MPRI 2-9-1 "Algorithmic Aspects of WQO Theory" Nov. 12th, 2020: Upper bounds for bad sequences

 (A, \leqslant) is a well-quasi-ordering (a WQO) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over A contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Ex. 1. (**N**,≤) is a WQO

2. $(\prod_{i=1}^k A_i,\leqslant_{\text{prod}})$ is a WQO when each (A_i,\leqslant_i) is (Dickson's Lemma)

where $(x_1,...,x_k) \leq_{\text{prod}} (y_1,...,y_k) \stackrel{\text{def}}{\Leftrightarrow} \bigwedge_i x_i \leq_i y_i$

 (A, \leqslant) is a well-quasi-ordering (a WQO) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over A contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Ex.

1. (\mathbb{N}, \leq) is a WQO

2. $(\prod_{i=1}^k A_i,\leqslant_{\text{prod}})$ is a WQO when each (A_i,\leqslant_i) is (Dickson's Lemma)

where $(x_1,...,x_k) \leqslant_{\text{prod}} (y_1,...,y_k) \stackrel{\text{der}}{\Leftrightarrow} \bigwedge_i x_i \leqslant_i y_i$

3. (A^*, \leq_*) is a WQO when (A, \leq) is (Higman's Lemma) where, $x = (x_1 \dots x_n) \leq_* (y_1 \dots y_m) = y$ iff $x \leq_{prod} y'$ for a length-n subsequence $y' = (y_{k_1} \dots y_{k_n})$ for y (NB: $1 \leq k_1 < k_2 < \dots < k_n \leq m$) E.g. over $(\mathbb{N}^2)^*$: $| {}^1_0 | {}^0_2 \leq_* | {}^0_0 | {}^1_1 | {}^1_3$ while $| {}^1_2 | {}^0_2 \leq_* | {}^0_0 | {}^1_1 | {}^1_3$ E.g. over $(\{a, b\}^*)^*$: $(ab)(a)(ab) \leq_* (a)(bab)(b)(bab)$

 (A, \leqslant) is a well-quasi-ordering (a WQO) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over A contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Ex.

1. (\mathbb{N}, \leq) is a WQO

2. $(\prod_{i=1}^k A_i,\leqslant_{\text{prod}})$ is a WQO when each (A_i,\leqslant_i) is (Dickson's Lemma)

where $(x_1,...,x_k) \leqslant_{\text{prod}} (y_1,...,y_k) \stackrel{\text{def}}{\Leftrightarrow} \bigwedge_i x_i \leqslant_i y_i$

3. (A^*, \leq_*) is a WQO when (A, \leq) is (Higman's Lemma) where, $\mathbf{x} = (x_1 \dots x_n) \leq_* (y_1 \dots y_m) = \mathbf{y}$ iff $\mathbf{x} \leq_{\text{prod}} \mathbf{y}'$ for a length-n subsequence $\mathbf{y}' = (y_{k_1} \dots y_{k_n})$ for \mathbf{y} (NB: $1 \leq k_1 < k_2 < \dots < k_n \leq m$) E.g. over $(\mathbb{N}^2)^*$: $|_0^1|_2^0 \leq_* |_0^2|_1^1|_3^1$ while $|_2^1|_2^0 \leq_* |_0^2|_1^1|_3^1$ E.g. over $(\{a,b\}^*)^*$: $(ab)(a)(ab) \leq_* (a)(bab)(b)(bab)$

 (A, \leqslant) is a well-quasi-ordering (a WQO) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over A contains an increasing pair $x_i \leqslant x_j$ (for some i < j)

Ex.

1. (\mathbb{N}, \leq) is a WQO

2. $(\prod_{i=1}^k A_i,\leqslant_{\text{prod}})$ is a WQO when each (A_i,\leqslant_i) is (Dickson's Lemma)

where $(x_1,...,x_k) \leqslant_{\text{prod}} (y_1,...,y_k) \stackrel{\text{def}}{\Leftrightarrow} \bigwedge_i x_i \leqslant_i y_i$

3. (A^*, \leq_*) is a WQO when (A, \leq) is (Higman's Lemma) where, $\mathbf{x} = (x_1 \dots x_n) \leq_* (y_1 \dots y_m) = \mathbf{y}$ iff $\mathbf{x} \leq_{\text{prod}} \mathbf{y}'$ for a length-n subsequence $\mathbf{y}' = (y_{k_1} \dots y_{k_n})$ for \mathbf{y} (NB: $1 \leq k_1 < k_2 < \dots < k_n \leq m$) E.g. over $(\mathbb{N}^2)^*$: $| {}_0^1 | {}_2^0 \leq_* | {}_0^2 | {}_1^1 | {}_3^1$ while $| {}_2^1 | {}_2^0 \not\leq_* | {}_0^2 | {}_1^1 | {}_3^1$ E.g. over $(\{a, b\}^*)^*$: $(ab)(a)(ab) \not\leq_* (a)(bab)(b)(bab)$

Def. A sequence $x_0, x_1, ...$ over A is bad $\stackrel{\text{def}}{\Leftrightarrow}$ there is no increasing pair " $x_i \leqslant x_j$ with i < j"

NB. Over a WQO, a bad sequence is necessarily finite

Problem. Given A, how long can a bad sequence $x_0, x_1, ...$ over A be? This will give bounds on the number of steps of many WSTS algorithms **Def.** A sequence $x_0, x_1, ...$ over A is bad $\stackrel{\text{def}}{\Leftrightarrow}$ there is no increasing pair " $x_i \leq x_j$ with i < j"

NB. Over a WQO, a bad sequence is necessarily finite

Problem. Given A, how long can a bad sequence $x_0, x_1, ...$ over A be?

This will give bounds on the number of steps of many WSTS algorithms

A 1-player game over WQ (A, \leq) :

- Pick an element a₀, then some a₁, then some a₂..., building a sequence a₀, a₁, a₂, a₃,....
- Player loses when/if he creates a good sequence.

Let's play on (\mathbb{N}, \leq) .

Let's play on $(\mathbb{N}^2, \leq_{\times})$.

A 1-player game over WQ (A, \leq) :

- Pick an element a₀, then some a₁, then some a₂..., building a sequence a₀, a₁, a₂, a₃,....
- Player loses when/if he creates a good sequence.

Let's play on (\mathbb{N}, \leq) .

Let's play on $(\mathbb{N}^2, \leq_{\times})$.

- A 1-player game over WQ (A, \leq) :
 - Pick an element a₀, then some a₁, then some a₂..., building a sequence a₀, a₁, a₂, a₃,....
 - Player loses when/if he creates a good sequence.

Let's play on (\mathbb{N}, \leqslant) .

Let's play on $(\mathbb{N}^2, \leq_{\times})$.

