Timed Petri nets;

2. Time Petri nets.

For each of this classes, it is necessary to decide where to introduce the time parameters in
the formalism: should they be linked to the places, to the transitions or to the tokens? We
will base our study on the class of the time Petri nets where the time parametes appear as
intervals linked to the transitions and we will denote this kind of time Petri nets T-TPN.
These intervals give the earliest time and the latest time of the firing of a transition after
it has been enabled for a marking. In a T-TPN the firing of a transition is considered as
instantaneous and time elapses in the places. For instance, we consider a system with two
processes P1 and P2; P2 sends message to P1 and P1 sends an acknowledgement to P2
each time it has received a message. Each type of message needs at least one time unit
to go from one process to the other, and P1 needs at most three time units to receive a
message and P2 needs at most two time units to receive an acknowledgement. When P1
has received a message, it sends directly an acknowledgement.

Figure 1.10: An example of T-TPN
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This sytem can be modelled by the T-TPN represented on the Figure 1.10. We see that
both of the processes are in their initial states P1_1 for P1 and P2_1 for P2; P2 can send a
message when it wants because the interval for T2_1 is [0,∞[ and P1 waits for a message;
when P2 has sent a message, the transition T1_1 becomes enabled but it can be fired only
after at least one time unit (the minimum time that takes the message to go from P2 to
P1),but before three time units; hence the interval of T1_1 is [1,3]. The sending and re-
ceiving of acknowledgements follow similarly.

1.3.2 The T-TPN formalism
Syntax

A T-TPN T [4],[7] is a tuple 〈P,T,B,F,M0,(α,β)〉 where :

• P = {p1, ..., pm} is a finite set of places;

• T = {t1, ..., tn} is a finite set of transitions;

• B : (NP)
T is the backward incidence mapping;

• F : (NP)
T is the forward incidence mapping;

• M0 ∈ NP is the initial marking;

• α ∈ (Q≥0)T and β ∈ (Q≥0∪{∞})T are the earliest and latest firing time mappings.

We remark that, except for the firing time mappings, the syntax is the same as the syntax
of a Petri net.

Semantics

The behavior of a T-TPN T can be represented with a timed transition system ST ([4],
[7]). The following definitions are useful (note : the operations on the vector correspond
to the operations on the elements extended to the vectors) :

• A marking is an element of NP;

• A valuation is a vector v ∈ (R≥0)n such that each value vi represents the elapsed
time since the last time ti was enabled or since the launching of the system if ti was
never enabled;

•
_
0 ∈ (R≥0)n is the initial valuation with ∀i ∈ [|1,n|],

_
0i = 0;

• A transition t is said to be enabled for a marking M if and only if ∀p ∈ P, M ≥ B(t);

• A transition tk is said to be newly enabled after the firing of a transition ti from a
marking M if tk is not enabled for the marking M−B(t) and it is enabled for the
marking M′ = M−B(t) + F(t);
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• The function ↑ enabled : T×NP×T 7→ {true, f alse} is defined by ↑ enabled(tk,M, ti) =
true if tk is newly enabled after the firing of ti from M;

• ∀(tk,M, ti) ∈ T ×NP×T ,↑ enabled(tk,M, ti) = (M−B(ti)+F(ti)≥ B(tk))∧ ((M−
B(ti)< B(tk))∨ (tk = ti)).

The timed transition system ST = 〈Q,q0,T,→〉 associated to a T-TPN T = 〈P,T,B,F,M0,(α,β)〉
is defined by :

• Q = NP× (R≥0)n;

• q0 = (M0,
_
0);

• →∈ Q× (T ∪R≥0)×Q is the transition relation defined by :

1. The discrete transitions are defined by ∀ti ∈ T :

(M,v)
ti→ (M′,v′)⇔





M ≥ B(ti)∧M′ = M−B(ti) + F(ti)
α(ti)≤ vi ≤ β(ti)

v′k =

{
0 if ↑ enabled(tk,M, ti)
vk otherwise

2. The continuous transitions are defined by ∀δ ∈ R≥0 :

(M,v)
δ→ (M,v′)⇔

{
v′ = v + δ
∀k ∈ [|1,n|],(M ≥ B(tk)⇒ v′k ≤ β(tk))

The last condition on contiunous transitions ensures that the time that elapses in places
cannot increase to a value which would disable transitions that were enabled by the mark-
ing. We use Reach(T ) to denote the set of markings associated with the set of reachable
states of the timed transition systems ST . If Reach(T ) is finite, then we say that T is
bounded.

1.3.3 Reachability analysis of T-TPN
Presentation of the problem

The reachability problem associated to a T-TPN T consists in determining if a marking M
of T is reachable from the initial marking of T . For the T-TPN a similar problem occurs
as with timed automata: it is not possible to work directly on the timed transition system,
which represents the behavior of the T-TPN, since this timed transition system has in-
finitely many states and infinitely many labels. In this section we will study two methods
that permit the construction of a transition system where the labels expressing the elapsing
of the time are eliminated and where the states are regrouped into state classes on which
the reachability analysis can be done. However these methods do not always give a result
because of the following theorem.

Theorem ([4]) For T-TPN the problems of reachability and of boundedness are unde-
cidable.
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State Class Graph

In this part we show how to build a graph which allows reachability analysis and which
is called the state class graph [4], [21], [12]. To build this graph we need to define the
notation IM which represents the indexes of the transitions that are enabled by the marking
M. Suppose that the set T of the transitions of a T-TPN T is denoted T = {t1, ...tm}. Then,
for a T-TPN T = 〈P,T,B,F,M0,(α,β)〉 we have :

∀M ∈ NP, IM = {i ∈ [|1,m|]|M ≥ B(ti)}

Then we can define a state class C of a T-TPN T as a pair (M,D) where M is a marking of
T and D is called the firing domain. The firing domain represents a set of inequalities on
variables θi, where θi represents, for each transition ti enabled by M, the possible firing
time of ti relative to the time when the class C was entered. Formally D can be denoted
D = {θ = [θi]i∈IM |A ·θ≥ b}where A is a matrix, b is a vector of constants and θ is a vector
of elements θi indexed by IM .
Given a class C = (M,D) it is possible to determine the firability of a transition ti; we say
that ti is firable from the class C = (M,D) (with D = {θ = [θi]i∈IM |A ·θ≥ b}) if and only
if :

(i) i ∈ IM;

(ii) the system of inequalities defined by :
{

A ·θ≥ b
θi ≤ θ j ∀ j ∈ IM, j 6= i

has a solution.

The inequation of the form θi ≤ θ j ensures that the elapsing time in the places will not
disable transitions that are enabled by the marking. In fact, the system A ·θ≥ b gives in-
equalities on the relative firing time θ j, and by adding the inequalities of the form θi ≤ θ j,
it is ensured that the firing time of the chosen transition cannot be superior to a possible
firing time of another transition.

If we suppose that a firable transition t f ∈ T is fired from a class C = (M,D) with
D = {θ = [θi]i∈IM |A · θ ≥ b}, then the class C′ = (M′,D′) obtained is computed as fol-
lows :

a) M′ = M−B(t f ) + F(t f )

b) D′ is computed in three steps :

1. In the system of inequalities:
{

A ·θ≥ b
θ f ≤ θ j ∀ j ∈ IM, j 6= f
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the change of variables θ j = θ f +θ′′j is made ∀ j ∈ IM such that j 6= f ; then the
variable θ f is removed (using a method such as Fourier-Motzkin method) so
that the system obtained can be denoted :

{
A′′ ·θ′′ ≥ b′′

θ′′ ≥ 0

such that the vector θ′′ is indexed by IM \{ f}.
2. Then the variables θi such that i /∈ IM \ { f} ∩ IM−B(t f ) (i.e. the variable θi

that corresponds to transitions ti that were enabled for M but that are not en-
abled for the marking M−B(t f )) are removed from the system using the same
method as to remove θ f ; in the system of inequalities, it remains only the
variables corresponding to transitions enabled for M and M ′ and not newly
enabled;

3. Finally, for all i such that ↑ enabled(ti,M, t f ) = true, the inequalities α(ti) ≤
θi ≤ β(ti) are added to the system of inequalities to obtain :

A′ ·θ′ ≥ b′

and D′ = {θ′ = [θ′i]i∈I′M |A
′ ·θ′ ≥ b′}.

These operations allow us to compute a tree where each node is a state class, that has for
sons the classes obtained by firing the firable transitions. Each link between two nodes is
then labeled with the name of the fired transition. The root of this tree is the initial state
class C0 = (M0,D0) where D0 = {θ = [θi]i∈IM0

|∀i ∈ IM0 ,α(ti)≤ θi ≤ β(ti)}.By definition
of the state classes, any sequences of transitions firable in the T-TPN will be represented
by a path in the above tree,which is why the reachability analysis can be done on this tree.
Furthermore if the number of nodes of the tree is bounded, a finite graph will be built by
regrouping the nodes of the tree that are equal, whrere two classes are equal if they have
the same marking and the same firing domain. To determine if two domains are equal, it
is possible to transform them to a canonical form [4]. The graph so built is called the state
class graph.

As we have said, to build the state class graph of a T-TPN T , T has to have a bounded
number of state classes. We define a class of T-TPN, which are the T-bounded T-TPN. A
T-TPN T = 〈P,T,B,F,M0,(α,β)〉 is T-bounded if :

(∃k ∈ N)(∀M ∈ Reach(T ))(∀ti ∈ T )(∃p ∈ P)M(p)< (k + 1)(B(ti)(p))

which means that no transition can be fired simultaneously more than k times. Then we
have the three following theorems.

Theorem ([4]) A T-TPN has a bounded number of state classes if and only if it is bounded.

Theorem (Sufficient Condition 1) ([4]) A T-bounded T-TPN is bounded if there is no
pair of state classes C = (M,D) and C′ = (M′,D′) reachable from the initial state class
and such that :

28



(i) C′ is reachable from C;

(ii) M′ >M.

Theorem (Sufficient Condition 2) ([4]) A T-bounded T-TPN is bounded if there is no
pair of state classes C = (M,D) and C′ = (M′,D′) reachable from the initial state class
and such that :

(i) C′ is reachable from C;

(ii) M′ >M;

(iii) D′ = D;

(vi) ∀p ∈ {p ∈ P|M′(p)>M(p)}, M(p)> maxi∈[|1,n|](B(ti)(p))

Then the sufficient condition 2 is used to stop the enumeration of the state classes when
a firing sequence is found which does not decrease the marking of any places, and for
the places p for which the sequence increases the marking, the marking at the start of the
sequence is greater than maxi∈[|1,n|](B(ti)(p)).

Example of the computing of state classes ([4])

In order to understand better how to compute the state classes of a T-TPN, we will give
an example for the T-TPN represented on the Figure 1.11.

Figure 1.11: A second example of T-TPN
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The initial state of this T-TPN is C0 = (M0,D0) with :

M0 = (1,0,0,0,1,0,1) and D0 = {(θ1)|1≤ θ1 ≤ 6}

The transition t1 is then firable and its firing leads to the state class C1 = (M1,D1) with :

M1 = (0,1,1,1,1,0,1) and D1 = {(θ2,θ3,θ5)|





1≤ θ2 ≤ 6
2≤ θ3 ≤ 3
1≤ θ5 ≤ 4

}

The transition t2 can then be fire if the system of inequations :

(1)





1≤ θ2 ≤ 6
2≤ θ3 ≤ 3
1≤ θ5 ≤ 4
θ2 ≤ θ3

θ2 ≤ θ5

has a solution, which is the case. The firing of t2 is then possible if 1 ≤ θ2 ≤ 3. We
denote θ2F the relative time for which t2 is fired. The new marking obtained is M2 =
(1,0,1,1,1,0,1) for which t3 and t5 remain enabled. We perform the change of variables
θ3 = θ′3 + θ2F and θ5 = θ′5 + θ2F in the system (1) which becomes the system :

(2)





1≤ θ2F ≤ 3
2≤ θ′3 + θ2F ≤ 3
1≤ θ′5 + θ2F ≤ 4

We then eliminate θ2F from (2) and we obtain :

(3)





0≤ θ′3 ≤ 2
0≤ θ′5 ≤ 3
θ′5−θ′3 ≤ 2
θ′3−θ′5 ≤ 2

After the firing of t2, t1 becomes newly enabled and we can conclude that the obtained
state class C2 = (M2,D2) is such that:

M2 = (1,0,1,1,1,0,1) and D2 = D1 = {(θ1,θ3,θ5)|





1≤ θ1 ≤ 6
0≤ θ3 ≤ 2
0≤ θ5 ≤ 3
θ5−θ3 ≤ 2
θ3−θ5 ≤ 2

}
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Zone graph method

As we have seen, it is possible to build for a T-TPN a so-called state class graph, but even
if this graph solves the problem of the infinity of states and labels of the timed transition
system associated to a T-TPN, its structure appears to have limitations in particular with
regard to the firing domain; in this domain the values of time are relative and the functions
used to compute these domains are not bijective, which limits the set of properties that can
be verified using this graph. In this section, we present another method to compute the
state-space of a bounded T-TPN [12]. This method is an adaptation of the zone based
method used for the timed automata (and presented before in this report).

We consider a T-TPN T = 〈P,T,B,F,M0,(α,β)〉.To each transition ti, a clock denoted
xi is associated. We denote X = {x1, ...,xn}. Clock zones can then be defined over X
the same way as they have be defined for timed automata (see 1.2.3 in this report). This
method associates zone to markings. Let M be a marking of T and Z be a zone over X .
The different steps of the computation of the reachable markings from M according to Z
are the following :

1. Computation of the elapsing of the time in Z, which is denoted Z ⇑ in the section
1.2.3;

2. Selection of the possible valuations of clocks for the marking M (i.e. the clock
valuations cannot disable a transition that is enabled for the marking). We obtain :

Z′ = Z ⇑ ∧(
^

i∈IM

(xi ≤ β(ti)))

Z′ is the maximal zone starting from Z for the marking M.

3. Determination of the firable transition. ti is firable if the clock zone defined by
Z′∩{xi ≥ α(ti)} is not empty;

4. For each firable transition ti leading to Mi, computation of the zone Zi associated to
the marking Mi:

Zi = (Z∩{xi ≥ α(ti)})[Xe := 0]

where Xe = {x j ∈ X | ↑ enabled(t j,M, ti) = true}.

An initial configuration for this algorithm is the marking M0 associated with the zone for
which all the clock values are 0. To test the convergence of this algorithm, a list of zones
is associated to each marking, and for each step a comparaison is made which guarantees
that zones and markings that already have been computed are not recomputed. However
there are some T-TPNs for which this algorithm does not converge.

For example, the algorithm does not converge for the T-TPN represented on the Figure
1.12. In fact, performing the firing sequence {t2t3}∗, the algorithm computes an infinite
number of zones. In fact, Z ′0 = {0 ≤ x1 ≤ 1∧ x1− x2 = 0}. Then when firing t2 and t3,
we arrive again in M0 and the maximal zone obtained is Z′1 = {2≤ x1 ≤ 3∧x1−x2 = 0};
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Figure 1.12: An example of T-TPN for which the method does not converge

doing so we can build an infinite set of Z ′i . We remark that if ∞ does not appear in the
given T-TPN, the algorithm would converge. However, a general solution to resolve this
problem is to use an operator on zones, called k-approx that regroups in an equivalence
class the zones where the values of clocks linked to an unbounded transition ([α,∞[)) are
greater than α. Then we have the following theorem and its corollary.

Theorem ([12]) A forward analysis algorithm using k-approx on zone is exact with re-
spect to T-TPN marking reachability for bounded T-TPN.

Corollary ([12]) For a bounded T-TPN without infinity as latest firing time, a foward
analysis algorithm using zones computes the exact state-space of the T-TPN.

1.3.4 From a T-TPN to a timed automaton
In this section we will present a method to transform a T-TPN into a timed automaton
[7]. This can be useful in practice because there exists an important number of methods
and associated tools for analysing the behavior of timed automata. In this section, we
will used the notations and the definitions introduced in the part dedicated to the timed
automata (part 1.2 of this report).

We consider a T-TPN T = 〈P,T,B,F,M0,(α,β)〉with P = {p1, ..., pm} and T = {t1, ..., tn}.
For each transition ti, we define a timed automaton Ai with a clock xi as the one repre-
sented by the Figure 1.13. The states of this automaton are :

• t if the transition is enabled;

• _
t if the transition is disabled;

• Firing if the transition is being fired.

The set of labels of this automaton is {?pre,?post,?update}. The initial state depends of
the initial marking, if M0 ≥ B(ti) the initial state is t else it is

_
t . This automaton updates

an array of integer p which represents the marking of the T-TPN and which is shared by
all the timed automata Ai.
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In order to build a system with all the automata Ai, another timed automaton SU with
a clock x called the supervisor is needed. This timed automaton SU is represented by the
Figure 1.14.

Figure 1.13: The automaton Ai associated to a transition ti

Figure 1.14: The automaton of the supervisor SU
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In order to regroup these timed automata, we define a set of labels Σ = {pre1, ...
, pren, post1, ... , postn,update} and the synchronisation function f such that :

• f (!pre,•, ...,?pre,•, ...) = prei if ?pre is the (i +1)th argument and all the other
arguments are •;

• f (!post,•, ...,?post,•, ...) = posti if ?post is the (i +1)th argument and all the other
arguments are •;

• f (!update,?update, ...,?update) = update.

The product ∆(T ) = (A1||...||An||SU) f ,Σ represents the timed automaton associated to the
T-TPN T . Note that for the operations concerning the array p, there can only be one up-
date for each transition of ∆(T ); in fact the updates of p are linked to the labels ?pre and
?post, and the synchronisation function ensures that no transition of ∆(T ) corresponds
to a double event ?pre or a double event ?post. The conditions on p corresponding to
labels ?update, they are combined on the transitions labeled with update by making their
conjunction.

