MPRI 2-9-1 "Algorithmic Aspects of WQO Theory" Nov. 19th, 2020: Ideals & Generic algorithms for downward-closed sets

Some recalls from previous weeks

Def. (X, \leq) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \leq x_j$ (for some i < j)

Examples.

- 1. $(\mathbb{N}^k, \leq_{\times})$ is a wqo (Dickson's Lemma) where, e.g., $(3,2,1) \leq_{\times} (5,2,2)$ but $(1,2,3) \leq_{\times} (5,2,2)$
- 2. (Σ^*, \leq_*) is a wqo (Higman's Lemma) where, e.g., $abc \leq_* bacbc$ but $cba \leq_* bacbc$

Verification of WSTS. It is possible to decide Safety, Termination, etc., for systems with well-quasi-ordered states and monotonic (aka compatible) steps.

Today's class: WQO-based algorithms often have to handle/reason about/.. infinite upward- or downward-closed sets

- This is a non-trivial problem
- But there exists a powerful & generic approach via ideals

Some recalls from previous weeks

Def. (X, \leq) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \leq x_j$ (for some i < j)

Verification of WSTS. It is possible to decide Safety, Termination, etc., for systems with well-quasi-ordered states and monotonic (aka compatible) steps.

Today's class: WQO-based algorithms often have to handle/reason about/.. infinite upward- or downward-closed sets

- This is a non-trivial problem
- But there exists a powerful & generic approach via ideals

OUTLINE FOR TODAY

- The need for data structure and algorithms for closed subsets
- Ideals and filters : basics
- Effective ideals and filters
- The Valk-Jantzen-Goubault-Larrecq algorithm
- Building complex effective wqos from simpler ones : tuples, sequences, powersets, substructures, weakening, etc.

HANDLING UPWARD-CLOSED SUBSETS Verifying safety for a WSTS is usually done by computing upward-closed subsets

$$B \subseteq \textit{Pre}^{\leqslant 1}(B) \subseteq \textit{Pre}^{\leqslant 2}(B) \subseteq \cdots \subseteq \bigcup_{\mathfrak{m}} \textit{Pre}^{\leqslant \mathfrak{m}}(B) = \textit{Pre}^{\ast}(B)$$

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets U, U', V, \dots

There is the finite basis presentation:

HANDLING UPWARD-CLOSED SUBSETS Verifying safety for a WSTS is usually done by computing upward-closed subsets

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets U, U', V, \dots

There is the finite basis presentation:

 $U = \uparrow (2,6) \cup \uparrow (4,5) \cup \uparrow (6,1) \cup \uparrow (10,0)$

We also need algorithms for computing with this representation:

```
• E.a. toeting whother 11 \subset 1/
```

HANDLING UPWARD-CLOSED SUBSETS

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leqslant_{\times})$ and upward-closed subsets U, U', V, \dots

There is the finite basis presentation:

$U={\uparrow}(2,6)\cup{\uparrow}(4,5)\cup{\uparrow}(6,1)\cup{\uparrow}(10,0)$

We also need algorithms for computing with this representation:

- E.g., testing whether $U \subseteq V$
- E.g., performing $U \leftarrow U \cup V$ or $U \leftarrow U \cap V$

HANDLING UPWARD-CLOSED SUBSETS

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leqslant_{\times})$ and upward-closed subsets U, U', V, \dots

There is the finite basis presentation:

 $U={\uparrow}(2,6)\cup{\uparrow}(4,5)\cup{\uparrow}(6,1)\cup{\uparrow}(10,0)$

We also need algorithms for computing with this representation:

- E.g., testing whether $U \subseteq V$
- E.g., performing $U \leftarrow U \cup V$ or $U \leftarrow U \cap V$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 \\ 0 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{pmatrix} \cap \uparrow (\begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{pmatrix}$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 \\ 0 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{pmatrix} \cap \uparrow (\begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{pmatrix}$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 \\ 0 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{pmatrix} \cap \uparrow (\begin{vmatrix} 1 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 0 \end{pmatrix}$