Let's play on (a, b, c^*, \leqslant_*)

Conclusions:

1. We need to restrict to sequences where x_0 and $[x_0...x_k] \mapsto x_{k+1}$ have limited complexity;

2. and accept enormous lengths (in the "fast growing hierarchy")

Let's play on (a, b, c^*, \leq_*)

Conclusions:

1. We need to restrict to sequences where x_0 and $[x_0\dots x_k]\mapsto x_{k+1}$ have limited complexity;

2. and accept enormous lengths (in the "fast growing hierarchy")

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: $F_1,\,F_2,\,F_3,\,\ldots$

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega-2}, F_{\omega-2+1}, \ldots, F_{\omega-3}, \ldots, F_{\omega-4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^{\omega+2}+\omega-2}, \ldots, F_{\omega^{2}-2}, \ldots, F_{\omega^3}, \ldots, F_{\omega^{\omega}}, \ldots, F_{\omega^{$

• We work with ordinals below ε_0 written in Cantor normal form:

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 where $\alpha > \alpha_1 \ge \dots \ge \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \quad \frac{\alpha > \alpha_1 > \dots > \alpha_m}{c_1, \dots, c_m \in \mathbb{N}}$$

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: $F_1,\,F_2,\,F_3,\,\ldots$

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega\cdot 2}, F_{\omega\cdot 2+1}, \ldots, F_{\omega\cdot 3}, \ldots, F_{\omega\cdot 4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^{2+\omega}}, \ldots, F_{\omega^{2+\omega}\cdot 2}, \ldots, F_{\omega^{2-2}, \ldots}, F_{\omega^3}, \ldots, F_{\omega^{\omega}}, \ldots, F_{\omega^{\omega^{\omega}}}, \ldots, F_{\omega^{\omega}}, \ldots, F_{\omega^{\omega}},$

• We work with ordinals below ε_0 written in Cantor normal form:

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 where $\alpha > \alpha_1 \ge \dots \ge \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0 and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \begin{array}{l} \alpha > \alpha_1 > \dots > \alpha_m \\ c_1, \dots, c_m \in \mathbb{N} \end{array}$$

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: F_1, F_2, F_3, \ldots

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega\cdot 2}, F_{\omega\cdot 2+1}, \ldots, F_{\omega\cdot 3}, \ldots, F_{\omega\cdot 4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^{\omega+1}}, \ldots, F_{\omega^{\omega+1}},$

• We work with ordinals below ε_0 written in Cantor normal form:

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 where $\alpha > \alpha_1 \geqslant \dots \geqslant \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \ \begin{array}{c} \alpha > \alpha_1 > \dots > \alpha_m \\ c_1, \dots, c_m \in \mathbb{N} \end{array}$$

FAST-GROWING FUNCTIONS

 $(F_\alpha)_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_\alpha:\mathbb{N}\to\mathbb{N}$

$$F_{0}(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x)\dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma + \omega^{\beta + 1})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\beta} \cdot (x + 1) \qquad (\gamma + \omega^{\lambda})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\lambda_{x}}$$

$$g. F_{\omega^{2}}(7) = F_{\omega \cdot 8}(7) = F_{\omega \cdot 7 + 8}(7) = F_{\omega \cdot 7 + 7}(F_{\omega \cdot 7 + 7}(\cdots (F_{\omega \cdot 7 + 7}(7))\cdots))$$

FAST-GROWING FUNCTIONS

 $(F_\alpha)_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_\alpha:\mathbb{N}\to\mathbb{N}$

$$F_0(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x) \dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma + \omega^{\beta + 1})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\beta} \cdot (x + 1) \qquad (\gamma + \omega^{\lambda})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\lambda_{x}}$$

FAST-GROWING FUNCTIONS

 $(F_{\alpha})_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_{\alpha}:\mathbb{N}\to\mathbb{N}$

$$F_0(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x) \dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma + \omega^{\beta+1})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\beta} \cdot (x+1) \qquad (\gamma + \omega^{\lambda})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\lambda_{x}}$$

E.g. $F_{\omega^{2}}(7) = F_{\omega \cdot 8}(7) = F_{\omega \cdot 7+8}(7) = \overbrace{F_{\omega \cdot 7+7}(F_{\omega \cdot 7+7}(\cdots (F_{\omega \cdot 7+7}(7))\cdots))}^{8}$

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

 $\mathcal{F}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathcal{F}_{\beta} \qquad \mathcal{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbb{F}_{\alpha}^{c} \qquad \mathbb{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \text{FDTIME}(F_{\alpha}^{c}(p(n)))$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{\mathsf{O}(n)}), \ \mathfrak{F}_{<3} = \mathsf{FELEM}, \ \mathfrak{F}_{<\omega} = \mathsf{PR}, \ \mathfrak{F}_{<\omega^{\omega}} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbf{F}_{\beta} \subseteq \mathbf{F}_{\beta}^{c+1} \subseteq \mathbf{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

$$\mathfrak{F}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathfrak{F}_{\beta} \qquad \mathfrak{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbb{F}_{\alpha}^{c} \qquad \mathbb{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}^{c}(p(n)))$$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{\mathsf{O}(n)}), \ \mathcal{F}_{<3} = \mathsf{FELEM}, \ \mathcal{F}_{<\omega} = \mathsf{PR}, \ \mathcal{F}_{<\omega^{\omega}} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbf{F}_{\beta} \subseteq \mathbf{F}_{\beta}^{c+1} \subseteq \mathbf{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

$$\mathfrak{F}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathfrak{F}_{\beta} \qquad \mathfrak{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbf{F}_{\alpha}^{c} \qquad \mathbf{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathcal{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}^{c}(p(n)))$$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{O(n)}), \ \mathfrak{F}_{<3} = \mathsf{FELEM}, \ \mathfrak{F}_{<\omega} = \mathsf{PR}, \ \mathfrak{F}_{<\omega^\omega} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbb{F}_{\beta} \subsetneq \mathbb{F}_{\beta}^{c+1} \subsetneq \mathbb{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

 $\text{Def. } \mathfrak{F}_{\alpha} = \bigcup_{k \in \mathbb{N}} \text{FDTIME}\big(F_{\alpha}^{k}(\mathfrak{n})\big) = \text{FDTIME}\big(F_{\alpha}^{O(1)}(\mathfrak{n})\big)$

 $\begin{array}{l} \mbox{THE LENGTH FUNCTION} \\ \mbox{Let } n \in \mathbb{N} \mbox{ and } g: \mathbb{N} \to \mathbb{N} \mbox{ be strictly increasing} \\ \mbox{Def. A sequence } x_0, x_1, \dots \mbox{ is } (g, n) \mbox{-controlled} \\ \stackrel{\mbox{def}}{\Leftrightarrow} |x_i| < g^i(n) = \underbrace{g(g(\ldots g(n) \ldots))}_{i \mbox{ times}} \mbox{ for all } i = 0, 1, \dots \end{array}$

Def. $L(A,g,n) \stackrel{\text{def}}{=} \text{length of longest } (g,n)\text{-controlled bad sequence } x_0, x_1, \dots, x_l$

Ex. $L(\mathbb{N},g,n) = n$

Fact. L(A, g, n) is a well-defined integer (if each $A_{\leq k} \stackrel{\text{def}}{=} \{x \in A \mid |x| < k\}$ is finite –the norm function is proper). It is computable if g is recursive (and (A, \leq) and ..)