Now that we have described how to build a timed automaton ∆(T ) associated with a T-
TPN T , we will present the link between the semantics of T and that of ∆(T ). Let (M,ν)
be a state of ST and ((s, p),

_q,v) a state of S∆(T ), where s is a location of SU, p is the
vector representing the marking, (s, p) is considered as a state of SU, _q ∈ {t, _t ,Firing}n

represents the states of the Ai and v ∈ (R≥0)n represents the values of the clocks xi. Then
we define the relation ≈ by :

(M,ν)≈ ((s, p),
_q,v)⇔





s = 0
∀i ∈ [|1,m|], p[i] = M(pi)

∀k ∈ [|1,n|],qk =

{
t i f M ≥ B(tk)
_
t else

∀k ∈ [|1,n|],νk = vk

The following theorem shows that there is effectively a timed bisimulation between the
timed transition system associated to T and the one associated to ∆(T )

Theorem ([7]) For all states (M,ν) of ST and for all states ((0, p),
_q,v) of S∆(T ) such

that (M,ν)≈ ((0, p),
_q,v) :

∀ti ∈ T,(M,ν)
ti→ (M′,ν′)⇔





((0, p),
_q,v)

wi→ ((0, p′),
_
q′,v′) with

wi = prei.update.posti.update and
(M′,ν′)≈ ((0, p′),

_
q′,v′)

∀δ ∈ R≥0,(M,ν)
δ→ (M′,ν′)⇔

{
((0, p),

_q,v)
δ→ ((0, p′),

_
q′,v′) and

(M′,ν′)≈ ((0, p′),
_
q′,v′)

This theorem allows us to make the analysis of reachability for the T-TPN on the timed
automaton, because each sequence of the timed transition system ST has a correspond-
ing sequence of transitions in the timed transition system associated to ∆(T ) and each
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sequence of transitions in the timed transition system S∆(T ) that finishes in a state for
which the supervisor is in state 0 has a corresponding sequence of ST (this second point
is due to the fact that all the sequences of transitions of S∆(T ) that end in a state for which
the state of the supervisor is 0 have the form (pre_i.update.post_i.update)*).
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Chapter 2

Syntax and Semantic of the Transitions
Time Well-formed Nets

2.1 Introduction
The Transitions Time Well-formed Nets that we present in this chapter are models that
extend the formalism of Transitions Time Petri Nets introduced in [4] to a formalism
with coloured tokens, just as Petri nets were extended to Well-formed Nets, which are
presented in [8].

2.2 Presentation of Transitions Time Well-formed Nets
(TTWN)

To intoduce the formalism, we begin with presenting it in an informal way.

Figure 2.1 gives an example of a TTWN. This example was given without time constraints
in [23].This model represents two clients characterized by the values < 1 > and < 2 >
connected to two servers < 1> and < 2>. In the initial state of the system, all the clients
are in the state Cready and all the servers are in the state Sready. A client < X > that is in
the state Cready can always send (with the transition cenv) a message to one of the server
<Y > without any time restriction (the interval linked to cenv is [0,∞]). When a message
characterized by the token< X ,Y > arrives in the place Mess, if the server<Y > is in the
state Sready, after 1 time unit and before the 4 following time units, the server <Y > will
receive the message (or it will not be in the state Sready anymore, if it receives an other
message, for instance). After it has received the message, the server < Y > takes at least
2 time units and at most 4 time units to treat it, sends a response with the transition ssend,
then returns to the state Sready. The corresponding client < X > that is in the state Cwait
takes at least 1 time unit and at most 3 time units to receive the response, then it returns in
the state Cready.
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Figure 2.1: An example of Transitions Time Well-formed Nets

To understand better the link between the Transitions Time Petri Nets and the TTWN,
it is possible to unfold a TTWN to obtain a Transitions Time Petri Net. For instance the
Transitions Time Petri Net represented in figure 2.2 is the result of the unfolding of the
TTWN presented on the figure 2.1. For each client and each server, the behavior is rep-
resented, as is the communication: since there are 4 possibilities of communication there
are four places Mess_i_ j and four places Resp_i_ j. The transitions are also duplicated.
However, it appears that if the domains and the colour classes were greater, the unfolded
net would not be readable. For instance, if we want to add a client in the model, it is
necessary to add 9 places and 8 transitions to the Transitions Time Petri Nets; instead it
is necessary to extend the colour class client to 1..3 in the corresponding TTWN. In the
next sections of this chapter, we will define formally this model and then we will give its
semantics.

2.3 Useful definitions and notation
Definition 1 A multi-set over a finite non-empty set Y is a mapping from Y to N≥0.

Each multi-set a over a finite non-empty set Y can be represented by the formal sum
a = ∑y∈Y a(y).y (where a(y) represents the number of instances of y in a). For all sets Y ,
which are finite and non-empty, Bag(Y ) represents the set of the multi-sets over Y . /0Y is
the empty multi-set over Y . We will now define some operations on the multi-sets.

Definition 2 Let Y be a finite and non-empty set. We consider a,b ∈ Bag(Y ) such that
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Figure 2.2: An unfolded Transitions Time Well-formed Nets

a = ∑y∈Y a(y).y and b = ∑y∈Y b(y).y.

• The sum a + b of a and b is an element of Bag(Y ) defined by a + b = ∑y∈Y (a(y) +
b(y)).y;

• If λ is a positive integer, then the product λ.a is an element of Bag(Y ) defined by
λ.a = ∑y∈Y (λ.a(y)).y;

• a is greater or equal to b (denoted a≥ b) if and only if : ∀y ∈ Y , a(y)≥ b(y).

• a is equal to b (denoted a = b) if and only if: a≥ b and b≥ a;

• a is strictly greater than b (denoted a> b) if and only if : a≥ b and a 6= b.

If we consider C1, ...,Ck, k finite sets, it is possible to identify Bag(C1× ...×Ck) with
Bag(C1)× ...×Bag(Ck) with the following rules :

- 〈c1, ...,λ.ci, ...,ck〉= λ.〈c1, ...,ci, ...,ck〉;

- 〈c1, ...,ci + c′i, ...,ck〉= 〈c1, ...,ci, ...,ck〉+ 〈c1, ...,c′i, ...,ck〉.

For instance, we consider C1 = {a,b} and C2 = {x,y}. The element m = 〈2.a + b,x + y〉
belongs to Bag(C1)×Bag(C2), and by following the rules defined above,we obtain m =
2.〈a,x〉+ 2.〈a,y〉+ 〈b,x〉+ 〈b,y〉 which is an element of Bag(C1×C2).
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2.4 Syntax
We will now define the syntax of the Transitions Time Well-formed Nets. First we will
see the kind of sets to which the tokens can belong, then we will present the form of the
functions that are linked to the arcs and the form of the guards that can also be defined in
these nets.

2.4.1 Colour classes and colour domains
In a TTWN a colour is associated to each token. These colours belong to colour domains
that are cartesian products of colour classes. A colour class is a finite and non-empty set
of terminal colours (which means that the definition of these terminal colours does not
depend on the other colours). A colour class can be ordered and also parameterized by
an integer. It is useful to have an ordered class to deal with the notion of successor. For
instance if we consider the ordered colour class C = {c1,c2, ...,cn}, the successor of the
objet ci is denoted ⊕ci, and for all i in [|1,n|] ⊕ci = c(i+1)modn (which means that for
instance c2 is the successor of c1 and c1 is the successor of cn). A colour class can be
partitioned into static subclasses, in order to group in the same class elements that can
have different behavior. This partitioning is static because it is defined with the colour
class. All the static subclasses of a colour class are disjoint.

Definition 3 A colour domain is a finite cartesian product of colour classes. Each colour
class is a finite set of elements. We denote Cl = {C1, ...,Ck} the set of colour classes
of a TTWN. Cl is called the family of colour classes and is such that ∀i 6= j ∈ [|1,k|],
Ci∩C j = /0.

A colour class can be ordered. The successor of an object c in an ordered class Ci is de-
noted ⊕c. The operator ⊕ is such that for all c j in an ordered class Ci,

S|Ci|
l=1{⊕lc j}= Ci.

When it is defined, a colour class can be partitioned into static subclasses. The qth static
subclass of a partitioned class Ci is denoted Ci,q and if si is the number of static subclasses
of Ci, then Ci =

U
q=1,...,si Ci,q (in fact the static subclasses are disjoint).

A colour domain is generally denoted C = Ce1
1 × ...×Cek

k or C =
Nk

i=1(Ci)ei where for
i in [|1,k|], ei is an integer, positive or equal to zero, which represents the number of times
that the colour class Ci appears in the colour domain C. When ei = 0 for all i in [|1,k|],
C is the neutral domain, denoted {ε} (ε is the neutral colour). An object tuple c ∈ C is
denoted c =

Nk
i=1
Nei

j=1 c j
i = 〈c1

1, ...,c
e1
1 , ...,c1

k , ...,c
ek
k 〉.

2.4.2 Colour functions
In ths section, we will describe the different functions that appear on the arcs of a TTWN.
We will first define basic functions, then guarded functions and finally we will present the
standard functions which label arcs.
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Basic colour functions

There are three elementary colour functions. Each of them takes an element of a colour
domain C′ and gives a result in a multi-set over a colour class Ci. The identity function
(XCi) allows the selection of an element of Ci. The successor function (⊕XCi) allows the
selection of the successor of an element of Ci (this function can be applied only if the
colour class Ci is ordered). Finally the diffusion function (AllCi) allows to consider all the
elements of Ci.

Definition 4 Let Ci be a colour class and C′=Ce1
1 × ...×Cek

k be a colour domain. The ele-
mentary colour functions are defined from C′ to Bag(Ci) by ∀c = 〈c1

1, ...,c
e1
1 , ...,c1

k , ...,c
ek
k 〉 :

• X j
Ci

(c) = c j
i (for all j such that 1≤ j ≤ ei);

• ⊕X j
Ci

(c) =⊕c j
i if Ci is ordered (for all j such that 1≤ j ≤ ei);

• AllCi(c) = ∑x∈Ci x and if Ci is partitioned such that Ci =
U

q=1,...,si Ci,q, AllCi,q(c) =

∑x∈Ci,q x (for all q such that 1≤ q≤ si).

If Ci is the neutral domain, the only basic colour function possible is Allε, which is equiv-
alent to an arc with the valuation 1 in an ordinary Petri net.

With these elementary functions, it is possible to define basic colour functions over a
colour class Ci as a linear combination of elementary colour functions.

Definition 5 Let Ci be a colour class and C′ = Ce1
1 × ...×Cek

k be a colour domain. The set
of basic colour functions over the colour class Ci from C′ is denoted FCi,C′ . It represents
functions from C′ to Bag(Ci) and is defined by :

FCi,C′ =

{
si

∑
q=1

αi,qAllCi,q +
ei

∑
k=1

βi,kXk
i

∣∣∣∣∣In fq∈[|1,si|],K⊆[|1,ei|](αi,q + ∑
k∈K

βi,k)≥ 0
}

if Ci is not ordered.

FCi,C′ =

{
si

∑
q=1

αi,qAllCi,q +
ei

∑
k=1

(βi,k.Xk
i + γi,k.⊕Xk

i )

∣∣∣∣∣In fq∈[|1,si|],K⊆[|1,ei|](αi,q + ∑
k∈K

In f (βi,k,γi,k))≥ 0
}

if Ci is ordered.
In these formula, the α,β,γ are integers.

The condition that appears in the definition of the basic colour functions over the linear
coefficients ensures that always a positive number of colours is chosen.

From the above definition, it is possible to define the basic colour functions over a colour
domain C as a tuple of basic colour functions over the colour classes that compose C.

Definition 6 Let C = Ce1
1 × ...×Cek

k and C′ = C′1
e1 × ...×C′k

ek be two colour domains.
The set of basic colour functions over the colour domain C from C′ is denoted FC,C′ . It
represents functions from C′ to Bag(C) and it is defined by :

FC,C′ =
{
⊗k

i=1⊗ei
j=1 f j

i = 〈 f 1
1 , ..., f e1

1 , ..., f 1
k , ... f

ek
k 〉such that f j

i ∈ FCi,C′
}

40



Guards and guarded functions

Just as for Well-formed Nets, it is possible to define for the TTWN guards over functions
and over transitions.

Definition 7 A guard is a boolean function over a colour domain C = Ce1
1 × ...×Cek

k
which is defined by the following standard predicates ∀c = 〈c1

1, ...,c
e1
1 , ...,c1

k, ...,c
ek
k 〉 ∈C :

1. [X i1
Ci

= X i2
Ci

](c) is True iff ci1
i = ci2

i ;

2. if Ci is ordered, [X i1
Ci

=⊕X i2
Ci

](c) is True iff ci1
i =⊕ci2

i ;

3. if Ci is partitioned such that Ci =
U

q=1,...,si Ci,q, [X i1
Ci
∈Ci,q](c) is True iff ci1

i ∈Ci,q;

4. if g1 and g2 are guards, g1 ∨ g2, g1 ∧ g2 and ¬g1 are standard predicates where
∨,∧,¬ refer to the classical boolean connectives.

Now we will present the concept of guarded colour functions which associates a basic
colour function with a guard.

Definition 8 Let C and C′ be two colour domains. Let φC′ be a guard over C′ and f be a
basic colour function from C′ over C. A guarded function g from C′ over C is defined by
∀c ∈C′:

g(c) = [φC′] f (c)
de f
=

{
f (c) if [φC′ ](c)

/0C else

Standard functions

Definition 9 A standard colour function from a colour domain C′ over a colour domain
C is a sum of guarded functions from C′ over C. Therefore, it takes the form of a function
from C′ to Bag(C).

Notations

In order to simplify the model when it is represented graphically, the following shorthands
are possible for the introduced notations :

• If there is only a single colour class C1, All is a shorthand for AllC1

• Xi is a shorthand for X1
i when Ci is instantiated only once ;

• Xk is a shorthand for X k
1 when there is only one colour class involved;

• X is a shorthand for X1
1 when there is a single colour class instantiated once.

Sometimes for the description of the guarded functions it is possible to describe directly
the coloured tokens that will be taken or given by the firing of the transition. For exam-
ple, if we consider the class C = {1}] {2,3} and the guarded function from C over C
defined by < X > associated to a transition whose guard is [X = 1] (the basic functions
are represented between the symbols < and > in the nets), the corresponding arc will be
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labeled with < 1 > (and the guards on the transition will not be written), which means
that the only token that is involved is the one whose colour is 1. The variable X can as
well be written differently, for instance Z or Y or even names which are more complicated,
provided that the name is not All or S. Note that, in the literature on Well-formed Nets,
AllCi,q is sometimes written SCi,q or as well Ci,q.All. For the successor, the symbol ⊕ is
sometimes replaced by the symbol !. In a net, if there are two input arcs on a transition
which deal with the same variables, for instance < X >, implicitly there is a guard on the
transition that ensures that the values of the two tokens transported on the input arcs are
the same (in fact, it is the same as to replace< X > by<Y > on one of the arcs, and to put
the guard [X = Y ] on the corresponding transition). Most of the time the colour domains
of the transitions are not written on a graph, because they can be directly deduced from
the functions linked to the input and output arcs. Most of these notations depend of the
modeler and of the tools used to define the nets.

2.4.3 Syntax of the formalism of the Transitions Time Well-formed
Nets

With the above definitions, it is possible to define the syntax of a TTWN.

Definition 10 A Transition Time Well-formed Net is a 9-tuple T TWN = 〈P,T,W−,W +,
Cl,C ,Φ,(α,β),m0〉 where :

• P = {p1, ..., pm} is a finite set of places;

• T = {t1, ..., tn} is a finite set of transitions such that P∪T 6= /0 and P∩T = /0;

• Cl = {C1, ...,Ck} is the set of colour classes; each Ci is a finite non-empty set; for
all i, j in [|1,k|] such that i 6= j, Ci∩C j = /0; each Ci can be partitioned in si static
subclasses (Ci =

U
q=1,...,si Ci,q);

• C is the function that denotes the colour domain of each transition and each place;
the domain of C is P∪T and its codomain is ω, where ω is a set that contains the
finite cartesian product of elements of Cl;

• W + (resp. W−) is the forward incidence function (resp. the backward incidence
function) that associates to all pairs (p, t) of P×T a standard colour function from
C (t) over C (p) (a function from C (t) to Bag(C (p)));

• Φ is a function that associates to each transition a guard ( ∀t ∈ T,Φ(t) : C (t)→
{True,False} ); by default, ∀t ∈ T,Φ(t) = True;

• α ∈ (Q≥0)T and β ∈ (Q≥0 ∪ {∞})T represent the earliest and latest firing time
mappings;

• m0 is the initial marking ∀p ∈ P, m0(p) ∈ Bag(C (p)).

The marking represents the position of the tokens; a marking M associates to each place
p a multi-set of Bag(C (p)). We denote M A the set of the markings of a TTWN. For
simplicity, we do not include a notion of priority of transitions, which is usually defined
for Well-formed Nets.
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2.5 Semantics
Just as forTransitions Time Petri Nets, the semantics of a TTWN T = 〈P,T,W−,W +,Cl,
C ,Φ,(α,β),m0〉 can be represented as a timed transition system ST . First the following
definitions are needed.

2.5.1 Useful definitions
We will denote by CT the set of pairs which combine the transitions with a colour of their
colour domain, CT = {(t,ct)|t ∈ T ∧ ct ∈ C (t)}.

Definition 11 A transition t is said to be enabled for a colour c ∈ C (t) in a marking M if
and only if

∀p ∈ P,W−(p, t)(c)≤M(p) and Φ(t)(c) = True.

When an enabled transition t is fired for a colour c ∈ C (t) from a marking M, the new
marking obtained is M′= M[t,c>, where ∀p∈P,M′(p) = M(p)−W−(p, t)(c)+W +(p, t)(c).

Definition 12 A transition tk is said to be newly enabled for a colour ck ∈ C (tk) after the
firing of a transition ti for a colour ci from a marking M if tk is not enabled for the marking
M′′ where M′′ is such that ∀p ∈ P,M′′(p) = M(p)−W−(p, ti)(ci), and it is enabled for
the marking M′ = M[t,c> (if (ti,ci) = (tk,ck), the transition is newly enabled only if tk is
enabled for ck from the marking M′).

We introduce then the boolean function ↑ enabled : CT ×M A×CT defined by ∀(tk,ck),
(ti,ci)∈CT , for all markings M ∈M A such that ti is fired for ci from M, ↑ enabled((tk,ck),
M,(ti,ci)) = True if and only if tk is newly enabled for ck after the firing of ti for ci from
the marking M. We deduced from this definition that ∀(tk,ck),(ti,ci) ∈ CT ,∀M ∈M A
such that ti is fired for ci from M:

↑ enabled((tk,ck),M,(ti,ci)) = (
^

p∈P
(M(p)−W−(p, ti)(ci)<W−(p, tk)(ck))∨((tk,ck) = (ti,ci)))∧

(
^

p∈P
(M(p)−W−(p, ti)(ci) +W +(p, ti)(ci)≥W−(p, tk)(ck)))∧Φ(tk)(ck)

Definition 13 A valuation is a function v that associates to each pair (t,c) ∈ CT a value
v(t,c) ∈ R≥0 which represents the elapsed time since the last time the transition t was
enabled for the colour c or since the launching of the system if t was never enabled for
the colour c.