Let us consider words with subword ordering, e.g., for lossy channel systems:

```
U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots
```

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 \\ 0 \end{vmatrix} \stackrel{0}{_2}) \cap \uparrow (\begin{vmatrix} 1 \\ 1 \end{vmatrix} \stackrel{1}{_2})$

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

 $\mathsf{D} = \mathsf{X} \smallsetminus \uparrow \mathfrak{m}_1 \smallsetminus \uparrow \mathfrak{m}_2 \cdots \smallsetminus \uparrow \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent $\downarrow(2,2)$ in $(\mathbb{N}^2, \leq_{\times})$? And $\downarrow ab$ in (Σ^*, \leq_*) ?

$$\downarrow(2,2) = \neg[\uparrow(0,3) \cup \uparrow(3,0)] \qquad \qquad \downarrow ab = \neg[\uparrow ba \cup \uparrow c \cup \cdots]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

 $D = X \smallsetminus \uparrow \mathfrak{m}_1 \smallsetminus \uparrow \mathfrak{m}_2 \cdots \smallsetminus \uparrow \mathfrak{m}_\ell$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent $\downarrow(2,2)$ in $(\mathbb{N}^2,\leq_{\times})$? And $\downarrow ab$ in (Σ^*,\leq_*) ?

$$\downarrow(2,2) = \neg[\uparrow(0,3) \cup \uparrow(3,0)] \qquad \qquad \downarrow ab = \neg[\uparrow ba \cup \uparrow c \cup \cdots]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes!

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$\mathsf{D} = \mathsf{X} \smallsetminus \uparrow \mathfrak{m}_1 \smallsetminus \uparrow \mathfrak{m}_2 \cdots \smallsetminus \uparrow \mathfrak{m}_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent $\downarrow(2,2)$ in $(\mathbb{N}^2, \leq_{\times})$? And $\downarrow ab$ in (Σ^*, \leq_*) ?

$$\downarrow(2,2) = \neg[\uparrow(0,3) \cup \uparrow(3,0)] \qquad \qquad \downarrow ab = \neg[\uparrow ba \cup \uparrow c \cup \cdots]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes!

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$\mathsf{D} = \mathsf{X} \smallsetminus \uparrow \mathfrak{m}_1 \smallsetminus \uparrow \mathfrak{m}_2 \cdots \smallsetminus \uparrow \mathfrak{m}_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent $\downarrow(2,2)$ in $(\mathbb{N}^2, \leq_{\times})$? And $\downarrow ab$ in (Σ^*, \leq_*) ?

$$\downarrow(2,2) = \neg[\uparrow(0,3) \cup \uparrow(3,0)] \qquad \qquad \downarrow ab = \neg[\uparrow ba \cup \uparrow c \cup \cdots]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes!

PRIMES, UP AND DOWN

Fix (X, \leq) WQO and consider $Up(X) = \{U, U', ...\}$ and $Down(X) = \{D, D', ...\}$

Def. 4.1. 1. U ($\neq \emptyset$) is (up-) prime $\stackrel{\text{def}}{\Leftrightarrow} U \subseteq (U_1 \cup U_2)$ implies $U \subseteq U_1$ or $U \subseteq U_2$. 2. D ($\neq \emptyset$) is (down-) prime $\stackrel{\text{def}}{\Leftrightarrow} D \subseteq (D_1 \cup D_2)$ implies $D \subseteq D_1$ or $D \subseteq D_2$.