Notation. Below we write $L_{A,g}(n)$, and even $L_A(n)$ when g is understood.

 $\begin{array}{l} \mbox{THE LENGTH FUNCTION} \\ \mbox{Let } n \in \mathbb{N} \mbox{ and } g: \mathbb{N} \to \mathbb{N} \mbox{ be strictly increasing} \\ \mbox{Def. A sequence } x_0, x_1, \dots \mbox{ is } (g, n)\mbox{-controlled} \\ \stackrel{\mbox{def}}{\Leftrightarrow} |x_i| < g^i(n) = \underbrace{g(g(\ldots g(n) \ldots))}_{i \mbox{ times}} \mbox{ for all } i = 0, 1, \dots \end{array}$

Def. $L(A,g,n) \stackrel{\text{def}}{=} \text{length of longest } (g,n)\text{-controlled bad sequence } x_0, x_1, \dots, x_l$

Ex. $L(\mathbb{N},g,n) = n$

Fact. L(A, g, n) is a well-defined integer (if each $A_{\leq k} \stackrel{\text{def}}{=} \{x \in A \mid |x| < k\}$ is finite –the norm function is proper). It is computable if g is recursive (and (A, \leq) and ..)

Notation. Below we write $L_{A,g}(n)$, and even $L_A(n)$ when g is understood.

 $\begin{array}{l} \mbox{THE LENGTH FUNCTION} \\ \mbox{Let } n \in \mathbb{N} \mbox{ and } g: \mathbb{N} \to \mathbb{N} \mbox{ be strictly increasing} \\ \mbox{Def. A sequence } x_0, x_1, \dots \mbox{ is } (g, n)\mbox{-controlled} \\ \stackrel{\mbox{def}}{\Leftrightarrow} |x_i| < g^i(n) = \underbrace{g(g(\ldots g(n) \ldots))}_{i \mbox{ times}} \mbox{ for all } i = 0, 1, \dots \end{array}$

Def. $L(A,g,n) \stackrel{\text{def}}{=} \text{length of longest } (g,n)\text{-controlled bad sequence } x_0, x_1, \dots, x_l$

Ex. $L(\mathbb{N},g,n) = n$

Fact. L(A, g, n) is a well-defined integer (if each $A_{<k} \stackrel{\text{def}}{=} \{x \in A \mid |x| < k\}$ is finite –the norm function is proper). It is computable if g is recursive (and (A, \leqslant) and ..)

Notation. Below we write $L_{A,g}(n)$, and even $L_A(n)$ when g is understood.

 $\begin{array}{l} \mbox{THE LENGTH FUNCTION} \\ \mbox{Let } n \in \mathbb{N} \mbox{ and } g: \mathbb{N} \to \mathbb{N} \mbox{ be strictly increasing} \\ \mbox{Def. A sequence } x_0, x_1, \dots \mbox{ is } (g, n) \mbox{-controlled} \\ \stackrel{\mbox{def}}{\Leftrightarrow} |x_i| < g^i(n) = \underbrace{g(g(\ldots g(n) \ldots))}_{i \mbox{ times}} \mbox{ for all } i = 0, 1, \dots \end{array}$

Def. $L(A,g,n) \stackrel{\text{def}}{=} \text{length of longest } (g,n)\text{-controlled bad sequence } x_0, x_1, \dots, x_l$

Ex. $L(\mathbb{N},g,n) = n$

Fact. L(A, g, n) is a well-defined integer (if each $A_{<k} \stackrel{\text{def}}{=} \{x \in A \mid |x| < k\}$ is finite –the norm function is proper). It is computable if g is recursive (and (A, \leqslant) and ..)

Notation. Below we write $L_{A,g}(n)$, and even $L_A(n)$ when g is understood.

RESIDUALS

Def. For $x \in A$, $A/x \stackrel{\text{def}}{=} A - \uparrow \{x\} = \{y \in A \mid y \ge x\}$ is a residual of A. **Ex.** $\mathbb{N}/5 = \{0, 1, 2, 3, 4\}$ and $\Gamma^*/ab = (b+c)^*(a+c)^*$ (for $\Gamma = \{a, b, c\}$)

Fact. (Descent Equation)

$$\mathsf{L}_{\mathsf{A}}(\mathfrak{n}) = \max_{\mathbf{x} \in \mathcal{A}_{< \mathfrak{n}}} \left\{ 1 + \mathsf{L}_{\mathsf{A}/\mathsf{x}}(\mathfrak{g}(\mathfrak{n})) \right\} \tag{*}$$

NB. (*) can be used as a well-founded recursive definition since taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

 $A \supseteq A/x_0 \supseteq A/x_0/x_1 \supseteq A/x_0/x_1/x_2 \supseteq \cdots$

the sequence of elements x_0, x_1, x_2, \dots is necessarily bad, hence finite

RESIDUALS

Def. For $x \in A$, $A/x \stackrel{\text{def}}{=} A - \uparrow \{x\} = \{y \in A \mid y \ge x\}$ is a residual of A. **Ex.** $\mathbb{N}/5 = \{0, 1, 2, 3, 4\}$ and $\Gamma^*/ab = (b+c)^*(a+c)^*$ (for $\Gamma = \{a, b, c\}$)

Fact. (Descent Equation)

$$L_{A}(n) = \max_{x \in A_{< n}} \{ 1 + L_{A/x}(g(n)) \}$$
(*)

NB. (*) can be used as a well-founded recursive definition since taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

 $A \supseteq A/x_0 \supseteq A/x_0/x_1 \supseteq A/x_0/x_1/x_2 \supseteq \cdots$

the sequence of elements x_0, x_1, x_2, \dots is necessarily bad, hence finite

RESIDUALS

Def. For $x \in A$, $A/x \stackrel{\text{def}}{=} A - \uparrow \{x\} = \{y \in A \mid y \ge x\}$ is a residual of A. **Ex.** $\mathbb{N}/5 = \{0, 1, 2, 3, 4\}$ and $\Gamma^*/ab = (b+c)^*(a+c)^*$ (for $\Gamma = \{a, b, c\}$)