_
0 is the initial valuation such that ∀t ∈ T,∀c ∈ C (t),

_
0(t,c) = 0. We denote

V the set of the valuations.

2.5.2 Semantics of Transitions Time Well-formed Nets
Definition 14 The timed transition system ST = 〈Q,q0,CT ,→〉 associated to a TTWN
T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 is defined by :

• Q = M A×V ;
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• q0 = (m0,
_
0) ;

• →∈ Q× (CT ∪R≥0)×Q is the transition relation defined by :

1. The discrete transitions are defined ∀(t,c)∈CT ,(M,v)
(t,c)→ (M′,v′) if and only

if:




∀p ∈ P,M(p)≥W−(p, t)(c) and
Φ(t)(c) = True and
∀p ∈ P,M′(p) = M(p)−W−(p, t)(c) +W +(p, t)(c) and
α(t)≤ v(t,c)≤ β(t) and

∀(t ′,c′) ∈ CT ,v′(t ′,c′) =

{
0 i f ↑ enabled((t ′,c′),M,(t,c)) = True
v(t ′,c′) otherwise

2. The continuous transitions are defined by ∀δ ∈ R≥0,(M,v)
δ→ (M,v′) if and

only if :
{
∀(t,c) ∈ CT ,v′(t,c) = v(t,c) + δ and
∀(t,c) ∈ CT ,(∀p ∈ P,M(p)≥W−(p, t)(c))⇒ (v′(t,c)≤ β(t))

Definition 15 We denote
_
ST the timed transition system obtained from ST by considering

only the states reachable from the initial state. We denote
_
QT the set of the reachable

states.

The semantics adopted for the firing of the transitions is said to be single-server because
if a transition is for instance two times simultaneously enabled for the same colour, we
take account only the fact that it is enabled and after the firing it becomes newly enabled.

Remark Because of the possible valuations and the continuous transitions, the state-graph
corresponding to this timed transition system has an infinite number of labels and an in-
finite number of states. However, the set of events is finite, in fact the set of transitions
is finite and for each transition its colour domain is a finite cartesian product of colour
classes (which are finite sets).
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Chapter 3

State class Timed Automaton of
Transitions Time Well-formed Nets

3.1 Introduction
As we have seen in chapter 2, the timed transition system which represents the behavior
of a Transitions Time Well-formed Net (TTWN) is appropriate for traditional, finite-state
automatic verification methods because it has an infinite number of states and an infinite
number of labels. The same problem arose for the Transitions Time Petri Nets, and one
of the solution proposed in [21] was to compute a timed automaton, which would have a
behavior similar to the one of the Transitions Time Petri Nets and then to verify properties
on this timed automaton using tools that already exist. We present in this chapter an
adaptation of this method to the case of TTWNs.

3.2 Timed automata with clock renaming
To build the state class timed automaton of a TTWN, we need to extend the syntax and
the semantics that we gave from the timed automata in chapter 1 to include renaming of
clocks.

3.2.1 Syntax
The renaming of clocks is linked to switches, and means that a clock can take the value of
another clock. Formally a timed automaton (with renalming) is a tuple 〈L,L0,Σ,X , I,E〉
where :

• L is a finite set of locations;

• L0 ⊆ L is the set of the initial locations;

• Σ is a finite set of labels;

• X is a finite set of clocks;
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• I is a total function L 7→ Φ(X) that associates to each location an invariant (i.e. a
clock constraint);

• E ⊆ L× Σ×Φ(X)× 2X × 2X2 × L represents the set of the switches. A switch
t = (s,a,ϕ,λ,ρ,s′) ∈ E represents a switch from s to s′ on the label (or event) a,
ϕ is the clock constraint (or guard) associated to this switch, λ ⊆ X gives the set
of clocks that have to be reset when the switch is executed, and ρ is the renaming
function that associates to a clock x ∈ X another clock y ∈ X such that y = ρ(x).

If for a switch t = (s,a,ϕ,λ,ρ,s′), the renaming function is such that there exists x,y ∈ X
such that x 6= y and ρ(x) = y, we will label the corresponding edge x := y to characterize
the renaming of the clocks. Considering the introduction of renaming functions in the
automaton, we need a new notation for the clock interpretations :

• ∀ρ ∈ 2X2 , and for a clock interpretation v, the clock interpretation v[ρ] is the clock
interpretation u such that ∀x ∈ X , u(x) = v(ρ(x)).

3.2.2 Semantics
For the semantics, this extension of timed automata with clock renaming only brings a
change for the discrete transitions of the timed transition system SA = 〈QA,Q0

A,Σ,→〉
which describes the behavior of the timed automaton A. We recall that QA = {(s,v) ∈
L×V (X)|v |= I(s)} and Q0

A = {(s,
_
0) ∈ L×V (X)|s ∈ L0and

_
0 |= I(s)}. The transition

relation→⊆ QA× (Σ∪R≥0)×QA is defined by :

• for continuous transitions :
∀δ ∈ R≥0,(s,v)

δ→ (s,v + δ) if ∀δ′ ∈ [0,δ],v + δ satisfies I(s);

• for discrete transitions :
for all states (s,v) of SA and for all switches (s,a,ϕ,λ,ρ,s′) such that v satisfies ϕ,
there is the transition (s,v)

a→ (s′,v[ρ][λ := 0]).

We remark that the renaming of clocks is done before the reset of clocks.

3.3 Extended state class graph
In this section, we will present an adaptation of the extended state class graph presented in
[21] to the Transitions Time Well-formed Nets. For a TTWN T = 〈P,T,W−,W +,Cl,C ,
Φ,(α,β),m0〉, the associated extended state class graph ∆′(T ) is a transition system where
the nodes are so-called extended state classes, and they are linked with edges labeled with
elements of CT = {(t,c)|t ∈ T ∧ c ∈ C (t)}. We recall that M A represents the set of the
markings of a TTWN.

3.3.1 Extended state class
Definition 16 An extended state class of a Transitions Time Well-formed Net T = 〈P,T,
W−,W +,Cl,C ,Φ,(α,β),m0〉 is a tuple 〈M,D,χ, trans〉 where M is a marking belonging
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to M A , D is a firing domain, χ is a set of real valued clocks and trans ∈ (2CT )
χ maps

clocks to sets of transitions and colours of their colour domain.
The firing domain D is a set of inequalities. For each transition ti ∈ T = {t1, ..., tn} the
colour domain C (ti) can be indexed since it is finite. We denote ni the number of elements
of C (ti) , and write C (ti) = {ci, j|1≤ j ≤ ni}.
The inequalities in D are then of the form :





ai, j ≤ θi, j ≤ bi, j with ai, j ∈Q≥0,bi, j ∈ (Q≥0∪{∞})
(∀i, j such that ti is enabled for ci, j in M)

−γk,l,i, j ≤ θi, j−θk,l ≤ γi, j,k,l with γk,l,i, j,γi, j,k,l ∈ (Q≥0∪{∞})
(∀i, j,k, l such that (i, j) 6= (k, l)
and ti is enabled for ci, j and tk is enabled for ck,l in M)

We will denote EC the set of the extended state classes of a TTWN.

Given a set of inequalities D, the set of its solutions will be denoted [|D|]. The relation
trans associates to each clock x ∈ χ a set of elements of CT such that ∀(t,c) ∈ trans(x), x
represents the value linked to (t,c). Each pair (t,c) ∈ CT must be associated to only one
clock (i.e. ∀(t,c) ∈ CT , |trans−1((t,c))| ≤ 1).

To build the graph, we also need the notion of clock similarity, in order to group cer-
tain extended state classes together.

Definition 17 Two extended state classes C = 〈M,D,χ, trans〉 and C′= 〈M′,D′,χ′, trans′〉
are clock-similar, denoted C ≈ C′, if and only if they have the same markings, the same
number of clocks and their clocks are mapped to the same elements of CT , i.e. :

C ≈C′⇔





M = M′ and
|χ|= |χ′| and
∀x ∈ χ,∃x′ ∈ χ′, trans(x) = trans(x′)

It is then possible to define the inclusion of an extended state class into an other one.

Definition 18 An extended state class C′ = 〈M′,D′,χ′, trans′〉 is included in an extended
state class C = 〈M,D,χ, trans〉 (denotedC′ ⊆C) if and only if C ≈C′ and [|D′|]⊆ [|D|]

Remark There exists algorithms to decide whether [|D′|]⊆ [|D|] as noted in [4], [21].

3.3.2 Construction of the extended state class graph
Now that we have defined the extended state classes of a Transitions Time Well-formed
Net, we will present the construction of its extended state class graph. In this section we
consider a TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉. We suppose that the set of
transitions can be indexed, such that T = {t1, ..., tn}, and for each transition ti ∈ T , we
index the colour domain such that C (ti) = {ci,1, ...,ci,ni} (ni = |C (ti)|).

47



The extended state class graph ∆′(T ) associated to the TTWN T is a transition system
∆′(T ) = 〈EC ,cl0,CT ,→ext〉. The initial state class cl0 = 〈m0,D0,{x0}, trans0〉 is defined
by :

• m0 is the initial marking of T ;

• D0 is such that :
{

α(ti)≤ θi, j ≤ β(ti),∀(ti,ci, j) ∈ CT such that ti is enabled for ci, j in m0

• The set of clocks χ0 of cl0 is composed from a single clock x0;

• trans0 is defined by trans0(x0) = {(t,c) ∈ CT |t is enabled for c in m0}.

To build the extended state class graph, we use a breadth first graph generation algorithm.
Given an extended state class C, we want to compute its sons. To do this we need to know,
which transitions are firable among the transitions that are enabled from the marking of
C.

Definition 19 A transition ti is firable for a colour ci, j ∈ C (ti) from an extended state
class C = 〈M,D,χ, trans〉 ∈EC , if and only if ti is enabled for ci, j in M and the following
system of inequalities :

{
D
θi, j ≤ θk,l,∀(k, l) 6= (i, j) such that tk is enabled for ck,l in M

has a solution.

The inequalities which are added to D ensure that the relative time of firing of the tran-
sition ti for the colour ci, j cannot be bigger than the upper limits of firing of the other
enabled transitions. This is the consequence of the fact that in a marking of a TTWN,
the elapsing of time cannot disable transitions that are firable. In the extended state class
graph, the classes are linked by edges labeled with transitions and their associated colours
which are firable from the extended state class which is the source of the edge. The algo-
rithm terminates when it encounters an extended state class for which the computation has
already been done or when there is no more firable transitions. The algorithm to compute
the extended state class graph can be written as follows :

• The variables are the graph ESCG and the FIFO queue of extended state class New

• The variables are initialized to : ESCG := {cl0} and New := cl0;

• WHILE New is NOT empty DO

– C := remove(New) (The first extended state class of New is taken, C := 〈MC,
DC,χC, transC〉);

– For all transitions ti firable from C for some colour ci, j DO
∗ (Computation of the extended state class C′ = 〈MC′ ,DC′,χC′, transC′〉,

which is the son of C by the firing of ti for ci, j);
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∗ for all p ∈ P, MC′(p) = MC(p)−W−(p, ti)(ci, j) +W +(p, ti)(ci, j);
∗ Computation of DC′ , the firing domain of C′ :

1. In the system of inequalities :
{

D
θi, j ≤ θk,l,∀(k, l) 6= (i, j) such that tk is enabled for ck,l in M

Perform the change of variables :
{

θi, j := θF
θk,l := θF + θ′k,l

A system of inequalities D′ is obtained ;
2. Eliminate from D′ the variables θF (using for instance the method of

Fourier-Motzkin) , to obtain a system of inequalitie D′′;
3. For all transitions tk that were enabled for a colour ck,l from MC and

that are not enabled for ck,l from M′ (where ∀p∈P, M′(p) = MC(p)−
W−(p, ti)(ci, j)), eliminate the variable θ′k,l from D′′ (using the same
method as before), o obtain a system of inequalities D(3);

4. For all transitions tk that are newly enabled for a colour ck,l after the
firing of ti for ci, j from MC (i.e. ↑ enabled((tk,ck,l),MC,(ti,ci, j)) =

True), add to D(3) the inequalities α(tk) ≤ θk,l ≤ β(tk), to obtain a
system of inequalities DC′ ;

∗ Computation of χC′ and transC′ :
1. For each clock x ∈ χC, remove from transC(x) all the pairs (tk,ck,l)

such that tk is enabled for ck,l from MC and is not enabled for ck,l
from M′ (where ∀p ∈ P,M′(p) = MC(p)−W−(p, ti)(ci, j)), to obtain
a relation trans′;

2. The clocks whose image by trans′ is empty are removed from χC, to
obtain a set of clocks χ′;

3. For all transitions tk that are newly enabled for ck,l after the firing of
ti for ci, j from MC DO :
+ IF a clock x has already been created for computing C′

+ THEN (tk,ck,l) is added to trans′(x);
+ ELSE a new clock xn is created; n is the smallest available index

among the clocks of χ′ and trans′(xn) := (tk,ck,l);
4. ENNDO; χC′ and transC′ are then obtain from the resulting set χ′ and

function trans′;
∗ IF there is an extended state class C′′ in ESCG such that C′ and C′′ are

clock similar
∗ THEN

+ ESCG = ESCG∪{C (ti,ci, j)→ ext C′′};
+ IF C′ 6⊆C′′
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+ THEN
++ DC′′ := DC′′ ∪DC′;
++ IF C′′ /∈New (the sons of C′′ were already computed) THEN com-

pute the sons of C′ and add them to the sons of C′′ ENDIF;
+ ENDIF;

∗ ELSE ESCG = ESCG∪{C (ti,ci, j)→ ext C′} and add(New,C′);
∗ ENDIF;

– ENDDO;

• ENDDO.

3.4 State class timed automaton
3.4.1 Construction of the state class timed automaton
In this section, we will give the definition of a state class timed automaton, the definition
explains of which also the method used to build this timed automaton.

Definition 20 Let T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 be a Transitions Time Well-
formed Nets and ∆′(T ) = 〈EC ,cl0,CT ,→ext〉 its associated extended state class graph.
The state class timed automaton ∆(T ) associated to T is a timed automaton 〈L,L0,Σ,X , I,E〉
defined by :

• L = EC is the set of the extended classes ;

• L0 = {cl0} is the initial extended state class (cl0 = 〈m0,D0,{x0}, trans0〉);

• X =
S
〈M,D,χ,trans〉∈EC χ;

• Σ = CT = {(t,c)|t ∈ T ∧ c ∈ C (t)};

• E is the set of switches defined by :

∀Ci = 〈Mi,Di,χi, transi〉

∀C j = 〈M j,D j,χ j, trans j〉

∃Ci
(ti,ci, j)→ ext C j⇔∃(si,a,φ,λ,ρ,s j) ∈ E such that





si = Ci and
s j = C j and
a = (ti,ci, j),

φ = (trans−1
i ((ti,ci, j))≥ α(ti)) and

λ = {trans−1
j ((tk,ck,l))| ↑ enabled((tk,ck,l),Mi,(ti,ci, j)) = True} and

∀x ∈ χi,∀x′ ∈ χ j, such that trans j(x′)⊆ transi(x) and x′ 6∈ λ,ρ(x′) = x

• ∀Ci = 〈Mi,Di,χi, transi〉 ∈ EC , I(Ci) =
V

x∈χi,(t,c)∈transi(x)(x≤ β(t))
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3.4.2 Properties of the state class timed automaton
Bisimulation

In this part, we will define a binary relation between the states of a TTWN T and the
states of its associated state class timed automaton and we will prove that this relation is
a bisimulation.

Definition 21 Let T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 be a Transitions Time Well-
formed Nets and ∆(T ) the associated state class timed automaton. We consider

_
QT =

M A ×V the set of reachable states of T and QA the set of states of ∆(T ). We de-
fine the relation 'sc⊆

_
QT ×QA by, ∀s = (M,νT ) ∈

_
QT , ∀a = (cl,νA) ∈ QA (with cl =

〈Ma,Da,χa, transa〉):

s'sc a⇔





M = Ma

∀(t,c) ∈ CT such that t is enabled for c from M,
νT ((t,c)) = νA(x) with x ∈ χa such that (t,c) ∈ transa(x)

Once this relation defined, we have the following theorems.

Theorem 1 For all (s,a) ∈
_
QT ×QA, if s'sc a then :

1. ∀δ∈R≥0, if ∃s′ ∈
_
QT such that s δ→ s′, then ∃a′ ∈QA such that a δ→ a′ and s′'sc a′;

2. ∀(t,c) ∈ CT , if ∃s′ ∈
_
QT such that s (t,c)→ s′, then ∃a′ ∈ QA such that a (t,c)→ a′ and

s′ 'sc a′.

Proof Let s = (M,νT ) be a state in
_
QT and a = (cl,νA) with cl = 〈Ma,Da,χa, transa〉 be

a state in QA such that s'sc a.
We consider δ ∈ R≥0 and we suppose that there exists s′ ∈

_
QT such that s δ→ s′. Then

s′= (M,ν′T ) with ν′T = νT +δ. For all (t,c)∈ CT , such that t is enabled for c from M,we
have then (by definition of continuous transition), νT ((t,c)) + δ≤ β(t). Since s'sc a,we
can deduce that for all (t,c) such that t is enabled for c from M, for x = trans−1

a ((t,c)) we
have νA(x) + δ ≤ β(t). For all x ∈ χa, if (t,c) ∈ transa(x), by definition of transa(x), t is
enabled for c from Ma = M, then we have

V
x∈χa,(t,c)∈transa(x)(νA(x) + δ) ≤ β(t)), which

means that νA + δ satisfies I(cl) =
V

x∈χa,(t,c)∈transa(x)(x ≤ β(t)). We deduce that a δ→ a′
with a′ = (cl,ν′A) (whereν′A = νA + δ).
The markings that appear in a′ and s′ are equal because, the extended state class of a′ is the
same as the one of a, the marking of s′ is the same as the marking of s and the marking of
a and s are equal. We consider (t,c) ∈ CT such that t is enabled for c from M,we denote
x the clock in χa such that x ∈ trans−1

a ((t,c)), then νT ((t,c)) = νA(x), we can deduce that
νT ((t,c)) + δ = νA(x) + δ. Since ν′T = νT + δ and ν′A = νA + δ, since the extended state
class is the same in a and in a′, we deduce that ∀(t,c) ∈ CT such that t is enabled for c
from M, ν′T ((t,c)) = ν′A(x). We conclude that s′ 'sc a′.

