MPRI 2-9-1
“Algorithmic Aspects of WQO Theory”
Nov. 12th, 2020: Upper bounds for bad sequences
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RECALLS ON WQOs

(A, <) is a well-quasi-ordering (a WQO) if any infinite sequence
X0,X1,X2... OvVer A contains an increasing pair x; < x; (for some i <j)

Ex.
1. (N,<) isa WQO

1_[1 1A <prod) iIs @ WQO when each (A4, <;) is (Dickson’s
Lemma)
where (x1,...,xx) <prod (Y1,---,Yk) )& Aixi <iYi
3. (A*, <) isaWQO when (A, < ) is (ngmans Lemma)
where, x = (x1...x )\* (yl m) =Y iff x <prog ¥ "fora

length-n subsequence y’ = (yx, k,.) fory (NB:
1<ki<ky<...<kp<m)

E.g.over (N%)*: (g3 <. [§1713 while |33 2.131113
E.g. over ({a,b}*)*: (ab)(a)(ab) £ (a)(bab)(b)(bab)
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RECALLS ON WQOs

. def . . . .
Def. A sequence xg,x1,... over A is bad & there is no increasing pair
“xi < X5 with 1 < j“

NB. Over a WQO, a bad sequence is necessarily finite

Problem. Given A, how long can a bad sequence xg,x1,.. over A be?

This will give bounds on the number of steps of many WSTS
algorithms
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> Pick an element ag, then some a1, then some a,
sequence ap,ai1,qap,as,....

> Player loses when/if he creates a good sequence.

Let’s play on (N, <).

Let’s play on (IN?,<y).

..., building a



THE LENGTH OF BAD SEQUENCES

Let's play on (a,b,c*, <4)



THE LENGTH OF BAD SEQUENCES

Let’s play on (a,b,c*, <x)

Conclusions:

1. We need to restrict to sequences where xp and [xg...xy] — X1
have limited complexity;

2. and accept enormous lengths (in the “fast growing hierarchy”)
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ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F, F>, F3, ...

Continues with transfinite indexes: F4, ..., Fw, Fior1, Fwor2, -« -5 Fw.2,
Fw.2+1,...,Fw.3,...,Fw.4,...,Fw2,Fw2+1,...,Fw2+w,...,
Foziwas o Faozas oo Fons ooy Fowy oo Fuaw, o Fgw oo,

o We work with ordinals below ¢g written in Cantor normal form:
a=w* +...+w* where x> > > tm

NB: « is zero iff m = 0; it is a successor a = +1=p+w?iff m>0
and o, = 0; otherwise it is a limit «c = A

Alternative notation:
>0 > ... > Om

_ X1 Xm I
x=w1l-c1+--+wm.c now with
! m C1y..cm €N
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FAST-GROWING FUNCTIONS

(Fa) xeorg: @n ordinal-indexed family of functions Fy : IN — IN

x+1

def defr—— T def
Fo(x) = x+1 Far1(x) = Fa(Fol...Fa(x)...)) Fo(x) = Fxy1(x)

gives F1(x) =2x+1~2x, Fa(x)=2%"1(x+1)—1~ 2%,
F3(x) ~ tower(x) and F, (x) & ACKERMANN(x), the first F that is not
primitive recursive.

Generally Fy (x) def Fa, (x) with Ag <A1 <A, <--- <A afundamental
sequence for A, given by

P Ey P (x4l ) Ey o

8
E.g9. F2(7)=Fw.8(7)=Fw.748(7) =Fw.747(Fw.747 (- (Fw.747(7)) -+ ))
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THE FAST-GROWING HIERARCHY
By Schmitz (2013), after Wainer & Ldb (1970), Grzegorczyk (1953)

Fo & | J FDTIME(Fa(p(n))), ie all functions in time F(negligible(n))

PEF <«

Sr_<(xd:ef U Fp o(dgf U S, m&‘ﬁf U FDTIME(Fg (p(n)))
B« ceN PEF<a

1. These classes admit many other characterizations and capture
some well-known cases:

F, =E =DTIME(29(™M)), F_3=FELEM, F-o =PR, F-uo =MPR
2. Astrict hierarchy: Fg ¢ IFF;rl CIFy forall p <xandc>0.