Fact. (Descent Equation)

$$\mathsf{L}_{\mathsf{A}}(\mathfrak{n}) = \max_{\mathsf{x} \in \mathsf{A}_{< \mathfrak{n}}} \left\{ 1 + \mathsf{L}_{\mathsf{A}/\mathsf{x}}(\mathfrak{g}(\mathfrak{n})) \right\} \tag{*}$$

NB. (*) can be used as a well-founded recursive definition since taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

$$A \supseteq A/x_0 \supseteq A/x_0/x_1 \supseteq A/x_0/x_1/x_2 \supseteq \cdots$$

the sequence of elements $x_0, x_1, x_2, ...$ is necessarily bad, hence finite

ROADMAP

$$L_{A}(n) = \max_{x \in A_{< n}} \{ 1 + L_{A/x}(g(n)) \}$$
(*)

- 1. Define an algebra of WQOs to manage the A argument of L_A
- 2. "Compute" A/x algebraically, perhaps overapproximating
- 3. Use ordinal arithmetic to represent/compute with the A_i 's and to classify L_A in the Fast-Growing Hierarchy

AN ALGEBRA OF WQOS WITH NORMS

"WQO with norm" $\stackrel{\text{def}}{=}$ a WQO (A, \leq_A) equipped with a norm function $|.|_A : A \to \mathbb{N}$ (and usually just written "A")

Ex. \mathbb{N} with $|n|_{\mathbb{N}} \stackrel{\text{def}}{=} n$ or Γ^* with $|abba|_{\Gamma^*} \stackrel{\text{def}}{=} 4$

Simple (normed) WQOs can be combined/expanded to yield more complex (normed) WQOs

Disjoint sum. $A_1 + A_2 \stackrel{\text{def}}{=} \{1\} \times A_1 + \{2\} \times A_2$ $(i,x) \leq_{A_1+A_2} (j,y) \stackrel{\text{def}}{\Leftrightarrow} i = j \land x \leq_{A_i} y \qquad |(i,x)|_{A_1+A_2} \stackrel{\text{def}}{=} |x|_{A_i}$

Cartesian product.

$$\begin{split} (x_1, x_2) \leqslant_{A_1 \times A_2} (y_1, y_2) & \stackrel{\text{def}}{\Leftrightarrow} x_1 \leqslant_{A_1} y_1 \wedge x_2 \leqslant_{A_2} y_2 \\ |(x_1, x_2)|_{A_1 \times A_2} & \stackrel{\text{def}}{=} \max(|x_1|_{A_1}, |x_2|_{A_2}) \end{split}$$

$$\begin{split} & \textbf{Finite sequences.} \; (x_1, \ldots, x_n) \leqslant_{A^*} (y_1, \ldots, y_m) \stackrel{\text{def}}{\Leftrightarrow} \bigwedge_{i=1}^n x_i \leqslant_A y_{k_i} \text{ for some } 1 \leqslant k_1 < k_2 < \cdots < k_n \leqslant m \\ & |(x_1, \ldots, x_n)|_{A^*} \stackrel{\text{def}}{=} \max(n, |x_1|_A, \ldots, |x_n|_A) \end{split}$$

AN ALGEBRA OF WQOS WITH NORMS

"WQO with norm" $\stackrel{\text{def}}{=}$ a WQO (A, \leq_A) equipped with a norm function $|.|_A : A \to \mathbb{N}$ (and usually just written "A")

Ex. \mathbb{N} with $|n|_{\mathbb{N}} \stackrel{\text{def}}{=} n$ or Γ^* with $|abba|_{\Gamma^*} \stackrel{\text{def}}{=} 4$

Simple (normed) WQOs can be combined/expanded to yield more complex (normed) WQOs

 $\begin{array}{l} \text{Disjoint sum. } A_1 + A_2 \stackrel{\text{def}}{=} \{1\} \times A_1 + \{2\} \times A_2 \\ (i,x) \leqslant_{A_1 + A_2} (j,y) \stackrel{\text{def}}{\Leftrightarrow} i = j \wedge x \leqslant_{A_i} y \qquad |(i,x)|_{A_1 + A_2} \stackrel{\text{def}}{=} |x|_{A_i} \end{array}$

Cartesian product.

$$\begin{split} (\mathbf{x}_1, \mathbf{x}_2) \leqslant_{A_1 \times A_2} (\mathbf{y}_1, \mathbf{y}_2) \stackrel{\text{def}}{\Leftrightarrow} \mathbf{x}_1 \leqslant_{A_1} \mathbf{y}_1 \wedge \mathbf{x}_2 \leqslant_{A_2} \mathbf{y}_2 \\ |(\mathbf{x}_1, \mathbf{x}_2)|_{A_1 \times A_2} \stackrel{\text{def}}{=} \max(|\mathbf{x}_1|_{A_1}, |\mathbf{x}_2|_{A_2}) \end{split}$$

 $\begin{array}{l} \mbox{Finite sequences. } (x_1,\ldots,x_n) \leqslant_{A^*} (y_1,\ldots,y_m) \stackrel{\mbox{def}}{\Leftrightarrow} \bigwedge_{i=1}^n x_i \leqslant_A y_{k_i} \mbox{ for some } 1 \leqslant k_1 < k_2 < \cdots < k_n \leqslant m \\ |(x_1,\ldots,x_n)|_{A^*} \stackrel{\mbox{def}}{=} max(n,|x_1|_A,\ldots,|x_n|_A) \end{array}$

We consider all "elementary WQOs"

 $A::=\emptyset | A+A | A \times A | A^*$

Def. $\Gamma_p = \{a_1, ..., a_p\}$ is a p-letter alphabet well-ordered by Id_{Γ_p} and normed with $|a_i|_{\Gamma_p} = 0$

Fact. $\Gamma_0 \equiv \emptyset$ and $\Gamma_1 \equiv \emptyset^*$ are elementary WQOs (modulo isomorphism). $\Gamma_p \equiv \Gamma_1 + \dots + \Gamma_1$ also is elementary

Fact. $\mathbb{N} \equiv \Gamma_1^*$ is elementary

NB. If $A \equiv B$ then $L_{A,g}(n) = L_{B,g}(n)$.

Reasoning modulo isomorphism is simplified by laws like $\emptyset \times A \equiv \emptyset$ or $A \times (B + C) \equiv A \times B + A \times C$.

We consider all "elementary WQOs"

 $A : := \emptyset | A + A | A \times A | A^*$

Def. $\Gamma_p = \{a_1, ..., a_p\}$ is a p-letter alphabet well-ordered by Id_{Γ_p} and normed with $|a_i|_{\Gamma_p} = 0$

Fact. $\Gamma_0 \equiv \emptyset$ and $\Gamma_1 \equiv \emptyset^*$ are elementary WQOs (modulo isomorphism). $\Gamma_p \equiv \Gamma_1 + \dots + \Gamma_1$ also is elementary

Fact. $\mathbb{N} \equiv \Gamma_1^*$ is elementary

NB. If $A \equiv B$ then $L_{A,g}(n) = L_{B,g}(n)$.