Examples: for any $x \in X$, $\uparrow x$ is up-prime and $\downarrow x$ is down-prime

Lem. 4.2. (Irreducibility)

1. U is prime iff $U = U_1 \cup \cdots \cup U_n$ implies $U = U_i$ for some i 2. D is prime iff $D = D_1 \cup \cdots \cup D_n$ implies $D = D_i$ for some i

Lem. 4.3. (Completeness: Prime Decompositions Exist) 1. Every $U \in Up$ is a finite union of up-primes 2. Every $D \in Down$ is a finite union of down-primes

MINIMAL PRIME DECOMPOSITIONS

 $\begin{array}{l} \text{Def. A prime decomposition } U \text{ (or } D) = P_1 \cup \cdots \cup P_n \text{ is minimal} \\ \stackrel{\text{def}}{\Leftrightarrow} \forall i,j: P_i \subseteq P_j \text{ implies } i=j. \end{array}$

Thm. 4.4. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Prop. 4.8. (Primes are Filters/Ideals) 1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters) 2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leq z \geq y$

Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3...$ is an increasing sequence then $\bigcup_i \downarrow x_i$ is an ideal

Exercise: Let us look at $\neg U$ for our earlier $U \subseteq \mathbb{N}^2$

MINIMAL PRIME DECOMPOSITIONS

 $\begin{array}{l} \text{Def. A prime decomposition } U \text{ (or } D) = P_1 \cup \cdots \cup P_n \text{ is minimal} \\ \stackrel{\text{def}}{\Leftrightarrow} \forall i,j: P_i \subseteq P_j \text{ implies } i=j. \end{array}$

Thm. 4.4. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Prop. 4.8. (Primes are Filters/Ideals)

1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters) 2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leq z \geq y$

Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3 \dots$ is an increasing sequence then $\bigcup_i \mathop{\downarrow} x_i$ is an ideal

Exercise: Let us look at $\neg U$ for our earlier $U \subseteq \mathbb{N}^2$

A DOWNWARD-CLOSED SUBSET OF \mathbb{N}^2

A downward-closed subset of \mathbb{N}^2

$D = \neg U =$

A downward-closed subset of \mathbb{N}^2

$D=I_1\cup\cdots\cup I_4$

The ideals of (\mathbb{N}, \leqslant) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leqslant)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1,2)

Hence $(Idl(X_1 \times X_2), \subseteq) \equiv Idl(X_1, \subseteq) \times Idl(X_2, \subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k, \leq_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$? The ideals of (\mathbb{N}, \leqslant) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leqslant)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1, 2)

Hence $(Idl(X_1 \times X_2), \subseteq) \equiv Idl(X_1, \subseteq) \times Idl(X_2, \subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k, \leq_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$?

The ideals of (\mathbb{N}, \leqslant) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leqslant)$, denoted $\mathbb{N}_{\omega} (\equiv \omega + 1)$

Thm. The ideals of $(X_1\times X_2,\leqslant_{\times})$ are exactly the $J_1\times J_2$ for J_i an ideal of X_i (i=1,2)

 $\text{Hence } (\mathit{Idl}(X_1 \times X_2), \subseteq) \ \equiv \mathit{Idl}(X_1, \subseteq) \times \mathit{Idl}(X_2, \subseteq) \quad \text{ Very nice } \texttt{!!!!}$

Coro. The ideals of $(\mathbb{N}^k,\leqslant_{\times})$ are handled like \mathbb{N}_{ω}^k

Example: Assume $U = \uparrow (2,2)$ and $D = \downarrow (4,\omega) \cup \downarrow (6,3)$. What is $U \setminus D$ and $D \setminus U$?

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

Σ* ?

- (ab)* = {ε, ab, abab, ababab,...} ?
- a^{*} + b^{*} = {ε, a, aa, aaa, ..., b, bb, bbb,...} ?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \varepsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \varepsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \varepsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\epsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \varepsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Ideals for (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\epsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow a = \{a, \varepsilon\}$ with $a \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

What is required for handling (X, \leq) ?