3. There exist IF,-complete problems for each « > 2



THE FAST-GROWING HIERARCHY

\ ?w."
o5 Uk:}‘w%\

\
(multiply-recursive) |

\g(g,w
UTe

(primitive-recursive)

(elementary)

(linear)

Def. Fo = Uyen FDTIME(FE(n)) = FDTIME(FS ) (n))
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THE LENGTH FUNCTION
Letn e IN and g:IN — IN be strictly increasing
Def. A sequence xg,x1,...is (g,n)-controlled

Py Ixil < g'(n)=g(g(...g(n)...)) foralli=0,1,...
~———
i times
def

Def. L(A,g,n) = length of longest (g,n)-controlled bad sequence
X0,X1,---,X1

Ex. L(N,g,n)=n

Fact. L(A,g,n) is a well-defined integer

(if each A % {x € A | x| < k} is finite —the norm function is proper).
It is computable if g is recursive (and (A,<) and ..)

Notation. Below we write LA 4(n), and even La (n) when g is
understood.

Our goal. A complexity upper bound for L4 4
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RESIDUALS

Def. Forxc A, A/x def A— Mx}={y € Aly2zx}is aresidual of A.
Ex. N/5={0,1,2,3,4}and '™ /ab = (b+c)*(a+c)* (for ' ={a,b,c})

Fact. (Descent Equation)

La(m) = max {1+La,x(g(n)} )

NB. (*) can be used as a well-founded recursive definition since
taking residuals eventually deplete A completely

Indeed, in a sequence of residuals
A2 A/xo 2A/x0/x1 2A/x0/X1/X2 2

the sequence of elements xg,x1,x>,... is necessarily bad, hence finite



ROADMAP

La(n) =Xren/gi<n{1 +La/x(g(n)} (*)

1. Define an algebra of WQOs to manage the A argument of L o
2. “Compute” A /x algebraically, perhaps overapproximating

3. Use ordinal arithmetic to represent/compute with the A;’s and to
classify La in the Fast-Growing Hierarchy
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“WQO with norm” & a wQO (A, <) equipped with a norm function

Il :A— N (and usually just written “A”)

Ex. N with [n|y, &'n or T* with [abbal. & 4



AN ALGEBRA OF WQOS WITH NORMS

“WQO with norm” & a wQO (A, <) equipped with a norm function
Il :A— N (and usually just written “A”)

Ex. N with [n|y, &'n or T* with [abbal. & 4

Simple (normed) WQOs can be combined/expanded to yield more
complex (normed) WQOs

Disjoint sum. A1 +A> % {1} x A1 +{2} x As

(L) <arems W) Bi=jAx<ay  LX)a,4n,
Cartesian product.

(x1,%2) <A, %A, (Y1,Y2) €y <A; Y1 /AX2 <A, Y2

|(x1,%2)] % max((xa|a - x2la.)
LA2JIA|xAS, — 1IA71%21IA,

1
_XAi

.. def
Finite sequences. (x1,...,xn) <a* (Y1,.--,Ym) & Al1Xi <A Yy, for
somel<ki<ky<---<kpn<<m

def
‘(Xll"'lxn)‘A* = max(nl|X1|AI"‘l‘Xn|A)
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AN ALGEBRA OF WQOS WITH NORMS — CONTINUED

We consider all “elementary WQOs”

A::=0 ] A+A | AxA | A"
Def. I'; ={a1,...,ap} is a p-letter alphabet well-ordered by Idr,, and
normed with |ai|rp =0

Fact. Iy =0 and I'; = (* are elementary WQOs (modulo
isomorphism). I, =T +--- +T7 also is elementary

Fact. N =T is elementary
NB. If A =B then LA,g (Tl) = LB,g (Tl)

Reasoning modulo isomorphism is simplified by laws like § x A = or
Ax(B+C)=AxB+AxC.