Reasoning modulo isomorphism is simplified by laws like $\emptyset \times A \equiv \emptyset$ or $A \times (B + C) \equiv A \times B + A \times C$.

We consider all "elementary WQOs"

 $A::=\emptyset \mid A+A \mid A \times A \mid A^*$

Def. $\Gamma_p=\{a_1,\ldots,a_p\}$ is a p-letter alphabet well-ordered by Id_{Γ_p} and normed with $|a_i|_{\Gamma_p}=0$

Fact. $\Gamma_0 \equiv \emptyset$ and $\Gamma_1 \equiv \emptyset^*$ are elementary WQOs (modulo isomorphism). $\Gamma_p \equiv \Gamma_1 + \dots + \Gamma_1$ also is elementary

Fact. $\mathbb{N} \equiv \Gamma_1^*$ is elementary

NB. If $A \equiv B$ then $L_{A,g}(n) = L_{B,g}(n)$.

Reasoning modulo isomorphism is simplified by laws like $\emptyset \times A \equiv \emptyset$ or $A \times (B + C) \equiv A \times B + A \times C$.

We consider all "elementary WQOs"

 $A : := \emptyset \mid A + A \mid A \times A \mid A^*$

Def. $\Gamma_p = \{a_1, ..., a_p\}$ is a p-letter alphabet well-ordered by Id_{Γ_p} and normed with $|a_i|_{\Gamma_p} = 0$

Fact. $\Gamma_0 \equiv \emptyset$ and $\Gamma_1 \equiv \emptyset^*$ are elementary WQOs (modulo isomorphism). $\Gamma_p \equiv \Gamma_1 + \dots + \Gamma_1$ also is elementary

Fact. $\mathbb{N} \equiv \Gamma_1^*$ is elementary

NB. If $A \equiv B$ then $L_{A,g}(n) = L_{B,g}(n)$.

Reasoning modulo isomorphism is simplified by laws like $\emptyset \times A \equiv \emptyset$ or $A \times (B + C) \equiv A \times B + A \times C$.

REFLECTING RESIDUALS

Earlier we observed $\Gamma_3^*/ab = (b+c)^*(a+c)^*$

Can we write $\Gamma_3^*/ab \equiv \Gamma_2^* \times \Gamma_2^*$? This would (perhaps) simplify the computation of $L_{A/x}(n)$ in the Descent Equation

Answer. $\Gamma_3^*/ab \not\equiv \Gamma_2^* \times \Gamma_2^*$

However, Γ_3^*/ab can be reflected in $\Gamma_2^* \times \Gamma_2^*$

Def. $h: A \hookrightarrow B \stackrel{\text{def}}{\Leftrightarrow} h: A \to B$ is a mapping that satisfies $|h(x)|_B \leq |x|_A$ and $h(x) \leq_B h(y) \Rightarrow x \leq_A y$

For $x \in \Gamma_3^*/ab$ we let $h(x) = \langle x_1, x_2 \rangle$ where $x = x_1x_2$ is a factorization with x_1 the longest prefix in $(b + c)^*$ (hence $x_2 \in \varepsilon + a(a + c)^*$) **Check.** $|h(x)| = max(|x_1|, |x_2|) \leq |x|$ **Check.** $h(x) = \langle x_1, x_2 \rangle \leq _{\Gamma_2^* \times \Gamma_2^*} \langle y_1, y_2 \rangle = h(y)$ implies $x \leq _{\Gamma_3^*} y$

REFLECTING RESIDUALS

Earlier we observed $\Gamma_3^*/ab = (b+c)^*(a+c)^*$

Can we write $\Gamma_3^*/ab \equiv \Gamma_2^* \times \Gamma_2^*$? This would (perhaps) simplify the computation of $L_{A/x}(n)$ in the Descent Equation

Answer. $\Gamma_3^*/ab \not\equiv \Gamma_2^* \times \Gamma_2^*$

However, Γ_3^*/ab can be reflected in $\Gamma_2^* \times \Gamma_2^*$

Def. $h: A \hookrightarrow B \stackrel{\text{def}}{\Leftrightarrow} h: A \to B$ is a mapping that satisfies $|h(x)|_B \leq |x|_A$ and $h(x) \leq_B h(y) \Rightarrow x \leq_A y$

For $x \in \Gamma_3^*/ab$ we let $h(x) = \langle x_1, x_2 \rangle$ where $x = x_1x_2$ is a factorization with x_1 the longest prefix in $(b + c)^*$ (hence $x_2 \in \varepsilon + a(a + c)^*$) **Check.** $|h(x)| = max(|x_1|, |x_2|) \leq |x|$ **Check.** $h(x) = \langle x_1, x_2 \rangle \leq _{\Gamma_2^* \times \Gamma_2^*} \langle y_1, y_2 \rangle = h(y)$ implies $x \leq _{\Gamma_3^*} y$

REFLECTING RESIDUALS

Earlier we observed $\Gamma_3^*/ab = (b+c)^*(a+c)^*$

Can we write $\Gamma_3^*/ab \equiv \Gamma_2^* \times \Gamma_2^*$? This would (perhaps) simplify the computation of $L_{A/x}(n)$ in the Descent Equation

Answer. $\Gamma_3^*/ab \not\equiv \Gamma_2^* \times \Gamma_2^*$

However, Γ_3^*/ab can be reflected in $\Gamma_2^* \times \Gamma_2^*$

Def. $h: A \hookrightarrow B \stackrel{\text{def}}{\Leftrightarrow} h: A \to B$ is a mapping that satisfies $|h(x)|_B \leq |x|_A$ and $h(x) \leq_B h(y) \Rightarrow x \leq_A y$

For $x \in \Gamma_3^*/ab$ we let $h(x) = \langle x_1, x_2 \rangle$ where $x = x_1x_2$ is a factorization with x_1 the longest prefix in $(b + c)^*$ (hence $x_2 \in \varepsilon + a(a + c)^*$) Check. $|h(x)| = max(|x_1|, |x_2|) \leq |x|$ Check. $h(x) = \langle x_1, x_2 \rangle \leq _{\Gamma_2^* \times \Gamma_2^*} \langle y_1, y_2 \rangle = h(y)$ implies $x \leq _{\Gamma_3^*} y$ **Def.** B reflects A, written $A \hookrightarrow B$, when $h: A \hookrightarrow B$ for some h.

Prop. $\mathbf{x} = x_0, x_1, ...$ bad in A implies $h(\mathbf{x})$ bad in B too. And \mathbf{x} (g, n)-controlled implies $h(\mathbf{x})$ controlled too.