We consider (t,c) ∈ CT and we suppose that there exists s′ = (M′,ν′T ) ∈
_
QT such that
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s (t,c)→ s′. To prove that there exists a′ ∈QA such that a (t,c)→ a′, we will follow the following
steps :

1. We will prove that t is firable for c from the extended state class cl. This will
allow us to say that there is an edge in the extended state class graph of the form
cl (t,c)→ ext cl′; hence that there exists a switch in the timed automaton of the form
(cl,(t,c),φ,λ,ρ,cl′)

2. We will show that νA satisifies the guard condition φ of this switch;

3. We will conclude that a (t,c)→ a′ with a′ = (cl′,ν′A), cl′ = 〈M′a,D′a,χ′a, trans′a〉 and
M′a = M′.

We will use the following lemma :

Lemma 1 ∀(t,c) ∈ CT , ∀s,s′ ∈
_
QT , if s (t,c)→ s′, then ∀a = (cl,νA) ∈ QA such that s'sc a,

t is firable for c from cl.

We consider the three points in turn. (1.) This point is proven by Lemma 1.
(2.) Since we have s (t,c)→ s′, we deduce that νT ((t,c)) ≥ α(t). Let {x} = trans−1

a ((t,c)).
Since s 'sc a, we have νA(x) ≥ α(t). Then because the guard φ on the switch that was
found in part (1.) is by construction x≥ α(t) we conclude that νA satisfies φ.
(3.) Parts (1.) and (2.) allow us to conclude that there exists a′ = (cl′,ν′A) ∈ QA such that
a (t,c)→ a′ and cl′ = 〈M′a,D′a,χ′a, trans′a〉 with, by construction of cl ′, for all p ∈ P: M′a(p) =
Ma(p)−W−(p, t)(c) +W +(p, t)(c) = M(p)−W−(p, t)(c) +W +(p, t)(c) = M′(p).
Now we want to prove that ∀(t ′,c′)∈ CT such that t ′ is enabled for c′ from M′, for x′ ∈ χ′a
such that {x′}= trans′−1

a ((t ′,c′)) we have ν′T ((t ′,c′)) = ν′A(x′). We consider a pair (t ′,c′)
in CT such that t ′ is enabled for c′ from M′. Two cases are possible :

1. ↑ enabled((t ′,c′),M,(t,c)) = False. Then it means that t ′ is enabled for c′ from
M, and we deduce that for x such that (t ′,c′) ∈ transa(x), we have νT ((t ′,c′)) =

νA(x). By the definition of s (t,c)→ s′, we have ν′T ((t ′,c′)) = νT ((t ′,c′)). We denote
{x′} =trans′−1

a ((t ′,c′)). By construction of the state class automaton, since t ′ is
not newly enabled for c′ we deduce that trans′a(x′) ⊆ transa(x) (in fact, during the
construction of the extended state class graph, when a set trans(x) that contains
enabled transtions which are not newly enabled, is built, no pair (t,c) is added
to this set; only removal of pairs is performed, and here (t ′,c′) is not removed
because the associated transition is not disabled by the firing of t for c). We deduce
that the renaming function ρ of the switch is such that ρ(x′) = x, and hence we
have, by construction of a (t,c)→ a′, ν′A(x′) = νA(ρ(x′)) = νA(x). We conclude that
ν′A(x′) = ν′T ((t ′,c′)).

2. ↑ enabled((t ′,c′),M,(t,c)) = True. We have by defnition of s (t,c)→ s′, ν′T ((t ′,c′)) =
0. By construction of the extended state class, a new clock x′ has been created for
cl′ such that (t ′,c′) ∈ trans′a(x′) and xe have x ∈ λ. Hence ν′A(x′) = 0 = ν′T ((t ′,c′)).
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We conclude that s′ 'sc a′.
�

Proof of Lemma 1
We consider (t,c) ∈ CT and s,s′ ∈

_
QT such that s (t,c)→ s′. We suppose that there exists

a = (cl,νA)∈QA such that s'sc a and such that t is not firable for c from cl. Let M be the
marking of s. Because we have s'sc a, M is also the marking associated to cl. Since we
have s (t,c)→ s′ for the TTWN T , we deduce that there is a path in the associated transtion
system of the form :

(m0,
_
0)

δ0→ (m0,v′0)
(t0,c0)→ (m1,v1)

δ1→ (m1,v′1)
(t1,c1)→ (m2,v2)...

δn→ (M,v)

Since the extended state class graph represents by construction the behavior of the system,
we deduce that there is in this graph a path :

cl0
(t0,c0)→ cl1...

(tn−1,cn−1)→ cl′

where the marking of cl′ is M and where t is firable for c from cl ′. Since t is not
firable from c from cl, we deduce that cl and cl ′ are different, and hence cl and cl ′
are not clock similar. We denote cl = 〈M,D,χ, trans〉 and cl ′ = 〈M′,D′,χ′, trans′〉. For
an extended class, the set of clocks and the relation trans realize a partition of the set
{(t,c)|t is enabled for c from M} and group together the transitions that have been newly
enabled for the same firing and from the same marking. For cl and cl ′, this partition is
not the same because these two extended state classes are not clock similar. This partition
also groups the pairs (t,c) that are linked to the same clock of x. Since the transitions
which have been newly enabled for a colour from the same markings and which are en-
abled from M have the same clock values for ν, and since s 'sc a, we can deduce that
the partition of cl of the set {(t,c)|t is enabled for c from M} groups transitions that have
been newly enabled for a colour from the same markings in the path :

(m0,
_
0)

δ0→ (m0,v′0)
(t0,c0)→ (m1,v1)

δ1→ (m1,v′1)
(t1,c1)→ (m2,v2)...

δn→ (M,v)

which means that the partition is the same as the one cl ′. Hence cl and cl′ are clock-
similar, which is a contradiction.
�

Theorem 2 For all (s,a) ∈
_
QT ×QA, if s'sc a then :

1. ∀δ∈R≥0, if ∃a′ ∈QA such that a δ→ a′, then ∃s′ ∈
_
QT such that s δ→ s′ and s′'sc a′;

2. ∀(t,c) ∈ CT , if ∃a′ ∈ QA such that a (t,c)→ a′, then ∃s′ ∈
_
QT such that s (t,c)→ s′ and

s′ 'sc a′.

This second theorem can be proved the same way as the first theorem was proved. From
these two theorems, we can deduce a third theorem.

Theorem 3 The binary relation 'sc⊆
_
QT ×QA is a bisimulation.
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If we consider a TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 and its associated state
class timed automaton ∆(T ), since we have by construction (m0,

_
0) 'sc (cl0,

_
0), we can

conclude that a marking m is reachable from m0 in T if and only if there exists a state of
∆(T ) whose associated marking is m. Furthermore by finding all the states of ∆(T ) whose
markings are m and the sequences that lead to them, we can have all the sequences in T
that lead to m, which will allow us to verify real-time properties of T by verifying them
on ∆(T ). This is useful because there already exist tools to check real-time properties on
timed automata, such as Kronos [24] and Uppaal [3].

Boundedness

To be able to construct the state class timed automaton of a TTWN, we need the number
of extended state classes to be bounded, because if this number is not bounded, the con-
struction of the extended state class graph will never end, and consequently it will not be
possible to transform it into a timed automaton. In this part we present sufficient condi-
tions for a TTWN to have a bounded number of extended state classes. We will denote
R (m0) the set of markings which a TTWN can reach from its initial marking m0. First
we introduce a new definition.

Definition 22 A TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 is bounded if and only
if :

(∃k ∈ N)(∀m ∈ R (m0))(∀p ∈ P)(∀c ∈ C (p))(m(p)(c)≤ k)

Then we have the following theorem.

Theorem 4 A TTWN has a finite number of extended state classes if and only if it is
bounded.

Proof The proof for this theorem is similar to the one described in [4] . In fact, in this
article the lemmas that are used to prove the equivalent theorem for the Transitions Time
Petri Nets are deduced from the form of the firing domains and from the operations over
these firing domains. Since the firing domains have the same form and the operations
over these firing domains are the same for the TTWN, the theorem can be extended to the
TTWN.
�

Remark The only point that changes from the article [4] is the used of the definition
of T-boundedness.The notion of T-boundedness was used in [4] because the semantics
was slightly different, since if a transition was “simultaneously” enabled more than once,
two times for instance, then there were two clock valuations.However inour model if a
transition is enabled more than once for the same colour “simultaneously”, we take ac-
count only of one firing, and once it has been done the transition becomes newly enabled
for the colour (single-server semantics). Hence we do not need to make use of the concept
of T-boundedness.

The previous theorem does not help to solve the problem of finiteness of the extended
state class graph because of the following theorem.

Theorem 5 The reachability and boundedness problems for TTWN’s are undecidable.
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Proof It is possible to transform a Transitions Time Petri Net into a TTWN (for instance
by taking only one colour class with one element and labeling all the arcs with < X >).
Since reachability and boundedness are undecidable for the Transitions Time Petri Nets
(Theorem 1 in [4]), we conclude that these two problems are also undecidable for the
TTWN.
�

Even if we cannot have results on the full class of TTWN to determine if they are bounded,
the two following theorems give some sufficient conditions for the boundedness of a
TTWN.

Theorem 6 (Sufficient Condition 1) A TTWN is bounded if no pair of extended state
classes Cl = 〈m,D,χ, trans〉 and Cl ′ = 〈m′,D′,χ′, trans′〉 are reachable from its initial
extended state class and are such that :

(i) Cl′ is reachable from Cl;

(ii) ∀p ∈ P, m′(p)≥ m(p) and ∃p ∈ P, ∃c ∈ C (p) such that m′(p)(c)> m(p)(c).

Theorem 7 (Sufficient Condition 2) A TTWN is bounded if no pair of extended state
classes Cl = 〈m,D,χ, trans〉 and Cl ′ = 〈m′,D′,χ′, trans′〉 are reachable from its initial
extended state class and are such that :

(i) Cl′ is reachable from Cl;

(ii) ∀p ∈ P, m′(p)≥ m(p) and ∃p ∈ P, ∃c ∈ C (p) such that m′(p)(c)> m(p)(c) ;

(iii) [|D|] = [|D′|];

(iv) ∀(p,c) ∈ {(p,c)|p ∈ P∧ c ∈ C (p)∧m′(p)(c)> m(p)(c)},
m(p)(c)>Max(t,c′)∈CT W−(p, t)(c′)(c).

These two theorems are also directly deduced from the equivalent theorems which appear
in [4] for the Transitions Time Petri Nets. The proofs are identical to those that could be
found in that article, which are based on construction of unbounded sequences using the
results of the article [19] .

These two last theorems can be used in the algorithm to halt execution it when a pair
of extended state classes that verifies the four conditions of the second sufficient condi-
tion will be encountered. It is true that doing so the algorithm might stop for TTWN
that are bounded but since the conditions are quite strict, it will work for a large set of
bounded TTWN. But since the condition [(iii)] and [(iv)] cost a lot to verify, sometimes
the first sufficient condition might be chosen for the algorithm even if it is effective for
fewer TTWN.
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3.5 Example
In this section, we extend the well-known problem of the dining philosophers with time
constraints. In fact, we have supposed that when its forks are enabled, a philosopher will
take them in at most the next two time units, if the forks stay enabled during this time.
We have also supposed that each philosopher takes at least one time unit and at most
two time units to eat. Figure 3.1 gives the TTWN associated to this model. Figure 3.2
gives the associated state class timed automaton (in this timed automaton, T represents
the transition Take and P represents the transition Put).

Figure 3.1: The philosophers problem with time constraints

The extended state classes that feature in the state class timed automaton represented by
the figure 3.2 are defined by :
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• Cl0 = 〈m0,D0,χ0, trans0〉 with :

1. m0(T hinking) =< 1 > + < 2 > + < 3 > + < 4 >, m0(Forks) =< 1 > + <
2>+< 3>+< 4> and m0(Eating) = /0;

2. D0 is defined by : 



0≤ θT,<1> ≤ 2
0≤ θT,<2> ≤ 2
0≤ θT,<3> ≤ 2
0≤ θT,<4> ≤ 2

3. χ0 = {x0};
4. trans0(x0) = {(T,< 1>),(T,< 2>),(T,< 3>),(T,< 4>)}.

• Cl1 = 〈m1,D1,χ1, trans1〉 with :

1. m1(T hinking) =< 2 > + < 3 > + < 4 >, m1(Forks) =< 3 > + < 4 > and
m1(Eating) =< 1>;

2. D1 is defined by : {
0≤ θT,<3> ≤ 2
0≤ θP,<1> ≤ 2

3. χ1 = {x0,x1};
4. trans1(x0) = {(T,< 3>)} and trans1(x1) = {(P,< 1>)}.

• Cl2 = 〈m2,D2,χ2, trans2〉 with :

1. m2(T hinking) =< 1 > + < 3 > + < 4 >, m2(Forks) =< 1 > + < 4 > and
m2(Eating) =< 2>;

2. D2 is defined by : {
0≤ θT,<4> ≤ 2
0≤ θP,<2> ≤ 2

3. χ2 = {x0,x1};
4. trans2(x0) = {(T,< 4>)} and trans2(x1) = {(P,< 2>)}.

• Cl3 = 〈m3,D3,χ3, trans3〉 with :

1. m3(T hinking) =< 1 > + < 2 > + < 4 >, m3(Forks) =< 1 > + < 2 > and
m3(Eating) =< 3>;

2. D3 is defined by : {
0≤ θT,<1> ≤ 2
0≤ θP,<3> ≤ 2

3. χ3 = {x0,x1};
4. trans3(x0) = {(T,< 1>)} and trans3(x1) = {(P,< 3>)}.
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• Cl4 = 〈m4,D4,χ4, trans4〉 with :

1. m4(T hinking) =< 1 > + < 2 > + < 3 >, m4(Forks) =< 2 > + < 3 > and
m4(Eating) =< 4>;

2. D4 is defined by : {
0≤ θT,<2> ≤ 2
0≤ θP,<4> ≤ 2

3. χ4 = {x0,x1};
4. trans4(x0) = {(T,< 2>)} and trans4(x1) = {(P,< 4>)}.

• Cl5 = 〈m5,D5,χ5, trans5〉 with :

1. m5(T hinking) =< 1 > + < 2 > + < 3 > + < 4 >, m5(Forks) =< 1 > + <
2>+< 3>+< 4> and m5(Eating) = /0;

2. D5 is defined by : 



0≤ θT,<1> ≤ 2
0≤ θT,<2> ≤ 2
0≤ θT,<3> ≤ 2
0≤ θT,<4> ≤ 2

3. χ5 = {x0,x1};
4. trans5(x0) = {(T,< 3>)} and trans5(x1) = {(T,< 1>),(T,< 2>),(T,< 4>

)}.

• Cl6 = 〈m6,D6,χ6, trans6〉 with :

1. m6(T hinking) =< 2>+< 4>, m6(Forks) = /0 and m6(Eating) =< 1>+<
3>;

2. D6 is defined by : {
0≤ θP,<1> ≤ 2
0≤ θP,<3> ≤ 2

3. χ6 = {x0,x1};
4. trans6(x0) = {(P,< 3>)} and trans6(x1) = {(P,< 1>)}.

• Cl7 = 〈m7,D7,χ7, trans7〉 with :

1. m7(T hinking) =< 1 > + < 2 > + < 3 > + < 4 >, m7(Forks) =< 1 > + <
2>+< 3>+< 4> and m7(Eating) = /0;

2. D7 is defined by : 



0≤ θT,<1> ≤ 2
0≤ θT,<2> ≤ 2
0≤ θT,<3> ≤ 2
0≤ θT,<4> ≤ 2
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3. χ7 = {x0,x1};
4. trans7(x0) = {(T,< 4>)} and trans7(x1) = {(T,< 1>),(T,< 2>),(T,< 4>

)}.

• Cl8 = 〈m8,D8,χ8, trans8〉 with :

1. m8(T hinking) =< 1>+< 3>, m8(Forks) = /0 and m8(Eating) =< 2>+<
4>;

2. D8 is defined by : {
0≤ θP,<2> ≤ 2
0≤ θP,<4> ≤ 2

3. χ8 = {x0,x1};
4. trans8(x0) = {(P,< 4>)} and trans8(x1) = {(P,< 2>)}.

• Cl9 = 〈m9,D9,χ9, trans9〉 with :

1. m9(T hinking) =< 1 > + < 2 > + < 3 > + < 4 >, m9(Forks) =< 1 > + <
2>+< 3>+< 4> and m9(Eating) = /0;

2. D9 is defined by : 



0≤ θT,<1> ≤ 2
0≤ θT,<2> ≤ 2
0≤ θT,<3> ≤ 2
0≤ θT,<4> ≤ 2

3. χ9 = {x0,x1};
4. trans9(x0) = {(T,< 1>)} and trans9(x1) = {(T,< 2>),(T,< 3>),(T,< 4>

)}.

• Cl10 = 〈m10,D10,χ10, trans10〉 with :

1. m10(T hinking) =< 1>+< 2>+< 3>+< 4>, m10(Forks) =< 1>+<
2>+< 3>+< 4> and m10(Eating) = /0;

2. D10 is defined by : 



0≤ θT,<1> ≤ 2
0≤ θT,<2> ≤ 2
0≤ θT,<3> ≤ 2
0≤ θT,<4> ≤ 2

3. χ10 = {x0,x1};
4. trans10(x0) = {(T,< 2 >)} and trans10(x1) = {(T,< 1 >),(T,< 3 >),(T,<

4>)}.
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Figure 3.2: The associated state class timed automaton
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Chapter 4

Marking class Timed Automaton of the
Transitions Time Well-formed Nets

4.1 Introduction
The strucuture of the state class timed automaton of a Transitions Time Well-formed Net
(TTWN), which we have presented in chapter 3, is quite similar to the one of the ordinary
reachability graph of the underlying Well-formed net (i.e. the Well-formed net obtained by
removing the time constraints). In this chapter, we present another timed automaton which
has the same behavior as the TTWN and which is built from the ordinary reachability
graph. We first present this method for Transitions Time Petri Net (TTPN) and then we
extend it to the TTWN. We conclude the chapter by explaining in which cases this timed
automaton can be built and what are the differences with the state class timed automaton.

