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Nov. 19th, 2020: Ideals & Generic algorithms for
downward-closed sets



SOME RECALLS FROM PREVIOUS WEEKS
Def. pX,ďq is a well-quasi-ordering (a wqo) if any infinite sequence
x0,x1,x2 . . . over X contains an increasing pair xi ď xj (for some iă j)

Examples.
1. pNk,ďˆq is a wqo (Dickson’s Lemma)

where, e.g., p3,2,1q ďˆ p5,2,2q but p1,2,3q ęˆ p5,2,2q

2. pΣ˚,ď˚q is a wqo (Higman’s Lemma)
where, e.g., abcď˚ bacbc but cbaę˚ bacbc

Verification of WSTS. It is possible to decide Safety, Termination,
etc., for systems with well-quasi-ordered states and monotonic (aka
compatible) steps.

Today’s class: WQO-based algorithms often have to handle/reason
about/.. infinite upward- or downward-closed sets

‚ This is a non-trivial problem
‚ But there exists a powerful & generic approach via ideals
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OUTLINE FOR TODAY

§ The need for data structure and algorithms for closed subsets

§ Ideals and filters : basics

§ Effective ideals and filters

§ The Valk-Jantzen-Goubault-Larrecq algorithm

§ Building complex effective wqos from simpler ones : tuples,
sequences, powersets, substructures, weakening, etc.
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HANDLING UPWARD-CLOSED SUBSETS
Verifying safety for a WSTS is usually done by computing
upward-closed subsets

BĎ Preď1
pBq Ď Preď2

pBq Ď ¨ ¨ ¨ Ď
ď

m

Preďm
pBq “ Pre˚pBq

How is this implemented in practice?

Consider pN2,ďˆq and upward-closed subsets U,U 1,V , . . .

U“

There is the finite basis presentation:

U“ Òp2,6qY Òp4,5qY Òp6,1qY Òp10,0q

We also need algorithms for computing with this representation:
‚ E.g., testing whether UĎ V
‚ E.g., performing UÐUYV or UÐUXV
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UPWARD-CLOSED SUBSETS OF pΣ˚,ď˚q

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U“ ÒabcY ¨¨ ¨Y Òddca V “ ÒbbY ¨¨ ¨

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform
UÐUXÒcbab or UÐUr Óbaccbab ?

Bottom line: These are feasible but not trivial !

‚ Can we handle N
k and Σ˚ efficiently ?

‚ What about other WQOs? E.g. over pN2q˚: Ò
`

|
2
0 |

0
2
˘

XÒ
`

|
1
1 |

1
0
˘
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NOW WHAT ABOUT DOWNWARD-CLOSED SUBSETS?
Problem: downward-closed D can’t always be represented under
the form D“ Óx1Y ¨¨ ¨Y Óx`, take e.g. D“N

2.

Recall: D can always be represented by excluded minors:

D“ Xr Òm1 r Òm2 ¨ ¨ ¨r Òm`

This amounts to D“   U with U“ Òm1Y ¨¨ ¨Y Òm`.

Problem: Not very convenient for simple sets:
— How do you represent Óp2,2q in pN2,ďˆq? And Óab in pΣ˚,ď˚q?

Óp2,2q “    
“

Òp0,3qY Òp3,0q
‰

Óab“   
“

ÒbaYÒcY ¨¨ ¨
‰

— How do you compute DYD 1 ?

There is a better solution: decompose into primes!
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PRIMES, UP AND DOWN

Fix pX,ďq WQO and consider UppXq “ tU,U 1, . . .u and
DownpXq “ tD,D 1, . . .u

Def. 4.1. 1. U (‰H) is (up-) prime
def
ô UĎ pU1YU2q implies UĎU1

or UĎU2.
2. D (‰H) is (down-) prime

def
ô DĎ pD1YD2q implies DĎD1 or

DĎD2.

Examples: for any x P X, Òx is up-prime and Óx is down-prime

Lem. 4.2. (Irreducibility)
1. U is prime iff U“U1Y ¨¨ ¨YUn implies U“Ui for some i
2. D is prime iff D“D1Y ¨¨ ¨YDn implies D“Di for some i

Lem. 4.3. (Completeness: Prime Decompositions Exist)
1. Every U PUp is a finite union of up-primes
2. Every D PDown is a finite union of down-primes
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MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) “ P1Y ¨¨ ¨YPn is minimal
def
ô @i, j : Pi Ď Pj implies i“ j.