Cor. $A \hookrightarrow B$ implies $L_A(n) \leq L_B(n)$

Hence reflections can be used to overapproximate residuals

Prop. Reflections are transitive, compatible with isomorphism, and a precongruence for sum, product, and star E.g., $A \hookrightarrow B$ implies $A^* \hookrightarrow B^*$ and $(A \times C) \hookrightarrow (B \times C)$.

Def. B reflects A, written $A \hookrightarrow B$, when $h: A \hookrightarrow B$ for some h.

Prop. $\mathbf{x} = x_0, x_1, ...$ bad in A implies $h(\mathbf{x})$ bad in B too. And \mathbf{x} (g, n)-controlled implies $h(\mathbf{x})$ controlled too.

Cor. $A \hookrightarrow B$ implies $L_A(n) \leq L_B(n)$

Hence reflections can be used to overapproximate residuals

Prop. Reflections are transitive, compatible with isomorphism, and a precongruence for sum, product, and star

E.g., $A \hookrightarrow B$ implies $A^* \hookrightarrow B^*$ and $(A \times C) \hookrightarrow (B \times C)$.

Consider a bad sequence $x = x_0, x_1, \dots$ over $\mathbb{N}^3 / \langle 1, 4, 0 \rangle$

$$\mathbf{x} = egin{bmatrix} \mathbf{0} & | & \mathbf{2} & | & \mathbf{0} & | & \mathbf{1} & | & \mathbf{1} & | & \mathbf{2} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & \ \mathbf{0} & | & \mathbf{0}$$

We use colors to witness that $(1,4,0) \leq x_i$ for i = 0,...

$$\mathbf{x} = \begin{vmatrix} \mathbf{0} & | & \mathbf{2} & | & \mathbf{0} & | & \mathbf{1} & | & \mathbf{1} & | & \mathbf{2} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{0} \\ \mathbf{3} & | & \mathbf{3} & | & \mathbf{8} & | & \mathbf{6} & | & \mathbf{9} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} \\ \end{bmatrix}$$

$$\mathbf{x} = \begin{vmatrix} \mathbf{0} & | & \mathbf{2} & | & \mathbf{0} & | & \mathbf{1} & | & \mathbf{1} & | & \mathbf{2} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{0} \\ \mathbf{3} & | & \mathbf{3} & | & \mathbf{8} & | & \mathbf{6} & | & \mathbf{9} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} \\ \\ \begin{vmatrix} \mathbf{0} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{1} & | & \mathbf{2} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{0} \\ \mathbf{3} & | & \mathbf{3} & | & \mathbf{8} & | & \mathbf{6} & | & \mathbf{9} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} \\ \\ \begin{vmatrix} \mathbf{0} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{1} & | & \mathbf{2} & | & \mathbf{2} & | & \mathbf{1} & | & \mathbf{0} \\ \mathbf{3} & | & \mathbf{3} & | & \mathbf{8} & | & \mathbf{6} & | & \mathbf{9} & | & \mathbf{3} & | & \mathbf{3} & | & \mathbf{0} & | & \mathbf{0} \\ \\ \end{vmatrix}$$

$$\begin{split} \mathbb{N}^3/\langle 1,4,0\rangle &\hookrightarrow \bullet \times \mathbb{N}^2 + \bullet \times \mathbb{N}^2 + \bullet \times \mathbb{N}^2 + \bullet \times \mathbb{N}^2 + \bullet \times \mathbb{N}^2 \hookrightarrow \Gamma_5 \times \mathbb{N}^2 \\ \mathbb{N}^k/\langle n_1,\ldots,n_k\rangle &\hookrightarrow \Gamma_P \times \mathbb{N}^{k-1} \text{ for } P \stackrel{\text{def}}{=} \sum_{i=1}^k (n_i - 1) \end{split}$$

Reflecting residuals: E.G., Γ_3^*/abb

Consider a bad sequence $x = x_0, x_1, ...$ over Γ_3^*/abb

x= aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

Reflecting residuals: E.G., Γ_3^*/abb

We use colors to witness that $abb \not\leq_* x_i$ for i = 0, ...

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

REFLECTING RESIDUALS: E.G., Γ_3^*/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ϵ

 $\begin{array}{c|c} & bbcb & cbc & \epsilon \\ \langle \varepsilon, aa \rangle & \langle c, c, a \rangle & & \langle \varepsilon, \varepsilon, cc \rangle & \langle \varepsilon, cac, \varepsilon \rangle \end{array}$

u in 1st line belongs to $\{b, c\}^*$ $\langle u, v \rangle$ in 2nd line belongs to $\{b, c\}^* \times \{a, c\}^*$ $\langle u, v, w \rangle$ in 3rd line belongs to $\{b, c\}^* \times \{a, c\}^* \times \{a, c\}^*$

Reflecting residuals: e.g., Γ_3^*/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ϵ

$$\begin{array}{c|c} & bbcb & cbc & \epsilon \\ \langle \epsilon, aa \rangle & \langle c, ac \rangle & & \langle b, \epsilon \rangle & & \langle \epsilon, \epsilon \rangle \\ & \langle c, \epsilon, a \rangle & & \langle \epsilon, \epsilon, cc \rangle & \langle \epsilon, cac, \epsilon \rangle \end{array}$$

Thus $\Gamma_3^*/abb \hookrightarrow \Gamma_2^* + (\Gamma_2^*)^2 + (\Gamma_2^*)^3$

REFLECTING RESIDUALS: E.G., Γ_3^*/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ϵ

$$\begin{array}{ccc} & bbcb & cbc & \epsilon \\ \langle \varepsilon, aa \rangle & \langle c, ac \rangle & & \langle b, \varepsilon \rangle & & \langle \varepsilon, \varepsilon \rangle \\ & \langle c, \varepsilon, a \rangle & & \langle \varepsilon, \varepsilon, cc \rangle & \langle \varepsilon, cac, \varepsilon \rangle \end{array}$$

Thus $\Gamma_3^*/abb \hookrightarrow \Gamma_2^* + (\Gamma_2^*)^2 + (\Gamma_2^*)^3$

More generally $\Gamma_{p+1}^*/x \hookrightarrow \sum_{i=1}^{n=|x|} (\Gamma_p^*)^i \hookrightarrow \Gamma_n \times (\Gamma_p^*)^n$

GETTING RID OF RESIDUALS BY REFLECTIONS

$$\begin{split} (A+B)/(1,x) &\equiv (A/x) + B \qquad (A+B)/(2,x) \equiv A + (B/x) \\ (A\times B)/\langle x,y \rangle &\hookrightarrow \quad [(A/x)\times B] + [A\times (B/y)] \\ \Gamma_{p+1}^*/(x_1...x_n) &\hookrightarrow \quad \Gamma_n \times (\Gamma_p^*)^n \end{split}$$