4.2 Reachability Graph of the untimed Net
In this chapter we will consider a TTPN T = 〈P,T,W−,W +,m0,(α,β)〉 where :
• P = {p1, ..., pm} is the finite set of places;

• T = {t1, ..., tn} is the finite set of transitions such that P∩T = /0 and P∪T 6= /0;

• W− ∈ (NP)T is the backward incidence mapping ;

• W + ∈ (NP)T is the forward incidence mapping ;

• m0 ∈ NP represents the initial marking ;

• α ∈ (Q≥0)T and β ∈ (Q≥0∪{∞})T are the earliest and latest firing time mappings.
The semantics of such a TTPN is described in chapter 1 . We denote by ST the timed
transition system which characterizes the behavior of T . We will “untime” this TTPN
in order to obtain a Place/Transition Petri Net P = 〈P,T,W−,W +,m0〉. We denote by
Run(m0) the set of markings that P can reach from its initial marking m0 (hence Run(m0)⊆
NP). When this Petri Net is bounded (i.e. (∃k ∈ N)(∀p ∈ P)(∀m ∈ Run(m0))(m(p)≤ k)),
the behavior of this Petri Net can be represented by a finite-state transition sytem ST =
〈Q,q0,T,→〉 where :
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• Q = Run(m0);

• q0 = m0;

• the transition relation→ is defined by, ∀M,M′ ∈ Run(m0),∀t ∈ T :

M t→M′⇔
{

M ≥W−(t) and
M′ = M +W +(t)−W−(t)

This transition sytem is called the reachability graph of the Petri Net. From this reacha-
bility graph, we build a timed automaton which will have the same behavior as the TTPN.

4.3 Marking class timed automaton of a TTPN
4.3.1 Marking classes of a TTPN
In this section we will define the marking classes of a TTPN. A marking class corresponds
to a marking of the underlying Petri Net and a set of clocks associated to the enabled
transitions for the marking.

Definition 23 A marking class of a TTPN T = 〈P,T,W−,W +,m0,(α,β)〉 is a tuple 〈M,χ, trans〉
where M is a marking belonging to Run(m0), χ is a set of real valued clocks and trans ∈
(2T )χ maps clocks to sets of transitions.
We will denote M C the set of the marking classes of a Transitions Time Petri Net.

The relation trans associates to each clock x∈ χ a set of transitions such that ∀t ∈ trans(x),
x represents the value linked to t. Each transition t ∈ T must be associated to at most one
clock (i.e. ∀t ∈ T , |trans−1(t)| ≤ 1).

We also need the notion of clock-similarity for the marking classes.

Definition 24 Two marking classes Mc = 〈M,χ, trans〉 and Mc′ = 〈M′,χ′, trans′〉 are
clock-similar, denoted Mc ≈ Mc′ if and only if they have the same marking, the same
number of clocks and their clocks are mapped to the same transitions, i.e. :

Mc≈Mc′⇔





M = M′ and
|χ|= |χ′| and
∀x ∈ χ,∃x′ ∈ χ′, trans(x) = trans′(x′)

4.3.2 Construction of the marking class graph
In this part, we give the algorithm which allows the building of the marking class graph
Γ′(T ) of a TTPN T , which is a transition system Γ′(T ) = 〈M C ,Mc0,T,→mc〉. The
initial marking class Mc0 = 〈m0,{x0}, trans0〉 is defined by :

• m0 is the initial marking of T ;

• The set of clocks χ0 of Mc0 is composed of a single clock x0;
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• trans0 is defined by trans0(x0) = {t ∈ T | t is enabled for m0}.

To build the marking class graph, we use a breadth-first graph generation algorithm. This
algorithm begins by computing the sons of the initial marking class, then it proceeds
by progressively computing the sons of each computed marking class. The algorithm
terminates when it cannot compute more new marking classes. This algorithm can be
written as follows :

• The variables are MSG (the marking state graph itself) and a FIFO queue New
(which contains the newly computed marking classes);

• The variables are initialized to : MSG := {Mc0} and New := Mc0;

• WHILE New is NOT empty DO

– C := remove(New) (The first marking class of New is taken, C := 〈MC,χC, transC〉);
– For all transitions t enabled for MC (i.e. MC ≥W−(t)) DO
∗ (Computation of the marking class C′ = 〈MC′ ,χC′, transC′〉, son of C )
∗ MC′ = MC +W +(t)−W−(t);
∗ Computation of χC′ and transC′ :

1. For each clock x ∈ χC, remove from transC(x) all the transitions tk
such that tk is enabled from MC and is not from MC−W−(t), to obtain
a relation trans′;

2. The clocks whose image by trans′ is empty are removed from χC, to
obtain a set of clocks χ′;

3. For all transitions tk which verify ↑ enabled(tk,MC, t) = True DO :
+ IF a clock x has already been created for the computation of C′

+ THEN tk is added to trans′(x);
+ ELSE a new clock xn is created; n is the smallest available index

among the clocks of χ′ and trans′(xn) = tk;
4. ENDDO; χC′ and transC′ are then obtained from the resulting set χ′

and function trans′;
∗ IF there is a marking class C′′ in MSG such that C′ ≈C′′

∗ THEN MSG := MSG∪{C t→mc C′′};
∗ ELSE MSG := MSG∪{C t→mc C′} and add(New,C′);
∗ ENDIF;

– ENDDO;

• ENDDO.

We remark that the construction of this graph can be done by following the different paths
in the reachability graph of the underlying Petri Net adding clock set χ′ and relation trans′
and possibly ”unlooping” some loops of the reachability graph when a marking is reached
many times with asoociated marking classes which are not clock-similar.
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4.3.3 The marking class timed automaton
From the marking class graph defined previously, it is possible to build a timed automaton
Γ(T ) which will have the same behavior as the TTPN T , as we will show in the next
section.

Definition 25 Let T = 〈P,T,W−,W +,m0,(α,β)〉 be a TTPN and Γ′(T ) = 〈M C ,Mc0,
T,→mc〉 its associated marking class graph. The marking class timed automaton Γ(T )
associated to T is the timed automaton 〈L,L0,Σ,X , I,E〉 defined by :

• L = M C is the set of the marking classes ;

• L0 = {Mc0}, where Mc0 is the initial marking class (Mc0 = 〈m0,{x0}, trans0〉);

• X =
S
〈M,χ,trans〉∈M C χ;

• Σ = T ;

• E is the set of switches defined by :

∀Ci = 〈Mi,χi, transi〉 ∈M C

∀C j = 〈M j,χ j, trans j〉 ∈M C
∃Ci

ti→mc C j⇔∃(si,a,φ,λ,ρ,s j) ∈ E such that




si = Ci and
s j = C j and
a = ti and
φ = (trans−1

i (ti,)≥ α(ti)) and
λ = {trans−1

j (tk)| ↑ enabled(tk,Mi, ti) = True} and
∀x ∈ χi,∀x′ ∈ χ j, such that trans j(x′)⊆ transi(x) and x′ 6∈ λ,ρ(x′) = x

• ∀Ci = 〈Mi,χi, transi〉 ∈M C , I(Ci) =
V

x∈χi,t∈transi(x)(x≤ β(t)).

4.4 Properties of the marking class timed automaton
Now that we have a method to build the marking class timed automaton, we will give
some properties over this timed automaton.

4.4.1 Bisimulation
In this section, we will define a binary relation between the states of the TTPN T and the
states of its associated marking class timed automaton and we will prove that this relation
is a bisimulation.
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Definition 26 Let T = 〈P,T,W−,W +,m0,(α,β)〉 be a TTPN and Γ(T ) its associated
marking class timed automaton. We consider

_
QT the set of reachable states of T and QA

the set of states of Γ(T ). We define the relation 'mc⊆
_
QT ×QA by, ∀s = (M,νT ) ∈

_
QT ,

∀a = (Mc,νA) ∈ QA (with Mc = 〈Ma,χa, transa〉) :

s'mc a⇔





M = Ma and

∀t ∈ T such that t is enabled from M,
νT (t) = νA(x) with x ∈ χa such that t ∈ transa(x)

Given the definition of the relation 'mc, we have the following results.

Theorem 8 For all (s,a) ∈
_
QT ×QA, if s'mc a then :

1. ∀δ∈R≥0, if ∃s′ ∈
_
QT such that s δ→ s′, then ∃a′ ∈QA such that a δ→ a′ and s′'mc a′;

2. ∀t ∈ T , if ∃s′ ∈
_
QT such that s t→ s′, then ∃a′ ∈ QA such that a t→ a′ and s′ 'mc a′.

Proof Let s = (M,νT ) be a state in
_
QT and a = (Mc,νA) with Mc = 〈Ma,χa, transa〉 be a

state in QA such that s'mc a.
We consider δ ∈ R≥0 and we suppose that there exists s′ ∈

_
QT such that s δ→ s′. Then

s′ = (M,ν′T ) with ν′T = νT +δ. For all t ∈ T , such that t is enabled from M, we have then
(by definition of continuous transitions), νT (t) + δ≤ β(t). Since s'mc a, we can deduce
that for all t ∈ T such that t is enabled from M, and for x ∈ χa such that t ∈ transa(x), we
have νA(x) + δ≤ β(t). For all x ∈ χa, for all t ∈ T , if t ∈ transa(x) then t is enabled from
Ma = M (by construction of the relation trans). Then we have

V
x∈χa,t∈transa(x)(νA(x)+δ≤

β(t)), which means that νA + δ satisfies I(Mc) =
V

x∈χa,t∈transa(x)(x ≤ β(t)). We deduce

that there exist a′ ∈ QA such that a δ→ a′ with a′ = (Mc,ν′A) and ν′A = νA + δ.
The markings which appear in a′ and s′ are equal because the marking class of a′ is the
same as the one of a, the marking of s′ is the same marking as the one from s and the
marking of s and the marking of the marking class of a are equal (due to the fact that
s 'mc a). We consider t ∈ T such that t is enabled from M, and denote x the clock in
χa such that t ∈ transa(x); then νT (t) = νA(x), and consequently νT (t) + δ = νA(x) + δ.
Since ν′T = νT + δ and ν′A = νA + δ, and since the marking classes in a and in a′ are the
same, we can deduce that for all t ∈ T such that t is enabled from M, for x ∈ χa such that
t ∈ transa(x), we have ν′T (t) = ν′A(x); hence s′ 'mc a′.

Now we consider t ∈ T , and we suppose that there exists s′ = (M′,ν′T ) ∈
_
QT such that

s t→ s′. We can deduce that t is enabled from M, consequently there exists an edge of the
form Mc t→mc Mc′ in the marking class graph associated to the TTPN, and hence there
exists a switch e = (Mc, t,φ,λ,ρ,Mc′) in the associated marking class timed automaton.
Furthermore, since we have s t→ s′ for the TTPN, we can deduce that νT (t) ≥ α(t). We
consider x ∈ χa such that t ∈ trans(x). Since s'mc a, we have νA(x)≥ α(t), and since the
guard φ on the switch e is by construction x≥α(t), we conclude that νA satisfies φ. We can
conclude that there exists a′= (Mc′,ν′A)∈QA such that a t→ a′ and Mc′= 〈M′a,χ′a, trans′a〉
with, by construction of Mc′, M′a = Ma +W +(t)−W−(t) = M +W +(t)−W−(t) = M′.
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Now we want to prove that ∀t ′ ∈ T such that t ′ is enabled from M′, for x′ ∈ χ′a such that
t ∈ trans′a(x′), we have ν′A(x′) = ν′T (t ′). We consider a transition t ′ ∈ T such that t ′ is
enabled from M′. Two cases are possible :

1. ↑ enabled(t ′,M, t) = False. This means that t ′ is enabled from M, and we deduce
that for x ∈ χa such that t ∈ transa(x), we have νT (t) = νA(x). By definition of
s t→ s′, we have ν′(t ′) = ν(t ′). We denote x′ the clocks of χ′a such that t ′ ∈ trans′a(x′).
By construction of the marking class timed automaton, since t ′ is not newly enabled,
we deduce that trans′a(x′) ⊆ transa(x) (in fact, during the construction of the am-
rking class graph, when a set trans(x) that contains enabled transtions which are
not newly enabled, is built, no transition t is added to this set; only removal of
transitions is performed, and here t ′ is not removed because the associated transi-
tion is not disabled by the firing of t). We deduce that the renaming function ρ of
the switch is such that ρ(x′) = ρ(x). Hence we have, by construction of a t→ a′,
ν′A(x′) = νA(ρ(x′)) = νA(x). Consequently ν′A(x′) = ν′T (t ′).

2. ↑ enabled(t ′,M, t) = True. We have by definition of s t→ s′, ν′T (t ′) = 0. By con-
struction of the marking class graph, a new clock x′ has been created for Mc′ such
that t ′ ∈ trans′a(x′) and such that x′ ∈ λ. Hence we have ν′A(x′) = ν′T (t ′) = 0.

We conclude that s′ 'mc a′.
�

Theorem 9 For all (s,a) ∈
_
QT ×QA, if s'mc a then :

1. ∀δ∈R≥0, if ∃a′ ∈QA such that a δ→ a′, then ∃s′ ∈
_
QT such that s δ→ s′ and s′'mc a′;

2. ∀t ∈ T , if ∃a′ ∈ QA such that a t→ a′, then ∃s′ ∈
_
QT such that s t→ s′ and s′ 'mc a′.

Proof Let s = (M,νT ) be a state in
_
QT and a = (Mc,νA) with Mc = 〈Ma,χa, transa〉 be a

state in QA such that s'mc a.
We consider δ ∈ R≥0 and we suppose that there exists a′ ∈ QA such that a δ→ a′. Then
a′ = (Mc,ν′A) with ν′A = νA + δ. For all x ∈ χa, for all t ∈ transa(x) we have then (by
definition of continuous transitions), νA(x)+ δ≤ β(t). Since s'mc a, we can deduce that
for all t ∈ T such that t is enabled from M, and for x ∈ χa such that t ∈ transa(x), we have
νT (t)+δ≤ β(t). We deduce that there exists s′ ∈

_
QT such that s δ→ s′ with s′ = (Mc,ν′T )

and ν′T = νT + δ.
The markings which appear in a′ and s′ are equal because the marking class of a′ is the
same as the one of a, the marking of s′ is the same marking as the one from s, and the
marking of s and the marking of a are equal (due to the fact that s 'mc a). We consider
t ∈ T such that t is enabled from M, and denote x the clock in χa such that t ∈ transa(x);
then νT (t) = νA(x), and consequently νT (t) + δ = νA(x) + δ. Since ν′T = νT + δ and
ν′A = νA + δ, since the marking classes in a and in a′ are the same, we can deduce that
for all t ∈ T such that t is enabled from M, for x ∈ χa such that t ∈ transa(x), we have
ν′T (t) = ν′A(x); hence s′ 'mc a′.
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Now we consider t ∈ T , and we suppose that there exists a′ = (Mc′,ν′A) ∈ QA such that
a t→ a′ with Mc′ = 〈M′a,χ′a, trans′a〉.This implies that there exists in the marking class
timed automaton an edge of the form (Mc, t,φ,λ,ρ,Mc′). We can deduce that t is en-
abled from M and we denote x the clock in χa such that t ∈ transa(x). Furthermore, since
a t→ a′, νA satisfies I(Mc) (the invariant of the location linked to Mc) and also φ. Since
I(Mc) =

V
y∈χa,t∈transa(y)(y≤ β(t)) and φ = x≥ α(t), and since s'mc a, we conclude that

α(t) ≤ νT (t)≤ β(t). Consequently there exists s′ = (M′,ν′T ) ∈
_
QT such that s t→ s′ and

M′ = M +W +(t)−W−(t) = Ma +W +(t)−W−(t) = M′a.
Now we want to prove that ∀t ′ ∈ T such that t ′ is enabled from M′, for x′ ∈ χ′a such that
t ∈ trans′a(x′), we have ν′A(x′) = ν′T (t ′). The proof of this property is the same as the one
proposed in the previous theorem for the equivalent property. We conclude that s′ 'mc a′.
�

From this two theorems, we can conclude the following result.

Theorem 10 The binary relation 'mc⊂
_
QT ×QA is a bisimulation.

If we consider a TTPN T = 〈P,T,W−,W +,m0,(α,β)〉 and its associated marking class
timed automaton Γ(T ), since we have by construction (m0,

_
0)'mc (Mc0,

_
0), we conclude

that a marking m is reachable from m0 in T if and only if there exists a state of Γ(T ) whose
associated marking is m, furthermore by finding all the states of Γ(T ) which accept m as
marking and the sequences which lead to them, we can obtain all the sequences in T
which lead to m; this will allow us to verify real-time properties of T by verifiyng them
on Γ(T ).

4.4.2 Boundedness
In order to build the marking class timed automaton of a Transitions Time Petri Net, the
number of marking classes has to be bounded, otherwise the construction of the marking
class graph will not terminate.

Theorem 11 A Transitions Time Petri Net has a bounded number of marking classes if
and only if the underlying Petri Net (i.e. the Petri Net obtained by untiming the TTPN) is
bounded.

Proof From the construction of the marking state class graph, we conclude that, for each
marking present in the reachability graph of the underlying Petri Net, there exists at least
one marking class in the marking class graph. Since two different classes with the same
marking differ only with regard to the partition of the set of the enabled transitions, and
since the number of transitions is finite, we conclude that if the underlying Petri Net is
bounded, it has a bounded number of markings, and consequently the number of marking
classes of the Transitions Time Petri Net is bounded. If the underlying Petri Net is not
bounded, then it has an infinite number of markings and the TTPN has also an infinite
number of marking classes.
�
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From this theorem, we deduce that we will be able to build the marking class timed au-
tomaton only for TTPN which have bounded underlying Petri Nets. In constrast to the
case of the boundedness of Transitions Time Petri Nets, the boundedness of a Petri Net is
decidable [16] .

Theorem 12 A Petri Net 〈P,T,W−,W +,m0〉 is not bounded if and only if there exist two
markings M,M′ ∈ Run(m0) which fulfill the following conditions :

1. M′ is reachable from M ;

2. M′ >M.

Consequently, it is possible to build the marking class graph on the fly: if a pair of mark-
ings which verify the previous conditions are encountered then the algorithm stops, be-
cause the underlying Petri Net is not bounded.