Thm. 4.4. Every U (or D) has a unique minimal prime decomposition.
It is called its canonical decomposition

Prop. 4.8. (Primes are Filters/Ideals)
1. The up-primes of X are exactly the Òx for x P X (the principal filters)
2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset

Recall: I directed
def
ô x,y P I =ñ Dz P I : xď zě y

Example: any Óx is an ideal (called a principal ideal)
Example: If x1 ă x2 ă x3 . . . is an increasing sequence then

Ť

i Óxi is
an ideal
Exercise: Let us look at    U for our earlier UĎN

2
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A DOWNWARD-CLOSED SUBSET OF N
2

U“
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A DOWNWARD-CLOSED SUBSET OF N
2

D“   U“
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A DOWNWARD-CLOSED SUBSET OF N
2

D“ I1Y¨¨ ¨YI4
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NAILING DOWN THE IDEALS

The ideals of pN,ďq are exactly all Ón together with N itself

Hence pIdlpNq,Ďq ” pNYtωu,ďq, denoted Nω (”ω`1)

Thm. The ideals of pX1ˆX2,ďˆq are exactly the J1ˆ J2 for Ji an
ideal of Xi (i“ 1,2)

Hence pIdlpX1ˆX2q,Ďq ” IdlpX1,Ďqˆ IdlpX2,Ďq Very nice !!!!

Coro. The ideals of pNk,ďˆq are handled like N
k
ω

Example: Assume U“ Òp2,2q and D“ Óp4,ωqY Óp6,3q.
What is UrD and DrU?
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IDEALS FOR pΣ˚,ď˚q?
Recall: Ów is an ideal for any w P Σ˚.
E.g. Óabc“ tabc,ab,ac,bc,a,b,c,εu

What else?
‚ Σ˚ ?
‚ pabq˚ “ tε,ab,abab,ababab, . . .u ?
‚ a˚`b˚ “ tε,a,aa,aaa, . . . ,b,bb,bbb, . . .u ?
‚ pa`bq˚ ?

Lem. I ¨ J P IdlpΣ˚q for all I,J P IdlpΣ˚q

Thm. The ideals of Σ˚ are exactly the concatenation products
P “A1 ¨A2 ¨ ¨ ¨An for atoms of the form A“ Óa“ ta,εu with a P Σ or
A“ Γ˚ with Γ Ď Σ.

Exercise. Use this to compute Σ˚ r Òbad
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WHAT IS REQUIRED FOR HANDLING pX,ďq?

Def. X is ideally effective
def
ô

(XR): X is recursive
(OR): ď is decidable over X
(IR): IdlpXq is recursive
(II): Ď is decidable over IdlpXq

(CF): F“ Òx ÞÑ    F“ Xr F“ I1Y ¨¨ ¨Y In is recursive
(CI): I ÞÑ    I“ Òx1Y ¨¨ ¨Y Òxn is recursive
(IF) & (II): F1,F2 ÞÑ F1X F2 “ Òx1Y ¨¨ ¨ and I1,I2 ÞÑ I1X I2 “ J1Y ¨¨ ¨
are recursive
(IM): membership x P I is decidable over X and IdlpXq
(XF) & (XI): X“ F1Y ¨¨ ¨Fn and X“ I1Y ¨¨ ¨Im are effective
(PI): x ÞÑ Óx is recursive

Examples: Is pN,ďq ideally effective?
What about pΣ˚,ď˚q ?
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VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

Thm. If pX,ďq satisfies the first 4 axioms above and (CF), (II),
(PI),(XI) then it is ideally effective.
(XR): X is recursive
(OR): ď is decidable over X
(IR): IdlpXq is recursive
(II): Ď is decidable over IdlpXq