More generally;

$$\begin{array}{rcl} A^*/(x_1\dots x_n) & \hookrightarrow & (A/x_1)^* + (A/x_1)^* \times A \times (A/x_2)^* + \cdots \\ & & + (A/x_1)^* \times A \times (A/x_2)^* \times A \times \cdots \times (A/x_n)^* \\ & \hookrightarrow & \Gamma_n \times A^n \times (A/x_1)^* \times \cdots \times (A/x_n)^* \end{array}$$

Nb. Computations are quickly messy E.g., $(\mathbb{N}^3)^*/x \hookrightarrow \Gamma_n \times (\mathbb{N}^3)^n \times ((\Gamma_P \times \mathbb{N}^2)^*)^n$ for $P = n^2$

GETTING RID OF RESIDUALS BY REFLECTIONS

$$\begin{split} (A+B)/(1,x) &\equiv (A/x) + B \qquad (A+B)/(2,x) \equiv A + (B/x) \\ (A\times B)/\langle x,y \rangle &\hookrightarrow \quad [(A/x)\times B] + [A\times (B/y)] \\ \Gamma_{p+1}^*/(x_1...x_n) &\hookrightarrow \quad \Gamma_n \times (\Gamma_p^*)^n \end{split}$$

More generally;

$$\begin{array}{rcl} A^*/(x_1\dots x_n) & \hookrightarrow & (A/x_1)^* + (A/x_1)^* \times A \times (A/x_2)^* + \cdots \\ & & + (A/x_1)^* \times A \times (A/x_2)^* \times A \times \cdots \times (A/x_n)^* \\ & \hookrightarrow & \Gamma_n \times A^n \times (A/x_1)^* \times \cdots \times (A/x_n)^* \end{array}$$

Nb. Computations are quickly messy E.g., $(\mathbb{N}^3)^*/x \hookrightarrow \Gamma_n \times (\mathbb{N}^3)^n \times ((\Gamma_P \times \mathbb{N}^2)^*)^n$ for $P = n^2$

GETTING RID OF RESIDUALS BY REFLECTIONS

$$\begin{split} (A+B)/(1,x) &\equiv (A/x) + B \qquad (A+B)/(2,x) \equiv A + (B/x) \\ (A\times B)/\langle x,y \rangle &\hookrightarrow \quad [(A/x)\times B] + [A\times (B/y)] \\ \Gamma_{p+1}^*/(x_1...x_n) &\hookrightarrow \quad \Gamma_n \times (\Gamma_p^*)^n \end{split}$$

More generally;

$$\begin{array}{rcl} A^*/(x_1\dots x_n) & \hookrightarrow & (A/x_1)^* + (A/x_1)^* \times A \times (A/x_2)^* + \cdots \\ & & + (A/x_1)^* \times A \times (A/x_2)^* \times A \times \cdots \times (A/x_n)^* \\ & \hookrightarrow & \Gamma_n \times A^n \times (A/x_1)^* \times \cdots \times (A/x_n)^* \end{array}$$

Nb. Computations are quickly messy E.g., $(\mathbb{N}^3)^*/x \hookrightarrow \Gamma_n \times (\mathbb{N}^3)^n \times ((\Gamma_P \times \mathbb{N}^2)^*)^n$ for $P = n^2$

REFLECTING RESIDUALS IN ORDINAL ARITHMETIC

Def. "Exponential WQO" $\stackrel{\text{def}}{\Leftrightarrow}$ a WQO built with Γ_p^* 's, sums and products

There is a "bijective" correspondence between ordinals below ω^{ω^ω} and exponential WQOs

$$\begin{split} & o(\Gamma_p) \stackrel{\text{def}}{=} p & o(\Gamma_{p+1}^*) \stackrel{\text{def}}{=} \omega^{\omega^p} \\ & o(A+B) \stackrel{\text{def}}{=} o(A) \oplus o(B) & o(A \times B) \stackrel{\text{def}}{=} o(A) \otimes o(B) \end{split}$$

$$C(\omega^{\beta_1} + \dots + \omega^{\beta_k}) = C\left(\bigoplus_{i=1}^m \bigotimes_{j=1}^{k_i} \omega^{\omega^{p_{i,j}}}\right) = \sum_{i=1}^m \prod_{j=1}^{k_i} \Gamma_{(p_{i,j}+1)}^*$$

REFLECTING RESIDUALS IN ORDINAL ARITHMETIC

Def. "Exponential WQO" $\stackrel{\text{def}}{\Leftrightarrow}$ a WQO built with Γ_p^* 's, sums and products

There is a "bijective" correspondence between ordinals below ω^{ω^ω} and exponential WQOs

$$\begin{split} \mathbf{o}(\Gamma_p) \stackrel{\text{def}}{=} p & \mathbf{o}(\Gamma_{p+1}^*) \stackrel{\text{def}}{=} \omega^{\omega^p} \\ \mathbf{o}(A+B) \stackrel{\text{def}}{=} \mathbf{o}(A) \oplus \mathbf{o}(B) & \mathbf{o}(A\times B) \stackrel{\text{def}}{=} \mathbf{o}(A) \otimes \mathbf{o}(B) \end{split}$$

$$C(\omega^{\beta_1} + \dots + \omega^{\beta_k}) = C\left(\bigoplus_{i=1}^m \bigotimes_{j=1}^{k_i} \omega^{\omega^{p_{i,j}}}\right) = \sum_{i=1}^m \prod_{j=1}^{k_i} \Gamma^*_{(p_{i,j}+1)}$$

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂_n is a well-founded relation over $\omega^{\omega^{\omega}}$ such that

 $x \in A_{< n} \text{ and } o(A) = \alpha \quad \text{imply} \quad A/x \hookrightarrow C(\beta) \text{ for some } \beta \in \mathfrak{d}_n \alpha$

Prop. $L_A(n) = L_{C(\alpha)}(n) \leq \max_{\alpha' \in \mathfrak{d}_n \alpha} \{1 + L_{C(\alpha')}(g(n))\}$

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂_n is a well-founded relation over $\omega^{\omega^{\omega}}$ such that

 $x \in A_{<n}$ and $o(A) = \alpha$ imply $A/x \hookrightarrow C(\beta)$ for some $\beta \in \partial_n \alpha$

 $\label{eq:prop. LA} \text{Prop. } \mathsf{L}_A(\mathfrak{n}) = \mathsf{L}_{C(\alpha)}(\mathfrak{n}) \leqslant \max_{\alpha' \in \mathfrak{d}_n \alpha} \bigl\{ 1 + \mathsf{L}_{C(\alpha')}(\mathfrak{g}(\mathfrak{n})) \bigr\}$

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂_n is a well-founded relation over $\omega^{\omega^{\omega}}$ such that