4.5 Extension to the Transitions Time Well-formed Nets
Just as we had extended in chapter 3 the state class timed automaton of a TTPN to TTWN,
we can adapt the marking state class timed automaton to TTWN. In this section, we will
only give the definitions, algorithms and properties linked to the marking class timed
automaton of a TTWN, because the proofs and the explanations are the same as the ones
for the TTPN.

4.5.1 Marking class graph of a TTWN
For a TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉, we denote Run(m0) the set of the
markings reachable in the untimed Well-formed net 〈P,T,W−,W +,Cl,C ,Φ,m0〉 from the
initial marking m0.

Definition 27 A marking class of a TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 is a
tuple 〈M,χ, trans〉 where M is a marking belonging to Run(m0), χ is a set of real valued
clocks and trans ∈ (2CT )χ is a relation, which maps clocks with sets of CT .
We will denote M C the set of the marking classes of a TTWN.

Just as for the TTPN, each pair (t,c) of CT must be associated to at most one clock in the
relation trans.

Definition 28 Two marking classes Mc = 〈M,χ, trans〉 and Mc′ = 〈M′,χ′, trans′〉 of a
TTWN are clock-similar, denoted Mc≈Mc′ if and only if they have the same marking, the
same number of clocks and their clocks are mapped to the same transitions, i.e. :

Mc≈Mc′⇔





M = M′

|χ|= |χ′|
∀x ∈ χ,∃x′ ∈ χ′, trans(x) = trans′(x′)

We will also denote Γ′(T ) the marking class graph of a TTWN T , which is a transition
system Γ′(T ) = 〈M C ,Mc0,CT ,→mc〉. The initial marking class Mc0 = 〈m0,{χ0}, trans0〉
is defined by :
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• m0 is the initial marking of T ;

• The set of clocks χ0 of Mc0 is composed of a single clock x0;

• trans0 is defined by trans0(x0) = {t ∈ T | t is enabled for m0}.

The algorithm to compute the marking class graph can be written as follows :

• The variables are MSG (the marking state graph itself) and a FIFO queue New
(which contains the newly computed marking classes);

• The variables are initialized to : MSG := {Mc0} and New := Mc0;

• WHILE New is NOT empty DO

– C := remove(New) (The first marking class of New is taken, C := 〈MC,χC, transC〉);
– For all pairs (ti,ci, j) ∈ CT such that ti is enabled for ci, j in MC (i.e. ∀p ∈

P,MC(p)≥W−(p, ti)(ci, j) and Φ(ti)(ci, j) = True) DO
∗ (Computation of the marking class C′ = 〈MC′ ,χC′, transC′〉 son of C )
∗ For all p ∈ P,MC′(p) = MC(p) +W +(p, ti)(ci, j)−W−(p, ti)(ci, j);
∗ Computation of χC′ and transC′ :

1. For each clock x ∈ χC, remove from transC(x) all the pairs (tk,ck,l)
such that tk is enabled for ck,l in MC and not for the marking M′ de-
fined by ∀p∈ P, M′(p) = MC(p)−W−(p, ti)(ci, j), to obain a relation
trans′;

2. The clocks whose image by trans′ is empty are removed from χC, to
obtain a set of clocks χ′;

3. For all pairs (tk,ck,l)∈CT which verify ↑ enabled((tk,ck,l),MC,(ti,ci, j)) =
True DO :
+ IF a clock x has already been created for the computation of C′

+ THEN (tk,ck,l) is added to trans′(x);
+ ELSE a new clock xn is created; n is the smallest available index

among the clocks of χ′ and trans′(xn) = (tk,ck,l);
4. ENNDO; χC′ and transC′ are then obtained from the resulting set χ′

and function trans′;
∗ IF there is a marking class C′′ in MSG such that C′ ≈C′′

∗ THEN MSG := MSG∪{C (ti,ci, j)→ mc C′′};
∗ ELSE MSG := MSG∪{C (ti,ci, j)→ mc C′} and add(New,C′);
∗ ENDIF;

– ENDDO;

• ENDDO.
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4.5.2 Marking class timed automaton of a TTWN
The marking class Γ(T ) can then be defined.
Definition 29 Let T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 be a TTWN and Γ′(T ) = 〈M C ,
Mc0,CT ,→mc〉 its associated marking class graph. The marking class timed automaton
Γ(T ) associated to T is the timed automaton 〈L,L0,Σ,X , I,E〉 defined by :
• L = M C is the set of the marking classes ;

• L0 = {Mc0}, where Mc0 is the initial marking class (Mc0 = 〈m0,{x0}, trans0〉);
• X =

S
〈M,χ,trans〉∈M C χ;

• Σ = CT ;

• E is the set of switches defined by :
∀Ci = 〈Mi,χi, transi〉 ∈M C
∀C j = 〈M j,χ j, trans j〉 ∈M C

∃Ci
(ti,ci, j)→ mc C j⇔∃(si,a,φ,λ,ρ,s j) ∈ E such that





si = Ci and
s j = C j and
a = (ti,ci, j) and
φ = (trans−1

i ((ti,ci, j))≥ α(ti)) and
λ = {trans−1

j ((tk,ck,l))| ↑ enabled((tk,ck,l),Mi,(ti,ci, j)) = True} and
∀x ∈ χi,∀x′ ∈ χ j, such that trans j(x′)⊆ transi(x) and x′ 6∈ λ,ρ(x′) = x

• ∀Ci = 〈Mi,χi, transi〉 ∈M C , I(Ci) =
V

x∈χi,(t,c)∈transi(x)(x≤ β(t)).

4.5.3 Properties
The properties which were found for the marking class timed automaton of a TTPN can be
extended to the marking class timed automaton of a TTWN. The proofs are substantially
the same, the main difference being that we consider pairs (t,c) which belong to CT
instead of considering only transitions.

Bisimulation

Definition 30 Let T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 be a TTWN and Γ(T ) its as-
sociated marking class timed automaton. We consider

_
QT the set of reachable states

of T and QA the set of states of Γ(T ). We define the relation 'mc⊆
_
QT ×QA by,

∀s = (M,νT ) ∈
_
QT , ∀a = (Mc,νA) ∈ QA (with Mc = 〈Ma,χa, transa〉) :

s'mc a⇔





M = Ma and

∀(t,c) ∈ CT such that t is enabled for c in M,
νT ((t,c)) = νA(x) with x ∈ χa such that (t,c) ∈ transa(x)
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Theorem 13 For all (s,a) ∈
_
QT ×QA, if s'mc a then :

1. ∀δ∈R≥0, if ∃s′ ∈
_
QT such that s δ→ s′, then ∃a′ ∈QA such that a δ→ a′ and s′'mc a′;

2. ∀(t,c) ∈ CT , if ∃s′ ∈
_
QT such that s (t,c)→ s′, then ∃a′ ∈ QA such that a (t,c)→ a′ and

s′ 'mc a′.

Theorem 14 For all (s,a) ∈
_
QT ×QA, if s'mc a then :

1. ∀δ∈R≥0, if ∃a′ ∈QA such that a δ→ a′, then ∃s′ ∈
_
QT such that s δ→ s′ and s′'mc a′;

2. ∀(t,c) ∈ CT , if ∃a′ ∈ QA such that a (t,c)→ a′, then ∃s′ ∈
_
QT such that s (t,c)→ s′ and

s′ 'mc a′.

Theorem 15 The binary relation 'mc⊂
_
QT ×QA is a bisimulation.

Boundedness

With regards to the the number of marking classes of TTWN, we have the following
theorem.

Theorem 16 A TTWN has a bounded number of marking classes if and only if the un-
derlying Well-formed Net (i.e. the Well-formed Net obtained by untiming the TTWN) is
bounded.

With the regards to the boundedness of a Well-formed Net, the following theorem can be
deduced from the equivalent theorem for Petri Nets.

Theorem 17 A Well-formed Net T = 〈P,T,W−,W +,Cl,C ,Φ,m0〉 is not bounded if and
only if there exist two markings M,M′ ∈ Run(m0) which fulfill the following conditions :

1. M′ is reachable from M;

2. ∀p ∈ P, M′(p)≥M(p) and ∃p ∈ P, ∃c ∈ C (p) such that M′(p)(c)>M(p)(c).

4.6 An example
As in chapter 3, we present here an exemple based on the problem of the dining philoso-
phers to which we added time constraints. The TTWN corresponding to this problem is
given in Figure 3.1.
The ordinary reachability graph of the underlying Well-formed Net is given by the Figure
4.1.

In this ordinary reachability graph, the markings correspond to the following list :

• M0(T hinking) =< 1 > + < 2 > + < 3 > + < 4 >, M0(Forks) =< 1 > + < 2 >
+< 3>+< 4> and M0(Eating) = /0;
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Figure 4.1: Reachability graph for the problem of the philosophers

• M1(T hinking) =< 2>+< 3>+< 4>, M0(Forks) =< 3>+< 4> and M1(Eating) =
< 1 >;

• M2(T hinking) =< 1>+< 3>+< 4>, M1(Forks) =< 1>+< 4> and M2(Eating) =
< 2 >;

• M3(T hinking) =< 1>+< 2>+< 4>, M3(Forks) =< 1>+< 2> and M3(Eating) =
< 3 >;

• M4(T hinking) =< 1>+< 2>+< 3>, M4(Forks) =< 2>+< 3> and M4(Eating) =
< 4 >;

• M5(T hinking) =< 2>+< 4>, M4(Forks) = /0 and M5(Eating) =< 1>+< 3>;

• M6(T hinking) =< 1>+< 3>, M4(Forks) = /0 and M6(Eating) =< 2>+< 4>.

The marking class timed automaton of this TTWN is given by the Figure 4.2.

The description of the different marking classes which feature on this timed automaton is
given by :

• Mc0 = 〈M0,χ0, trans0〉 with :

1. χ0 = {x0};
2. trans0(x0) = {(T,< 1>),(T,< 2>),(T,< 3>),(T,< 4>)}.

• Mc1 = 〈M1,χ1, trans1〉 with :

1. χ1 = {x0,x1};
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2. trans1(x0) = {(T,< 3>)} and trans1(x1) = {(P,< 1>)}.

• Mc2 = 〈M2,χ2, trans2〉 with :

1. χ2 = {x0,x1};
2. trans2(x0) = {(T,< 4>)} and trans2(x1) = {(P,< 2>)}.

• Mc3 = 〈M3,χ3, trans3〉 with :

1. χ3 = {x0,x1};
2. trans3(x0) = {(T,< 1>)} and trans3(x1) = {(P,< 3>)}.

• Mc4 = 〈M4,χ4, trans4〉 with :

1. χ4 = {x0,x1};
2. trans4(x0) = {(T,< 2>)} and trans4(x1) = {(P,< 4>)}.

• Mc5 = 〈M0,χ5, trans5〉 with :

1. χ5 = {x0,x1};
2. trans5(x0) = {(T,< 3>)} and trans5(x1) = {(T,< 1>),(T,< 2>),(T,< 4>

)}.

• Mc6 = 〈M5,χ6, trans6〉 with :

1. χ6 = {x0,x1};
2. trans6(x0) = {(P,< 3>)} and trans6(x1) = {(P,< 1>)}.

• Mc7 = 〈m0,χ7, trans7〉 with :

1. χ7 = {x0,x1};
2. trans7(x0) = {(T,< 4>)} and trans7(x1) = {(T,< 1>),(T,< 2>),(T,< 4>

)}.

• Mc8 = 〈M6,χ8, trans8〉 with :

1. χ8 = {x0,x1};
2. trans8(x0) = {(P,< 4>)} and trans8(x1) = {(P,< 2>)}.

• Mc9 = 〈M0,χ9, trans9〉 with :

1. χ9 = {x0,x1};
2. trans9(x0) = {(T,< 1>)} and trans9(x1) = {(T,< 2>),(T,< 3>),(T,< 4>

)}.

• Mc10 = 〈M0,χ10, trans10〉 with :

1. χ10 = {x0,x1};
2. trans10(x0) = {(T,< 2 >)} and trans10(x1) = {(T,< 1 >),(T,< 3 >),(T,
< 4 >)}.
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4.7 Advantages and drawbacks of the marking class timed
automaton

4.7.1 Advantages
The computation of the marking class timed automaton is easier than the computation of
the extended state class timed automaton, because all the operations which are linked to
firing domains, featured in the algorithm to obtain the extended state timed auomaton,
are suppressed. Furthermore, there already exist many tools to compute the reachability
graph of a Petri Net which is the first task required when obtaining the marking class
timed automaton. This method of computing thr marking class timed automaton from the
reachability graph coud also be released for TTWN to find a way in the future to compute
a timed automaton with symbolic markings. Even if some symmetries are suppressed with
the introducing of time constraints, it could be interesting to find a method that computes
from the symbolic reachability graph of the underlying Well-formed Net a timed automa-
ton which has the same behavior as the TTWN. In the case of the TTWN, suppressing the
computing of firing domain may be advantageaous, because the size of the firing domain
depends on transition-colour pair, which means that the size of this firing domain could
potentially be large and consequently the diverse operations on this firing domain (such
as Fourier-Motzkin method) could take time and memory. Furthermore, the algorithm for
the computation of the marking class graph is easier to implement than the algorithm for
the extended state class graph because, we do not have to make domain comparaisons, for
instance.

4.7.2 Drawbacks
Even if the marking class timed automaton brings some advantages, there are also some
drawbacks that should not be neglected. First, the extended state class timed automaton is
included in the marking class timed automaton (if the extended state classes are replaced
by marking classes, ie the domains are suppressed).However, it is possible that the mark-
ing class timed automaton has more locations (for instance markings that are reached in
the underlying Petri Net, but never in the TTPN) and also more switches, and that these lo-
cations and switches are never used for the behavior of the system.Therefore the marking
class timed automaton can be bigger than the extended state class timed automaton.

For some TTWN, it is also possible to build the state class timed automaton whereas
the construction of the marking class timed automaton cannot be done. It is possible for a
bounded TTPN that the underlying Petri Net is not bounded; furthermore it is possible that
a TTPN verifies the sufficient conditions for boundedness that were presented in chapter
3, yet its underlying Petri Net is not bounded. For instance if we consider the TTPN
shown in Figure 4.3, its underlying Petri Net is not bounded since it is possible to put an
infinity of tokens in the place P3, and hence it is not possible to build its marking class
timed automaton. However, when the time constraints are considered, we see that the
transition T 2 is never fired for the TTPN. The TTPN is in fact bounded, and it is possible
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to build its state class timed automaton which is shown in Figure 4.4. The description of
the extended state classes of this TTPN is the following :

• Cl0 = 〈m0,D0,χ0, trans0〉 with :

1. m0(P1) = 1 and m0(P2) = m0(P3) = m0(P4) = 0;
2. D0 is defined by : {

0≤ θ1 ≤ 2
3≤ θ2 ≤ 4

3. χ0 = {x0};
4. trans0(x0) = {T 1,T 2}.

• Cl1 = 〈m1,D1,χ1, trans1〉 with :

1. m1(P2) = 1 and m1(P1) = m1(P3) = m1(P4) = 0;
2. D1 is defined by : {

1≤ θ3 ≤ 2

3. χ1 = {x0};
4. trans1(x0) = {T 3}.

• Cl2 = 〈m2,D2,χ2, trans2〉 with :

1. m2(P1) = m2(P2) = m2(P3) = m2(P4) = 0;
2. D2 is defined by the empty set of constraints;
3. χ2 = /0.
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Figure 4.2: The marking class timed automaton for the problem of the philosophers
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Figure 4.3: An example of bounded TTPN with an unbounded underlying Petri Net

Figure 4.4: The state class timed automaton associated with the TTPN of 4.3
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Chapter 5

GSPN2TA : A tool for computing
Marking Class Timed Automata

5.1 Introduction
In this chapter, we present the tool that we have implemented for the computation of the
marking class timed automaton of Transitions Time Petri Net, where the underlying Petri
Net is described with the tool GreatSPN. We will first describe how the tool can be used,
then we will see how it has been implemented. Finally we will give the results that we
obtained and make a comparison with the tool Romeo, which can compute the state class
timed automaton of Transitions Time Petri Nets.

5.2 Using GSPN2TA
5.2.1 GreatSPN, Kronos and Uppaal
GreatSPN

GreatSPN is a software package for the modelling, validation and performance evaluation
of distributed systems using Generalized Stochastic Petri Nets and their colored extension,
the Stochastic Well-formed Nets. GreatSPN was developed by the Performance Evalua-
tion group of the University of Torino. GreatSPN offers a graphical interface which can
be used to create Petri Net models and can be used to compute the reachability graph.
When the Petri Net is drawn and saved , it is stored into two files with the extensions .net
and .def. It is also possible to obtain a description of the reachability graph with a function
which can be called in command line, and which is called showRG.

Information on how to obtain GreatSPN is given at http://www.di.unito.it/ greatspn/.
The version of GreatSPN that we used is GreatSPN2.0.

Kronos and Uppaal

Kronos [24] and Uppaal [3] are tools which allow the verification of real-time systems.
Kronos was developed by the laboratory Verimag, and Uppaal was jointly developed by
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Uppsala University and Aalborg University. These two tools are designed to verify sys-
tems that can be modelled with timed automata. The timed automata produced by our tool
are described in the input format of these two tools.

The automata given to Kronos are described in a file with the extension .tg. Kronos ac-
cepts renaming of clocks, and it is possible to label each location with a set of identifiers.
We will use this latter fact to associate in the automata the description of the markings
with the corresponding marking class.

The automata given to Uppaal are described in a XML file. Uppaal does not allow the
renaming of clocks and, it appears to be less natural to associate identifiers to the lo-
cations of a timed automata. This latter point is problematic because the marking class
timed automaton given to Uppaal does not include information about the markings of the
marking classes. This is why when the marking class timed automaton is produced in the
input format of Uppaal, another file is produced which contains this information. Despite
these difficulties, we were nevertheless motivated to give a translation to Uppaal because
its performance is competitive.

Kronos is available at http://www-verimag.imag.fr/TEMPORISE/kronos/ and Uppaal at http://www.uppaal.com/.
The version of Kronos to which we refer is Kronos2.5 and the version of Uppaal to which
we refer is UPPAAL3.4.