Def. X is ideally effective $\stackrel{\text{def}}{\Leftrightarrow}$

 $\begin{array}{l} (\mathsf{XR}) \colon \mathsf{X} \text{ is recursive} \\ (\mathsf{OR}) \colon \leqslant \text{ is decidable over } \mathsf{X} \\ (\mathsf{IR}) \colon \mathit{Idl}(\mathsf{X}) \text{ is recursive} \\ (\mathsf{II}) \colon \subseteq \text{ is decidable over } \mathit{Idl}(\mathsf{X}) \end{array}$

 $\begin{array}{l} (\text{CF})\colon F=\uparrow x\mapsto \neg F=X\smallsetminus F=I_1\cup\cdots\cup I_n \text{ is recursive}\\ (\text{CI})\colon I\mapsto \neg I=\uparrow x_1\cup\cdots\cup\uparrow x_n \text{ is recursive}\\ (\text{IF}) \& (\text{II})\colon F_1,F_2\mapsto F_1\cap F_2=\uparrow x_1\cup\cdots \text{ and }I_1,I_2\mapsto I_1\cap I_2=J_1\cup\cdots\\ \text{ are recursive}\\ (\text{IM})\colon \text{membership } x\in I \text{ is decidable over } X \text{ and } Idl(X)\\ (\text{XF}) \& (\text{XI})\colon X=F_1\cup\cdots F_n \text{ and } X=I_1\cup\cdots I_m \text{ are effective}\\ (\text{PI})\colon x\mapsto \downarrow x \text{ is recursive} \end{array}$

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

What is required for handling (X, \leq) ?

Def. X is ideally effective $\Leftrightarrow^{\text{def}}$

 $\begin{array}{l} (\mathsf{XR}) \colon \mathsf{X} \text{ is recursive} \\ (\mathsf{OR}) \colon \leqslant \text{ is decidable over } \mathsf{X} \\ (\mathsf{IR}) \colon \mathit{Idl}(\mathsf{X}) \text{ is recursive} \\ (\mathsf{II}) \colon \subseteq \text{ is decidable over } \mathit{Idl}(\mathsf{X}) \end{array}$

 $\begin{array}{l} (CF)\colon F=\uparrow x\mapsto \neg F=X\smallsetminus F=I_1\cup\cdots\cup I_n \text{ is recursive}\\ (CI)\colon I\mapsto \neg I=\uparrow x_1\cup\cdots\cup\uparrow x_n \text{ is recursive}\\ (IF) \& (II)\colon F_1,F_2\mapsto F_1\cap F_2=\uparrow x_1\cup\cdots \text{ and } I_1,I_2\mapsto I_1\cap I_2=J_1\cup\cdots\\ \text{ are recursive}\\ (IM)\colon \text{ membership } x\in I \text{ is decidable over } X \text{ and } Idl(X)\\ (XF) \& (XI)\colon X=F_1\cup\cdots F_n \text{ and } X=I_1\cup\cdots I_m \text{ are effective}\\ (PI)\colon x\mapsto \downarrow x \text{ is recursive} \end{array}$

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

Thm. If (X, \leq) satisfies the first 4 axioms above and (CF), (II), (PI),(XI) then it is ideally effective.

(XR): X is recursive (OR): \leq is decidable over X (IR): Idl(X) is recursive (II): \subseteq is decidable over Idl(X)

(CF): $F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n$ is recursive (CI): $I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n$ is recursive (IF) & (II): $F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots$ and $I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots$ are recursive (IM): membership $x \in I$ is decidable over X and Idl(X)(XF) & (XI): $X = F_1 \cup \cdots F_n$ and $X = I_1 \cup \cdots I_m$ are effective (PI): $x \mapsto \downarrow x$ is recursive

(XR): X is recursive (OR): \leq is decidable over X (IR): Idl(X) is recursive (II): \subseteq is decidable over Idl(X)

(CF): $F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n$ is recursive (CI): $I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n$ is recursive (IF) & (II): $F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots$ and $I_1, I_2 \mapsto I_1 \cap I_2 = J_1 \cup \cdots$ are recursive (IM): membership $x \in I$ is decidable over X and Idl(X)(XF) & (XI): $X = F_1 \cup \cdots F_n$ and $X = I_1 \cup \cdots I_m$ are effective (PI): $x \mapsto \downarrow x$ is recursive