(CF): F“ Òx ÞÑ    F“ Xr F“ I1Y ¨¨ ¨Y In is recursive
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(IM): membership x P I is decidable over X and IdlpXq
(XF) & (XI): X“ F1Y ¨¨ ¨Fn and X“ I1Y ¨¨ ¨Im are effective
(PI): x ÞÑ Óx is recursive

Proof. We first show (CD)
def
ô one can design a recursive

D“ I1Y ¨¨ ¨In ÞÑ    D“U“ Òx1YÒx2Y ¨¨ ¨
For this, set U0 “H and, as long as DĹ   Ui, we pick some x s.t.
D S x RUi and set Ui`1 “UiYÒx. Eventually Ui “   D will happen
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(IM): membership x P I is decidable over X and IdlpXq
(XF) & (XI): X“ F1Y ¨¨ ¨Fn and X“ I1Y ¨¨ ¨Im are effective
(PI): x ÞÑ Óx is recursive

Proof. Then we get (IF) from (CD) and (CI), by expressing
intersection as dual of union, (IM) from (PI) and (II), (XF) from (CD)
by computing    H
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VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

(XR): X is recursive
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(IM): membership x P I is decidable over X and IdlpXq
(XF) & (XI): X“ F1Y ¨¨ ¨Fn and X“ I1Y ¨¨ ¨Im are effective
(PI): x ÞÑ Óx is recursive

Thm [Halfon]. There are no more redundancies in the blue axioms
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CONSTRUCTING IDEALLY EFFECTIVE WQOS

‚ pXˆ Y,ďˆq is ideally effective when X and Y are.

‚ pX˚,ď˚q is ideally effective when X is. The ideals are the products
of atoms A“D˚ for D PDownpXq and A“ ÓI for I P IdlpXq

‚ pX\ Y,ď\q is ideally effective when X and Y are.
IdlpX\ Yq ” IdlpXq\ IdlpYq.

‚ Xˆlex Y and X\lex Y are ideally effective when ..

‚ PfpXq and MfpXq and pX˚,ďstq and ¨ ¨ ¨ are ideally ..

‚ TpXq is ideally effective when X is but the ideals are more complex
(see Goubault-Larrecq & Schmitz, ICALP 2016)
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CONSTRUCTING MORE IDEALLY EFFECTIVE WQOS

1. Assume pX,ď 1q is an extension of pX,ďq, i.e., ďĎď 1.

Then IdlpX,ď 1q “ tÓď 1I | I P IdlpX,ďqu.

Furthermore pX,ď 1q is ideally effective when pX,ďq is and the
functions

I ÞÑ Óď 1I“ I1Y ¨¨ ¨Y I` and Òx“ F ÞÑ Òď 1F“ Òx1Y ¨¨ ¨Y Òxm

are recursive.

Example. Subwords cum conjugacy:

abcdďþ acbadbbdbdbdbadbc

Example. Quotienting pX,ďq by some equivalence « such that
« ˝ ď “ď ˝ «
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CONSTRUCTING MORE IDEALLY EFFECTIVE WQOS

2. Assume pY,ďYq is a subwqo of pX,ďXq, i.e., Y Ď X and
ďY “ďX XYˆ Y.

Then IdlpY,ďq “ tIX Y | I P IdlpXq st. IĎ ÓXY ^ IX Y ‰Hu.

Furthermore pY,ďq is ideally effective when pX,ďq is and when Y and
the functions

IdlpXqÑDownpXq
I ÞÑ ÓXpIX Yq “ I1Y ¨¨ ¨I`

and FilpXqÑUppXq
Òx“ F ÞÑ ÒXpFX Yq “ Òx1Y ¨¨ ¨Òxm

are recursive.

Example. pL,ď˚q for a context-free LĎ Σ˚.

Example. Decreasing sequences in N
˚ with the subsequence

ordering.
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CONCLUSION FOR PART V

Ideal-based algorithms already have several applications.

Handling WQO’s raise many interesting algorithmic questions:

‚ Best algorithms for pΣ˚,ď˚q? (Karandikar et al., TCS 2016)

‚ Best algorithms for
`

N
k
˘˚?

‚ Fully generic library of data structures and algorithms?

‚ Separating the polynomial and the exponential cases?

‚ More constructions .. Beyond WQOs ..

‚ ¨ ¨ ¨
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