5.2.2 User’s manual
The tool that we have developed allows the computation of a marking class timed automa-
ton of a Transitions Time Petri Net. The marking class timed automaton computed can be
produced into the input format of Kronos, in which case a file with the file extension .tg
is created, or into the input format of Uppaal, in which case a XML file and a file with the
file’s extension .ta_desc which contains the description of the firings and of the markings
are produced. In both cases, the user has to define the Transitions Time Petri Net. In the
following part, we will suppose that our Transitions Time Petri Net is called net.

Description of the Transitions Time Petri Net

The description of the net is done in two steps :

1. Description of the underlying Petri Net with GreatSPN (file net.net and net.def are
produced);

2. Association of time constraints to the transitions in the file net.tcons.

When the user describes the underlying Petri Net using GreatSPN, he has to define all
the transitions as exponentially timed distributed transitions; furthermore all the names of
the entities (places and transitions) should be of the form [a-zA-Z][a-zA-Z1-9]*, which
means that they have to begin with a letter and all their characters have to be alphanu-
meric. When the user has drawn the underlying Petri Net with GreatSPN, he saves it with
the name net and he obtains two files net.net and net.def. These files can also be created
in other ways because their format are described in [14].
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To add the time constraints to the Petri Net, the user can run the program addTime net
that is included in the tool we developed. This tool parses the file net.net and finds all
the transitions; it is then possible to add to each transition an earliest and a latest firing
time. The earliest firing time has to be a positive integer and the latest firing time can be
a positive integer or -1 can be input if the latest firing time is equal to infinity. The fact
that the firing times are represented with integers and not with rationals is not problematic
since from a set of rational numbers it is always possible to obtain an equivalent set of
integers by multiplying all the numbers by the greatest denominator. When the user has
finished to describe the firing times, the file net.tcons is then created. The form of this file
is described by the table 5.1 (in this table the term newline refers to the character of new-
line and the term empty is used to say that there is no character). All the transitions of the

LIST_TRANS := empty | TRANS LIST_TRANS
TRANS := name_trans earliest_firing_time latest_firing_time newline

Table 5.1: Form of the .tcons file

underlying Petri Net have to appear in this file. This file can as well be created manually
but if an error is made during its creation the tool will not then be able to compute the
timed automaton correctly.

Obtaining of the marking class timed automaton

Once the Transitions Time Petri Net has been described by the user, the program to com-
pute the marking class timed automatoncan be executed. The tool offers two programs,
respectively called Net2ta_Kronos and Net2ta_Uppaal. The first program, Net2ta_Kronos,
computes the marking class timed automaton with eventual renamings of clocks and pro-
duces the file net.tg which can be analysed by Kronos. The second program, Net2ta_Uppaal,
computes the marking class timed automaton without renaming of clocks and produces
the file net.xml which can be analysed by Uppaal, and the file net.ta_desc, whose form is
given by the table 5.2.

Once the user has obtained the marking class timed automaton in the required format,

MARK_CLASS_DESC := /***MARKINGS DESCRIPTION***/ newline newline
MARK_CLASS_LIST
#***TRANSITIONS DESCRIPTION***# newline newline
TRANS_LIST newline $***END OF DESCRIPTION ***$

MARK_CLASS_LIST := empty | MARK_CLASS newline MARK_CLASS_LIST
MARK_CLASS := Marking class [idid_marking_class] : newline MARK_LIST
MARK_LIST := empty | MARK MARK_LIST
MARK := ->[name_place] number_tokens tokens newline
TRANS_LIST := empty | TRANS TRANS_LIST
TRANS := [idid_marking_class_src] -> name_trans

->[idid_marking_class_dest] newline

Table 5.2: Form of the .ta_desc file
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he can use the tool (Uppaal or Kronos) to analyse the properties of the timed automaton.
With Kronos the user can use the tool in a relatively direct way, because the markings and
the fired transitions are given with the timed automaton as properties of the locations and
labels of the switches. In fact in the file produced for Kronos, each location is associated
with a list of properties which characterizes the marking of the location; each element of
this list has the form id_num where id represents the name of a place with a strictly positive
number of tokens and num represents the number of tokens present in the place. How-
ever, with Uppaal the user has to refer to the file net.ta_desc to have the correspondance
between the properties of the given timed automaton and the marking class timed automa-
ton. It is to be noted that since Kronos does not accept locations without successors, we
create a switch labeled no_trans which loops in the marking classes without any successor.

An important point concerning the tool that we have implemented is that if the underlying
Petri Net is not bounded, then the reachability graph will not be computed by GreatSPN
and the marking class timed automaton will not be computed; instead an error message
will be given to the user.

5.3 Operation of the tool
In this section, we will give a description of the operation of the tool GSPN2TA and of
the different data structures which have been used for its implementation.

5.3.1 General operation
When the user calls the programs Net2ta_Kronos or Net2ta_Uppaal, the program showRG
of GreatSPN is executed in order to compute the reachability graph of the underlying Petri
Net contained in the file net.def and net.net. This reachability graph is then stored in a file
called net.rg_desc, which can also be consulted by the user. Once the reachability graph
ahs been computed, the program callq the program net2ta_kronos (or net2ta_uppaal),
which has the following behavior :

1. Loading the described net (analysis of net.net);

2. Loading the time constraints (analysis of net.tcons);

3. Loading the reachability graph (analysis of the file net.rg_desc);

4. Computation of the marking class timed automaton (with or without renamings of
clocks);

5. Writing of the timed automaton in the corresponding files.

We will give in the following sections a description of these different steps.
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5.3.2 Loading the net and the time constraints
To obtain the informations stored in the file net.net, the program parses the file by calling
the function ”net_struct load_net(FILE* file)” (implemented in the file load_net.c) which
takes as argument the file descriptor of the file net.net and which returns a net_struct
(implemented in the file structure.h). A net_struct is a data structure in which the data
of the Transitions Time Petri Net are stored. The figure 5.1 shows the form of this data
structure.

Figure 5.1: The data structure net_struct

The date structure net_struct has the following fields :

• num_pl stores the number of places of the net ;

• num_trans stores the number of transitions of the net ;

• pl stores the list of the places of the net; it is of the type places which has the fields
:

– index stores the index of the place;
– name stores the name of the place;
– next stores the next element of the list (NULL if there is no next element).

• tr stores the list of the transitions of the net; it is of the type trans which has the
fields :

– name stores the name of the transition;
– index stores the index of the transition;
– early stores the earliest firing time of the transition;
– late stores the latest firing time of the transition;
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– to_trans stores the list of input arcs of the transitions; it is of the type vect
which has the fields :
∗ name which is here always equal to NULL (in fact it is used in an other

data structure);
∗ index_pl stores the index of the place to which the transition is linked;
∗ value stores the value of the input arc;
∗ next stores the next input arc (NULL if there is no next element).

– next stores the transition (NULL if there is no next element).

The function load_net does not fill the fields early and late of the transitions because
the relevant data is not written in the file net.net; in fact, these fields are filled by call-
ing the function ”void load_time_cons(net_struct net,FILE *file)” (implemented in the file
load_net.c) which takes as argument the net_struct built with the function load_net and
the file descriptor of the file net.tcons. The list of input arcs associated to a transition
groups only the arcs which are associated with a strictly positive value. The output arcs of
the transitions are not stored because they are not useful to build the marking class timed
automaton given that the reachability graph is already computed.

5.3.3 Loading of the reachability graph
To store the reachability graph of the underlying Petri Net which is described in the file
net.rg_desc, the program calls the function ”rg load_rg(FILE *file, net_struct net)” (im-
plemented in the file load_rg.c). This function takes as arguments the net_struct built
previously and the file descriptor of the file net.rg_desc, and returns a data structure rg
(implemented in structure.h). Figure 5.2 shows the form of this data structure.

Figure 5.2: The data structure rg
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A data structure rg corresponds to a list of the different markings of the reachability graph
and their successors. It has the following fields :

• mark stores the marking; it is of the type marking which has the fields :

– index stores the index of the marking;
– value stores the value of the marking as a list of places and values (only the

places that have a strictly positive number of tokens are stored); it is of the
type vect which has the fields :
∗ name stores the name of the place;
∗ index_pl stores the index of the place;
∗ value stores the number of tokens;
∗ next stores the next place (NULL if there is no next element).

• sons stores the list of the sons of the marking; it is of the type list_sons which has
the fields :

– index_trans stores the index of the transition which arrives at the son;
– name_trans stores the index of the transition which arrives at the son;
– eaft stores the earliest firing time of the transition which arrives at the son;
– laft stores the latest firing time of the transition which arrives at the son;
– index_mark stores the index of the marking of the son;
– son stores the son; it is of the type rg;
– next stores the next son (NULL if there is no next element).

• next stores the next element of the reachability graph (NULL if there is no next
element).

The function load_rg which is generated by flex (or lex) is in fact a lexical analyser of the
file net.rg_desc. This function does not fill the field son of the list of sons because to build
the data structure rg, it parses only once the file. In fact, to make then the link between
the list of sons and the element to which they correspond the function ”update_rg(rg r)”
(which is implemented in update_rg.c) is called. The goal of the field son is to mimimize
the search of elements in the reachability graph. If we had not introduced this field,
then the program which wanted to access the properties of a son of an element of the
reachability graph would have to look for this son in the reachability graph knowing its
index; instead, with the field son, the program obtains directly the pointer to the son in
the reachability graph.

5.3.4 Computation of the marking class timed automaton
When the net and the reachability graph have been stored in data structures, the program
calls the function ”ta build_ta_rename(net_struct net, rg r)” (which is implemented in
build_ta_rename.c) for the construction of a marking class timed automaton with renam-
ing of clocks, or the function ”ta build_ta(net_struct net, rg r)” (which is implemented
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in build_ta.c) for the construction of a marking class timed automaton without renaming
of clocks. These two functions take as arguments the data structure which contains the
description of the net and the data structure which contains the description of the reacha-
bility graph, and returns a data structure ta (implemented in structure_ta.h) which stores
a timed automaton and whose form is given by the figure 5.3.

Figure 5.3: The data structure ta

The data structure ta has the following fields :

• marking_class_graph stores the marking class graph; it is of the type mcg that we
will describe later in this section;

• num_states stores the number of locations;

• num_states_no_succ the number of locations with no sons;

• num_trans stores the number of switches;

• num_clocks stores the number of clocks;

• clocks stores the list of clocks; it is of the type simple_list_clocks which has the
fields :

– clock the index of the clock;
– next the next clock in the list (NULL if there is no next element).

For Kronos each location must have a son, and the exact number of switches must be
given. To solve the problem of the locations which do not have any sons, we decide to
make them their own successor with a switch labelled with the name no_trans. Conse-
quently the number of switches given to Kronos will correspond to the number of switches
of the marking class timed automaton to which is added the number of locations without
successor, which motivates the presence of a field which stores the number of locations
without successors. In the data structure ta, the first field stores the marking class graph
which is of type mcg (implemented in structure_ta.h) whose form is shown in figure 5.4.
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Figure 5.4: The data structure mcg

The data structure mcg is a list of marking classes and it has the following fields :

• id stores the index of the marking class;

• rg_state stores the state of the reachability graph which corresponds to the marking
class; it is of type rg (see above for more informations);

• clocks_num stores the number of clocks of the marking class;

• clocks stores the list of the clocks of the marking class; it is of type list_clocks which
has the following fields :

– clock stores the index of the clocks;
– inv stores the invariant assoiated with the clock in the location of the marking

class timed automaton corresponding to the marking class;
– next stores the next clock in the list (NULL if there is no next element).

• trans_clocks stores a table whose size is equal to the number of transitions in the
net; to each enabled transition in this marking class an index of a clock is associated
in the table, while for the other transitions the value in the table is equal to -2;

• sons stores the list of the sons of the marking class; it is of the type list_fol which
has the following fields :

– trans stores the name of the transition whose firing arrives at the successor;
– id_fol stores the index of the successor;
– rn stores the list of the renaming of clocks that are associated to the switch

which leads to the successor; when the timed automaton is supposed to be
without renaming of clocks this list is empty; this list is of type list_rename
which has the following fields :
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∗ clock_renamed stores the index of the clock that will be renamed;
∗ clock stores the index of the clock used for the renaming;
∗ next stores the next element in the list (NULL if there is no next element).

– reset_clock stores the clock to be reset with the firing of the transition; if there
is no clock to be reset, the value stored is -1;

– clock stores the clock associated to the transition fired;
– guard stores the guard of the clock associated to the transition fired (obtained

from the earliest firing time of the transition);
– next stores the next successor of the marking class (NULL if there is no next

element).

• next stores the next marking class (NULL if there is no next element).

The algorithm to compute the marking class timed automaton corresponds to the one
given in chapter 4, except for the fact that the reachability graph is used to determine the
enabled and newly enabled transitions and the value of the markings. The addition of the
clocks at the automaton is done directly when the marking classes are computed. For the
construction of the marking class timed automaton without renaming of clocks, instead of
using the relation of bisimilarity to regroup the marking classes, the equality of marking
classes is tested.

5.3.5 Writing in the file
Once the marking class timed automaton has been computed, the program calls the func-
tion ”void ta2ta_kronos(FILE *tg,ta t)” (respectively ”void ta2ta_uppaal(FILE *xml,FILE
*ta_desc,ta t)”), implemented in ta2ta_kronos.c (resp. in ta2ta_uppaal.c), and which
writes the timed automaton in the file net.tg (resp. in the files net.xml and net.ta_desc).
These two functions take as arguments the file descriptors of the files in which they will
write the timed automaton and the timed automaton itself contained in the data structure
ta. Note that these functions can be easily adapted knowing the form of the data structure
ta in order to produce another type of files, for instance if an user want to obtain the timed
automaton in the input format of an other tool.

5.4 Comparison with Romeo
5.4.1 Presentation of the tool Romeo
The software Romeo permits the state space computation of Transititions Time Petri Nets,
on-the-fly model-checking and translations from Transitions Time Petri Nets to timed au-
tomata with an equivalent behavior. It has been developed at the IRCCyN (Institut de
Recherche en Communication et Cybernétique de Nantes). The software Romeo incorpo-
rates two tools in which we are interested :

1. The tool GPN;

2. The tool MERCUTIO.
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GPN is a tool which computes the state class timed automaton of a Transitions Time
Petri Net in the input format of Uppaal or of Kronos. MERCUTIO also computes a
timed automaton whose behavior is equivalent to a given Transitions Time Petri Net, but
to construct it, instead of computing the reachable markings of the Time Transitions Petri
Net using the method of the extended state classes (as GPN), it uses the zone graph method
we have presented in chapter 1. The exact method is given in [13] where it is also shown
that MERCUTIO can be more efficient than GPN.

5.4.2 Comparison
Since both MERCUTIO and GPN compute a timed automaton with an equivalent behav-
ior to the one of the given Time Transitions Petri Net, as our tool does, we have decided to
compare these tools with the tool we have implemented. We consider two models (found
in [10]) which could be easily extended to test the behavior of the different tools. The
first model is a representation of the problem of the philosophers without colour. Figure
5.5 shows the ith element of a model with n philosophers. The model we called philok has
k philosophers. The second model is a representation of the Local Area Network called
the slotted ring. Figure 5.6 shows the ith element of a model with n elements in the LAN.
The model we call RSk has k elements in the LAN. It is to be noted that the two models
have an underlying Petri Net which is bounded;if this was not case, it would not have been
possible to test our tool with these models.

Figure 5.5: The ith philosopher

The results obtained by testing the tools on these models are given the table 5.3. Due
to a difficulty in obtaining Kronos models using MERCUTIO (empty files were returned
to the user when MERCUTIO was tested during the preparation of this report), only the
translation to Uppaal models was performed with MERCUTIO. The tests have been real-
ized on Intel Celeron 2.60 GHz with 192 MB of RAM. The values that feature in the table
5.3 are the mean of the computed times after having run the different tools many times.
When the symbol *** occurs, it signifies that the program needed more than 3 hours to
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Figure 5.6: The ith element in the slotted ring

conclude and that it has been stopped.

The results clearly show that the computation of the marking class timed automaton

Models GSPN2TA (kronos) GSPN2TA (uppaal) GPN (kronos) GPN (uppaal) MERCUTIO
philo3 0.95sec 13.17sec 2.8sec 7.29sec 0.59sec
philo4 6.74sec *** 29.95sec *** 19.69sec
philo5 8min12sec *** *** *** 1h30min
RS3 0.36sec 4.06sec 0.41 sec 1.26sec 0.27sec
RS4 12min04sec *** *** *** ***

Table 5.3: Time to compute the different timed automata

using renaming of clocks can be more efficient than the other methods presented. How-
ever when the renaming of clocks is suppressed, our tool is less efficient. Even if the
choice was made in Romeo to favourite the computation of timed automata without re-
naming of clocks, the option with renaming of clocks should not be neglicted, because it
permits the reduction of the number of locations of the timed automaton. The results we
obtain in this case are quite encouraging and suggest that the development of the theory
of the marking class timed automaton should be continued.

89



Chapter 6

Conclusions and perspectives for the
Marking Class Timed Automaton

6.1 Introduction
In this chapter, we comment on the method of the marking class timed automaton for
TTWN presented previously and we consider a possible extensions of the symbolic ap-
proach developed for Well-formed Nets.

6.2 Efficiency of the method of the Marking Class Timed
Automaton

6.2.1 Conclusions on the Marking Class Timed Automaton
In this report, we presented the method of the marking class timed automaton which per-
mits the construction of a timed automaton which has an equivalent behavior to that of a
Transitions Time Petri Net. There exist other methods to compute such a timed automa-
ton, such as the method based on the extended state class graph or that based on the zone
graph. For these two methods, it appears that the algorithms developed use reachability
techniques which will be again used to analyse the produced timed automata. Conse-
quently, for these two methods during the building of the timed automata and during its
analysis similar computations are performed. Instead, the method we proposed uses only
the reachability graph of the underlying Petri Net to build the marking class timed automa-
ton. It is true that our method may produce a timed automaton with more locations, but
when the introduced time constraints do not modify the behavior of the underlying Net,
the timed automaton produced is the same as the one obtained with the other two methods.
Hence, since the method we proposed works only for Transitions Time Petri Nets (resp.
TTWN) which have a bounded underlying Petri Net (resp. Well-formed Net), it can be
used to find real-time properties for models that already have been modelled without time
constraints and on which a part of verification (construction of the reachability graph) has
already been done.
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6.2.2 Improvement of the tool
We have implemented a tool which can compute the marking class timed automaton and
in comparison to other tools which also construct timed automata from Transitions Time
Petri Nets, our tool gave encouraging results. These results are encouraging anf can be
improved. In fact, we observed that our tool, for some examples, was taking z realtively
large amount of time to build the marking class timed automaton even though the reach-
ability graph was already computed. This problem is linked to the data structures which
store the elements; in fact in the phase of building the timed automaton from the reach-
ability graph almost no calculations are performed. This could be improved using more
compact data structures such as BDDs or by improving the presented data structures in
order to get better time performace. In order to deal with some Transitions Time Petri
Nets which are not bounded, a possible improvement could be to adapt a method devel-
oped for the non-bounded Petri Net which consists in replacing an infinite sequence of
growing markings by a special marking [15].