Proof. We first show (CD) $\stackrel{\text{def}}{\Leftrightarrow}$ one can design a recursive $D = I_1 \cup \cdots I_n \mapsto \neg D = U = \uparrow x_1 \cup \uparrow x_2 \cup \cdots$ For this, set $U_0 = \emptyset$ and, as long as $D \subsetneq \neg U_i$, we pick some x s.t. $D \not\ni x \notin U_i$ and set $U_{i+1} = U_i \cup \uparrow x$. Eventually $U_i = \neg D$ will happen

(XR): X is recursive (OR): \leq is decidable over X (IR): Idl(X) is recursive (II): \subseteq is decidable over Idl(X)

 $\begin{array}{l} (\mathsf{CF})\colon F=\uparrow x\mapsto \neg F=X\smallsetminus F=I_1\cup\cdots\cup I_n \text{ is recursive}\\ (\mathsf{CI})\colon I\mapsto \neg I=\uparrow x_1\cup\cdots\cup\uparrow x_n \text{ is recursive}\\ (\mathsf{IF})\And (\mathsf{II})\colon F_1,F_2\mapsto F_1\cap F_2=\uparrow x_1\cup\cdots \text{ and }I_1,I_2\mapsto I_1\cap I_2=J_1\cup\cdots\\ \text{ are recursive}\\ (\mathsf{IM})\colon \text{ membership } x\in I \text{ is decidable over } X \text{ and } Idl(X)\\ (XF)\And (XI)\colon X=F_1\cup\cdots F_n \text{ and } X=I_1\cup\cdots I_m \text{ are effective}\\ (\mathsf{PI})\colon x\mapsto \downarrow x \text{ is recursive} \end{array}$

Proof. Then we get (IF) from (CD) and (CI), by expressing intersection as dual of union, (IM) from (PI) and (II), (XF) from (CD) by computing $\neg \emptyset$

(XR): X is recursive (OR): \leq is decidable over X (IR): Idl(X) is recursive (II): \subseteq is decidable over Idl(X)

 $\begin{array}{l} (\mathsf{CF})\colon F=\uparrow x\mapsto \neg F=X\smallsetminus F=I_1\cup\cdots\cup I_n \text{ is recursive}\\ (\mathsf{CI})\colon I\mapsto \neg I=\uparrow x_1\cup\cdots\cup\uparrow x_n \text{ is recursive}\\ (\mathsf{IF})\And (\mathsf{II})\colon F_1,F_2\mapsto F_1\cap F_2=\uparrow x_1\cup\cdots \text{ and }I_1,I_2\mapsto I_1\cap I_2=J_1\cup\cdots\\ \text{ are recursive}\\ (\mathsf{IM})\colon \text{membership } x\in I \text{ is decidable over } X \text{ and } \mathit{Idl}(X)\\ (XF)\And (XI)\colon X=F_1\cup\cdots F_n \text{ and } X=I_1\cup\cdots I_m \text{ are effective}\\ (\mathsf{PI})\colon x\mapsto \downarrow x \text{ is recursive} \end{array}$

Thm [Halfon]. There are no more redundancies in the blue axioms

• $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ...
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

- $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

• $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq \sqcup)$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ...
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

• $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq \Box)$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{\text{lex}} Y$ and $X \sqcup_{\text{lex}} Y$ are ideally effective when ..
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

• $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq \Box)$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ...
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

• $(X \times Y, \leq_{\times})$ is ideally effective when X and Y are.

• (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$

• $(X \sqcup Y, \leq \Box)$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.

- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ...
- $\mathcal{P}_{f}(X)$ and $\mathcal{M}_{f}(X)$ and (X^{*}, \leq_{st}) and \cdots are ideally ...

1. Assume $(X, \leq ')$ is an extension of (X, \leq) , i.e., $\leq \subseteq \leq '$.

Then $Idl(X, \leq') = \{\downarrow_{\leq'} I \mid I \in Idl(X, \leq)\}.$

Furthermore (X, \leqslant') is ideally effective when (X, \leqslant) is and the functions

 $I\mapsto {\downarrow_{\leqslant'}} I=I_1\cup\cdots\cup I_\ell \quad \text{ and } \quad {\uparrow} x=F\mapsto {\uparrow_{\leqslant'}} F={\uparrow} x_1\cup\cdots\cup{\uparrow} x_m$ are recursive.