 $x \in A_{<n}$ and $o(A) = \alpha$ imply $A/x \hookrightarrow C(\beta)$ for some $\beta \in \partial_n \alpha$

 $\textbf{Prop.} \quad \textbf{L}_{A}(n) = \textbf{L}_{C(\alpha)}(n) \leqslant \max_{\alpha' \in \mathfrak{d}_{n}\alpha} \left\{ 1 + \textbf{L}_{C(\alpha')}(g(n)) \right\}$

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

 $\text{Def.} \ \ \mathsf{M}_{\alpha,g}(\mathfrak{n}) \stackrel{\text{def}}{=} \max_{\alpha' \in \mathfrak{d}_{\mathfrak{n}} \alpha} \bigl\{ 1 + \mathsf{M}_{\alpha',g}(g(\mathfrak{n})) \bigr\}$

(This is a well-founded definition)

 $\label{eq:prop.} \mbox{Prop.} \ \ L_{A,g}(n) \, \leqslant \, M_{o\,(A),g}(n)$

Def of $(M_\alpha)_{\alpha<\omega^{\omega^\omega}}$ is similar to a standard hierarchy $(h_\alpha)_{\alpha<\cdots}$

$$h_0(x) \stackrel{\text{def}}{=} 0 \qquad h_{\alpha+1}(x) \stackrel{\text{def}}{=} 1 + h_{\alpha}(h(x)) \qquad h_{\lambda}(x) \stackrel{\text{def}}{=} h_{\lambda_x}(x)$$

that satisfies $h_{\omega^{\alpha}}(x) \leqslant F_{\alpha}(x) - x$ for $(F_{\alpha})_{\alpha < \cdots}$ built on h

Two problems remain:

- can one relate $\alpha' \in \partial_n \alpha$ with $\alpha_n 1$?
- $-\max_{\alpha'\ldots}M_{\alpha'}(n)$ is in general $> M_{\sup\{\alpha'\ldots\}}(n)$

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

 $\text{Def.} \ \ \mathsf{M}_{\alpha,g}(\mathfrak{n}) \stackrel{\text{def}}{=} \max_{\alpha' \in \mathfrak{d}_{\mathfrak{n}} \alpha} \bigl\{ 1 + \mathsf{M}_{\alpha',g}(g(\mathfrak{n})) \bigr\}$

(This is a well-founded definition)

Def of $(M_\alpha)_{\alpha<\omega^{\omega^\omega}}$ is similar to a standard hierarchy $(h_\alpha)_{\alpha<\cdots}$

$$h_0(x) \stackrel{\text{def}}{=} 0 \qquad h_{\alpha+1}(x) \stackrel{\text{def}}{=} 1 + h_{\alpha}(h(x)) \qquad h_{\lambda}(x) \stackrel{\text{def}}{=} h_{\lambda_x}(x)$$

that satisfies $h_{\omega^{\alpha}}(x) \leqslant F_{\alpha}(x) - x$ for $(F_{\alpha})_{\alpha < \cdots}$ built on h

Two problems remain:

- can one relate $\alpha' \in \partial_n \alpha$ with $\alpha_n 1$?
- $-\max_{\alpha'\ldots}M_{\alpha'}(n)$ is in general $> M_{\sup\{\alpha'\ldots\}}(n)$

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

 $\text{Def.} \ \ \mathsf{M}_{\alpha,g}(\mathfrak{n}) \stackrel{\text{def}}{=} \max_{\alpha' \in \mathfrak{d}_{\mathfrak{n}} \alpha} \bigl\{ 1 + \mathsf{M}_{\alpha',g}(g(\mathfrak{n})) \bigr\}$

(This is a well-founded definition)

Def of $(M_\alpha)_{\alpha<\omega^{\omega^\omega}}$ is similar to a standard hierarchy $(h_\alpha)_{\alpha<\cdots}$

$$h_0(x) \stackrel{\text{def}}{=} 0 \qquad h_{\alpha+1}(x) \stackrel{\text{def}}{=} 1 + h_\alpha(h(x)) \qquad h_\lambda(x) \stackrel{\text{def}}{=} h_{\lambda_x}(x)$$

that satisfies $h_{\omega^{\alpha}}(x) \leqslant F_{\alpha}(x) - x$ for $(F_{\alpha})_{\alpha < \cdots}$ built on h

Two problems remain:

- can one relate $\alpha' \in \partial_n \alpha$ with $\alpha_n 1$?
- $-\max_{\alpha'\ldots}M_{\alpha'}(n)$ is in general $> M_{sup\{\alpha'\ldots\}}(n)$

MAIN RESULT

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

- If g is in \mathcal{F}_{γ} for $\gamma > 0$ then L_{g,\mathbb{N}^k} is in $\mathcal{F}_{\gamma+k}$
- \bullet If g is in $g\in \mathfrak{F}_1$ then $L_{g,Q\times \mathbb{N}^k}$ is in $\mathrm{I\!F}_k^{|Q|}$

Fact. The runs explored by the Termination algorithm are controlled with $|s_{init}|$ and $Succ : \mathbb{N} \to \mathbb{N}$.

\Rightarrow Time/space bound in ${\rm I\!F}_k$ for Lossy Counter Machines with k counters, and in ${\rm I\!F}_\omega$ when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining Coverability algorithm are controlled by |s_{target}| and *Succ*.

 $\Rightarrow \cdots$ same upper bounds \cdots

MAIN RESULT

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

- If g is in \mathcal{F}_{γ} for $\gamma > 0$ then L_{q,\mathbb{N}^k} is in $\mathcal{F}_{\gamma+k}$
- \bullet If g is in $g\in \mathfrak{F}_1$ then $L_{g,Q\times \mathbb{N}^k}$ is in $\mathrm{I\!F}_k^{|Q|}$

Fact. The runs explored by the Termination algorithm are controlled with $|s_{init}|$ and $Succ : \mathbb{N} \to \mathbb{N}$.

 \Rightarrow Time/space bound in ${\rm I\!F}_k$ for Lossy Counter Machines with k counters, and in ${\rm I\!F}_\omega$ when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining Coverability algorithm are controlled by $|s_{target}|$ and *Succ*.

 $\Rightarrow \cdots$ same upper bounds \cdots

For finite words with \leq_* , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^{\omega}}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in $\mathbb{F}_{\varepsilon_0}$ Applies e.g. to priority channel systems and higher-order LCS.

For finite words with \leq_* , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^\omega}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in $\mathbb{F}_{\varepsilon_0}$ Applies e.g. to priority channel systems and higher-order LCS.

For finite words with \leq_* , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^{\omega}}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in \mathbb{F}_{ϵ_0} Applies e.g. to priority channel systems and higher-order LCS.

For finite words with \leq_* , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^{\omega}}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in \mathbb{F}_{ϵ_0} Applies e.g. to priority channel systems and higher-order LCS.