6.3 Toward a Symbolic Marking Class Timed Automaton
If at the beginning of the theory of the TTWN, we decided to add time constraints to
the transitions of the Well-formed Nets and not to all the ordinary coloured nets, it was
to ensure the fact that we will then be able to use the symmetric properties of a Well-
formed Net. In this section, we will begin by defining the symmetries of a TTWN and by
oresenting how they determine sets of equivalent marking classes; we will then present
an adaptation of the algorithm of Huber et al. [17] and, finally we consider the prob-
lems raised by the adaptation of the symbolic approach to TTWN. In this section, we use
definitions which were presented in chapter 2 and in [8] .

6.3.1 Equivalence between the Marking Classes
Symmetries

We consider a TTWN T = 〈P,T,W−,W +,Cl,C ,Φ,(α,β),m0〉 with the set of colour
classes Cl = {C1, ...,Ck}. For all i ∈ [|1,k|] the colour class Ci is divided in ni static
subclasses (ie Ci =

U
q=1,...,ni Di,q).

Definition 31 A permutation s =⊗n
i=1si on ⊗k

i=1Ci is a symmetry on the TTWN T if and
only if :

• If Ci is not ordered, si is a permutation on Ci such that ∀q ∈ [|1,ni|], si(Di,q) = Di,q;

• If Ci is ordered, si is a rotation on Ci such that ∀q ∈ [|1,ni|], si(Di,q) = Di,q (this
implies that if ni > 1 then the only allowed rotation is the identity).

We will denote ξ the set of the symmetries on a net T . For all colour domains Cd =

⊗k
i=1(Ci)ei , ∀c ∈Cd , s(c) is defined by : s(⊗k

i=1⊗
ei
j=1 c j

i ) =⊗k
i=1⊗

ei
j=1 si(c j

i ).

Directly from this definition and from the definitions of a permutation and of a rotation,
we can deduce that (ξ,◦) is a group which has for neutral element the identity function.
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Definition 32 We consider a marking M of the TTWN T and a symmetry s on T . Then
the marking s.M is defined by :

∀p ∈ P,∀c ∈ C (p),s.M(p)(c) = M(p)(s(c))

We then have the following property.

Property 1 The application of an admissible symmetry to a marking and to the colour
instance of transition preserves the enabling of the transition .For all transitions t ∈ T ,
for all colours c of C (t), and for all symmetries s of ξ, the transition t is enabled for the
colour c in the marking M if and only if the transition t is enabled for the colour s(c) in
the marking s.M. Furthermore, M′ is the marking obtained from the firing of the enabled
transition t for the colour c ∈ C (t) from the marking M if and only if s.M ′ is the marking
obtained from the firing of the enabled transition t for the colour s(c) from the marking
s.M.

Proof This result directly comes from the theory of the Well-formed Nets ([22],[9]).
�
We also need another definition to use symmetries.

Definition 33 Consider CT = {(t,c)|t ∈ T ∧ c ∈ C (t)}. For all symmetries s ∈ ξ, for all
subsets U of CT , the subset s.U is defined by :

(t,c) ∈U ⇔ (t,s(c)) ∈ s.U

Equivalence relation

We can then define an equivalence relation for the marking classes.

Definition 34 Consider two marking classes Mc = 〈M,χ, trans〉 and Mc′= 〈M′,χ′, trans′〉.
Mc and Mc′ are equivalent for the equivalence relation ∼=mc, denoted by Mc ∼=mc Mc′, if
and only if :

∃s ∈ χ such that





M′ = s.M and
χ = χ′ and
∀x ∈ χ, trans(x) = s.trans(x′)

The equivalence classes of this relation are called the symbolic marking classes. For each
marking class Mc, we will denote by M̂c its symbolic marking class.

We want then to use this equivalence relation to build a timed automaton with fewer loca-
tions than the marking class timed automaton, ideally with one location for each symbolic
marking class which features in the marking class timed automaton.

6.3.2 The algorithm of Huber et al. and the problem it raises
The algorithm of Huber et al. as presented in [9] allows the representation of each sym-
bolic marking by one of its elements and determines if two elements are equivalent. The
test for the equivalence of markings consists of an exhaustive search for a symmetry map-
ping one marking class onto the other. We will call the graph built with this algorithm
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Equivalent Marking Class Graph (EMCG). To begin the construction of this graph, we
need the initial marking class Mc0 as it is defined in chapter 4 . The algorithm to build
this graph can be written as follows :

• The variables are EMCG (the equivalent marking class graph itself), a FIFO queue
New (which contains the newly computed marking classes) and a boolean New_ f ound
(to know if a newly equivalent class has been reached);

• The variables are initialized to : EMSG := {Mc0} and New := Mc0;

• WHILE New is NOT empty DO

– C := remove(New) (The first marking class of New is taken, C := 〈MC,χC, transC〉);
– For all pair (ti,ci, j) ∈ CT such that ti is enabled for ci, j in MC (i.e. ∀p ∈

P,MC(p)≥W−(p, ti)(ci, j) and Φ(ti)(ci, j) = True) DO
∗ (Computation of the marking class C′ = 〈MC′ ,χC′, transC′〉, son of C )
∗ For all p ∈ P,MC′(p) = MC(p) +W +(p, ti)(ci, j)−W−(p, ti)(ci, j);
∗ Computation of χC′ and transC′ :

1. For each clock x ∈ χC, remove from transC(x) all the pairs (tk,ck,l)
such that tk is enabled for ck,l in MC and is not for the marking M′ de-
fined by ∀p∈P, M′(p) = MC(p)−W−(p, ti)(ci, j), to obtain a relation
trans′;

2. The clocks whose image by trans′ is empty are removed from χC, to
obtain a set of clocks χ′;

3. For all pairs (tk,ck,l)∈CT which verify ↑ enabled((tk,ck,l),MC,(ti,ci, j)) =
True DO :
+ IF a clock x has already been created for computing C′

+ THEN (tk,ck,l) is added to trans′(x);
+ ELSE a new clock xn is created; n is the smallest available index

among the clocks of χ′ and trans′(xn) = (tk,ck,l);
4. ENDDO; χC′ and transC′ are then obtained from the resulting set χ′

and function trans′;
∗ New_ f ound := true
∗ For all s ∈ ξ DO

+ C′′ := 〈s.MC′ ,χC′,s.transC′〉
+ IF C′′ ∈ EMSG
+ THEN New_ f ound := f alse and Goto Cont
+ ENDIF
∗ ENDDO
∗ Cont:
∗ IF New_ f ound = True
∗ THEN add(New,C′)
∗ ENDIF
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∗ EMCG := EMCG∪{C (ti,ci, j)→ mc C′}
– ENDDO;

• ENDDO.

We note that this algorithm does not take into account the clock-similarity of the marking
classes. A consequence of this is that the timed automaton which would be built from
such a graph would not include renamings of clocks. It also appears, that the construction
of the timed automaton from this graph following the rules evocated in chapter 4 would
give an automaton with locations which will not have successors if their marking class
is equivalent to another one in the net. The analysis of this timed automaton will also be
more complicated because of these locations.We do not explore this method further for the
same reasons that motivated the developement of the theory of the Symbolic Reachability
Graph for Well-formed Nets. In fact, the equivalence test is costly in terms of time, be-
cause to test if an equivalent marking class is equivalent to another one, we have to search
among all the symmetries, one which permits us to conclude that there is equivalence.

6.3.3 The symbolic theory and the problem it raises
For the Well-formed Nets, the theory of the symbolic reachability marking graph solves
the different problems described above. Firstly, each symbolic marking is not represented
by one of its elements, but it is given in a symbolic form, from which there exists a
canonical form so that the test of equality of two marking classes of equivalence which
are equal can be done easily. Secondly, in this theory, there is no need to test the firing of
a transition for all the colours of its domain because the firing is done symbolically, which
leads to a saving in terms on time.

A possible representation of a symbolic marking

If we want to extend this theory to the case of TTWN, the first thing that needs to be done
is to define a way of representing symbolic marking classes. In our case, we use the same
notation as for the Well-formed Nets ([8], [22]), to which we add a part for the relation
trans.

Definition 35 A symbolic representation of a symbolic marking M̂c is a 6-tuple M̃c =
〈{{Z j

i } j=1,...,n̂i}i=1,...,k,St,Card,Marq,χ,T R 〉 where :

• {Z j
i } j=1,...,n̂i is a set of dynamic subclasses associated to Ci; we denote Ĉi = {Z j

i } j=1,...,n̂i

and, by extension, if Cd =⊗k
i=1(Ci)ei is a domain colour, then Ĉd =⊗k

i=1(Ĉi)ei;

• St is a function which maps to each dynamic subclass Z j
i a static subclass Ci,q of Ci;

• Card is a function which maps each dynamic subclass with a positive integer (which
represents its cardinality) such that:

ΣSt(Z j
i )=Ci,q

Card(Z j
i ) = |Ci,q|
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• Marq is a function which defines the distribution of the dynamic subclasses in the
places of the net: for all p ∈ P, we have Marq(p) ∈ Bag(Ĉ(p));

• χ is a set of indexed clocks;

• T R is a function which associates to each clock of χ a subset of {(t, ĉ)|t ∈ T ∧
ĉ ∈ Ĉ (t)}, representing the distribution of the dynamic subclasses for the enabled
transition taking account of the clocks.

A symbolic representation represents a set of ordinary marking classes.

Definition 36 We consider a symbolic representation M̃c = 〈{{Z j
i } j=1,...,n̂i}i=1,...,k,St,Card,Marq,χ,T R 〉.

A marking class Mc = 〈M,χ′, trans〉 is represented by M̃c if and only if there exists, for
all colour classes Ci, a function Ψi: Ci→ Ĉi, such that:

1. The number of colours represented by a dynamic subclass is equal to its cardinality :

|Ψ−1
i (Z j

i )|= Card(Z j
i )

2. The set of colours represented by a dynamic subclass is included in only one static
subclass :

∀q ∈ [|1,ni|],∀Z j
i ∈ Ĉi,St(Z j

i ) = q⇒Ψ−1
i (Z j

i )⊆Ci,q

3. If Ci is an ordered class, then the order on Ci is respected, which means that there
exists ch ∈Ψ−1

i (Z j
i ) such that:

⊕ch ∈Ψ−1
i (Z( j+1)mod|Ĉi|

i )

∀c 6= ch ∈Ψ−1
i (Z j

i ),⊕c ∈Ψ−1
i (Z j

i )

4. The set of clocks are the same,i.e. :

χ = χ′

5. The colours are distributed according to the distribution of the dynamic subclasses :

• ∀p ∈ P, ∀⊗k
i=1⊗

ei
j=1c j

i ∈ C (p) we have :

M(p)(⊗k
i=1⊗ei

j=1 c j
i ) = Marq(p)(⊗k

i=1⊗ei
j=1 Ψi(c j

i ))

• ∀x ∈ χ, ∀(t,⊗k
i=1⊗

ei
j=1 c j

i ) ∈ CT we have :

(t,⊗k
i=1⊗ei

j=1 c j
i ) ∈ trans(x)⇔ (t,⊗k

i=1⊗ei
j=1 Ψi(c j

i )) ∈ T R (x)

The conditions on the functions Ψi ensure that the marking classes represented by a sym-
bolic representation are exactly the elements of the corresponding symbolic markings. We
have the following property for this representation.

Property 2 Let Mc be a marking class. There exists at least one symbolic representation
M̃c of Mc, and every symbolic representation of Mc represents exactly M̂c.
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Proof We consider a marking class Mc. We can at least build the symbolic representation
M̃c where each dynamic subclass has a cardinality equal to 1, where we associate to each
dynamic subclass Z j

i a different element of the colour class Ci. The construction of the
functions St and Marq are then the exact representation of the distribution of each colour.
As noted in [22], the conditions on the different functions Ψi are linked to the conditions
on the possible symmetries (in fact, a symmetry respects the static subclasses and the
order of the ordered classes). This in combination with Property, which referred to the
enabling of the transitions (and consequently the construction of the function T R ) allows
us to say that the marking classes represented by a symbolic marking class M̃c are exactly
the marking classes of M̂c.
�

Problems raised

First, we would like to note that the adaptation of the symbolic marking and its represen-
tation we have done in the precedent parts could be done in a more convenient way. We
chose this adaptation because it is a natural extension of the theory developed for Well-
formed Nets. Nevertheless some problems appear which prevented further development
of the symbolic representation and which show that another representation could be better.

The first problem concerns the construction of a canonical representation of our sym-
bolic representation. In fact, there could be different symbolic representations for a same
symbolic marking class. It is useful to have a canonical form for testing equality of two
symbolic markings in addition to an algorithm to build this canonical form from any sym-
bolic representations.

The second problem concerns the building of the set T R and the symbolic firing of
transitions. In fact, if for the symbolic firing in Well-formed Nets ([22],[8]), to see if a
transition is enabled, the symbolic markings are instantiated in order to allow an evalua-
tion of the colour functions and predicates for the dynamical subclasses. This instantiation
depends on the symbolic marking for which the evaluation is done, and there is no link
between the different instantiations of the different symbolic markings. This inconvenient
for us, because to build the different sets T R we need the history of the enabled tran-
sitions. To illustrate this, we consider the underlying Well-formed Net of the example
shown in figure 6.1 and its symbolic reachability graph which is briefly described in [22]
.

The initial symbolic marking m̂0 can be represented by

m̃0 = (Z1
1).Sready with |Z1

1 |= 3

(for the examples, we adopt simple denotations to simplify). Then the transition csend is
firable for the instantiation Ins1 of m̃0 which can be described by :

Ins1.m̃0 = (Z1,1
1 + Z1,2

1 + Z1,0
1 ).Sready

with |Z1,1
1 |= |Z

1,2
1 |= |Z

1,0
1 |= 1
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The firing of this transition for this instantiation, which associates x to Z1,1
1 and y to Z1,2

1
generates the symbolic marking m̂1 which can be represented by :

m̃1 = (Z1
1 + Z2

1).Sready + (Z3
1).Cwait + (〈Z3

1 ,Z1
1〉).Mess

with |Z1
1 |= |Z2

1 |= |Z3
1 |= 1

From this symbolic marking, the transition csend is again firable for instance for the
instantiations of m̃1 denoted by Ins1 and Ins2.

Ins1.m̃1 = (Z1,1
1 + Z2,1

1 ).Sready + (Z3,0
1 ).Cwait + (〈Z3,0

1 ,Z1,1
1 〉).Mess

with |Z1,1
1 |= |Z

2,1
1 |= |Z

3,0
1 |= 1

and :
Ins2.m̃1 = (Z1,1

1 + Z2,0
1 ).Sready + (Z3,1

1 ).Cwait + (〈Z3,1
1 ,Z1,1

1 〉).Mess

with |Z1,1
1 |= |Z

2,0
1 |= |Z

3,1
1 |= 1

Figure 6.1: AN example of TTWN

For Ins1, x is associated to Z1,1
1 and y to Z2,1

1 , and for Ins2, x is associated to Z1,1
1 and y

to Z3,1
1 . This part of the symbolic reachability graph of the underlying Well-formed Net

is represented on the figure 6.2. This example clearly shows that it is difficult to make a
relation between the enabling of cenv from m̃0 and the one from m̃1. The firing of cenv
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Figure 6.2: Part of the SRG of the underlying Well-formed net

from m̃1 was already enabled from m̃0; this information that does not appear (or is difficult
to be extracted) from the symbolic reachability graph is needed to analyse the behavior of
the TTWN.

If we take the symbolic representation that we have previously described, the initial sym-
bolic marking class M̂c0 of the TTWN presented in figure 6.1 could be represented by the
symbolic representation M̃c0 :

M̃c0 = (Z1
1 + Z2

1 + Z3
1).Sready

with |Z1,1
1 |= |Z

2,0
1 |= |Z

3,1
1 |= 1, χ = {x0}

and
T R (x0) = {(csend,〈Z1

1 ,Z2
1〉),(csend,〈Z1

1 ,Z3
1〉),

(csend,〈Z2
1 ,Z1

1〉),(csend,〈Z3
1 ,Z1

1〉),
(csend,〈Z2

1 ,Z3
1〉),(csend,〈Z3

1 ,Z2
1〉)}

In this representation, instead of having one representation of enabling of transition, we
have six. If we fire “symbolically” this transition for each of the enabled transition then
the algorithm is the same as the one of Huber et al.. If we find a canonical form, we do
not have to look anymore for all the symmetries but we could test equality only on the
canonical form. The symbolic representation of this initial symbolic marking class cannot
be reduced, in the sense that it is not possible to represent the symbolic marking with fewer
dynamic subclasses. If look again at the symbolic reachability graph of the underlying
Well-formed Net, we note that it would be better to have a symbolic representation M̃c0
of the form :

M̃c0 = (Z1
1).Spret

with |Z1,1
1 |= 3, χ = {x0}

and T R (x0) = {(csend,〈Z1,1
1 ,Z1,2

1 〉)}
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However, the problem that we encounter here is how to define formally this symbolic
representation and as as we have observed before, how to retain an history of the enabled
transitions between the different symbolic markings.

Conclusions on the symbolic theory

In conclusion, we have seen that to adapt the symbolic theory developed for the Well-
formed Nets to the construction of a marking class timed automaton for TTWNs, it is
necessary to redefine a symbolic representation of the symbolic marking classes to allow
a symbolic firing similar to the one found for the Well-formed Nets and which would also
allow the construction of the sets T R , which are necessary for the construction of the
timed automaton. For the theory to be complete, it is also necessary to define a canonical
form of this symbolic representation and an algorithm to construct it.
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