Example. Subwords *cum* conjugacy:

abcd ≤_Ω acbadbbdbdbdbadbc

Example. Quotienting (X, \leq) by some equivalence \approx such that $\approx \circ \leq = \leq \circ \approx$

1. Assume $(X, \leq ')$ is an extension of (X, \leq) , i.e., $\leq \subseteq \leq '$.

Then $Idl(X, \leq') = \{\downarrow_{\leq'} I \mid I \in Idl(X, \leq)\}.$

Furthermore (X, \leqslant') is ideally effective when (X, \leqslant) is and the functions

 $I\mapsto {\downarrow_{\leqslant'}} I=I_1\cup\cdots\cup I_\ell \quad \text{ and } \quad {\uparrow} x=F\mapsto {\uparrow_{\leqslant'}} F={\uparrow} x_1\cup\cdots\cup{\uparrow} x_m$

are recursive.

Example. Subwords *cum* conjugacy:

 $abcd \leq_{\Omega} acbadbbdbdbdbdbdbc$

Example. Quotienting (X, \leqslant) by some equivalence \approx such that $\approx \circ \leqslant = \leqslant \circ \approx$

2. Assume (Y, \leq_Y) is a subwqo of (X, \leq_X) , i.e., $Y \subseteq X$ and $\leq_Y = \leq_X \cap Y \times Y$.

Then $Idl(Y, \leq) = \{I \cap Y \mid I \in Idl(X) \text{ st. } I \subseteq \downarrow_X Y \land I \cap Y \neq \emptyset\}.$

Furthermore (Y,\leqslant) is ideally effective when (X,\leqslant) is and when Y and the functions

 $\begin{array}{ll} \textit{Idl}(X) \to \textit{Down}(X) \\ I & \mapsto \downarrow_X (I \cap Y) = I_1 \cup \cdots I_\ell \end{array} \quad \text{and} \quad \begin{array}{ll} \textit{Fil}(X) \to \textit{Up}(X) \\ \uparrow x = F \mapsto \uparrow_X (F \cap Y) = \uparrow x_1 \cup \cdots \uparrow x_m \end{array}$

are recursive.

Example. (L, \leq_*) for a context-free $L \subseteq \Sigma^*$.

Example. Decreasing sequences in \mathbb{N}^* with the subsequence ordering.

2. Assume (Y, \leq_Y) is a subwqo of (X, \leq_X) , i.e., $Y \subseteq X$ and $\leq_Y = \leq_X \cap Y \times Y$.

Then $Idl(Y, \leq) = \{I \cap Y \mid I \in Idl(X) \text{ st. } I \subseteq \downarrow_X Y \land I \cap Y \neq \emptyset\}.$

Furthermore (Y,\leqslant) is ideally effective when (X,\leqslant) is and when Y and the functions

 $\begin{array}{ll} \textit{Idl}(X) \to \textit{Down}(X) \\ I & \mapsto \downarrow_X (I \cap Y) = I_1 \cup \cdots I_\ell \end{array} \quad \text{and} \quad \begin{array}{ll} \textit{Fil}(X) \to \textit{Up}(X) \\ \uparrow x = F \mapsto \uparrow_X (F \cap Y) = \uparrow x_1 \cup \cdots \uparrow x_m \end{array}$

are recursive.

Example. (L, \leq_*) for a context-free $L \subseteq \Sigma^*$.

Example. Decreasing sequences in \mathbb{N}^\ast with the subsequence ordering.

Conclusion for Part V

Ideal-based algorithms already have several applications.

Handling WQO's raise many interesting algorithmic questions:

- Best algorithms for (Σ^*, \leq_*) ? (Karandikar et al., TCS 2016)
- Best algorithms for $(\mathbb{N}^k)^*$?
- Fully generic library of data structures and algorithms?
- Separating the polynomial and the exponential cases?
- More constructions .. Beyond WQOs ..

• • • •