We write Ak for A+ ---+ A (equivalently, I'c x A), and A* for
AX- XA
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computation of L5 /(1) in the Descent Equation
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REFLECTING RESIDUALS

Earlier we observed I'; /ab = (b +c¢)*(a+c¢)*

Can we write I'; /ab = T'; x I'; ? This would (perhaps) simplify the
computation of L5 /(1) in the Descent Equation

Answer. I3 /ab z T3 x T3
However, '3 /ab can be reflected in I3 x T3

Def. h:A—BE h.:A s Bisa mapping that satisfies [h(x)lg < x|

andh(x) <g h(y)=x<a Yy

For x € I3 /ab we let h(x) = (x1,x2) where x = x1x; is a factorization
with x; the longest prefix in (b+c¢)* (hence x; € e+ a(a+c)*)
Check. [h(x)| = max([x1],[x2]) < x|

Check. h(x) = (x1,x2) <ryxry (Y1,Y2) = h(y) implies x <r; y



REFLECTING RESIDUALS -2

Def. B reflects A, written A<B, when h: A<B for some h.

Prop. x =xg,x1,.. bad in A implies h(x) bad in B too. And x
(g,m)-controlled implies h(x) controlled too.



REFLECTING RESIDUALS -2

Def. B reflects A, written A<B, when h: A<B for some h.

Prop. x =xg,x1,.. bad in A implies h(x) bad in B too. And x
(g,m)-controlled implies h(x) controlled too.

Cor. A—B implies LA (n) < Lg(n)
Hence reflections can be used to overapproximate residuals

Prop. Reflections are transitive, compatible with isomorphism, and a
precongruence for sum, product, and star

E.g., A—B implies A*—B* and (A x C)—(B x C).



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

Consider a bad sequence x =xg,x1,... over N3/(1,4,0)

wWwoo
WWN
(e RN =]
oOWw=—=
o=
wW=N
WON
[=N=2C

[=N =X



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

We use colors to witness that (1,4,0) £ x; fori=0,...

wWwoo
WWN
(e RN =]
oW =
©Co=
wW—=N
WON
[=N=2r 1

ocoo



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

0 2 0 1 1 2 2 1 0
x:‘e '3 ‘1 ‘3 ‘o ‘1 ‘o ’o ‘o
3 3 8 6 9 3 3 0 0
‘é ‘1' ‘o xi[1]=0
3 8 0
1 2 1
‘. ‘ ‘ (2= 0
9 3 0
2
‘. XL[Z]:].
3
2 1
'. ‘ Xi[2]=3
3 6



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

0o |12 |0 |1 1 2 12 |1
x = |6 3 1 3 0 1 0 0
3 13 |8 (6 |9 3 (3 10
e |2 e 1 1 2 12 |1
6 |eo 1 ° ° ° ° °
3 (3 (8 |6 (9 (3 13 |0
° ° ° ° ° ° ° °
6 |2 |1 1 1 2 |12 |1
3 (3 (8 |6 (9 (3 1|3 |0

OOe oo

OOe



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

0o |2 0 |1 1 2 12 1 0
x = |6 3 1 3 0 1 0 0 0
3 I3 (|8 |6 (9 |3 [3 [0 |0
e (2 e 1 1 2 |12 |1 °
6 |e 1 ° ° ° . e |0
3 13 18 |6 19 I3 (3 [0 |0
[ ] [ ] [ ] [ ] [ ) [ ] [ ] [ ] [ ]
6 (2 |1 1 1 2 |2 |1 0
3 13 18 |6 19 3 (3 [0 |0

IN3/(1,4,0) < o x N2 4o x N2+ x N2 + o x IN2 + @ x N2 < T5 x N2



REFLECTING RESIDUALS: E.G., N3/(1,4,0)

IN3/(1,4,0) < o x N2 4o x N2+ o x IN% + o x IN? + @ x N2 < T5 x N2

]Nk/<TL1,...,TLk> —I'p X Nk—1 for P def Zliczl(ni —1)



REFLECTING RESIDUALS: E.G., I';/abb

Consider a bad sequence x = xg,x1,... over ['5/abb

X =
aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, €



REFLECTING RESIDUALS: E.G., I';/abb

We use colors to witness that abb £, x; fori=0,...

X =
aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, €



REFLECTING RESIDUALS: E.G., F;‘/abb

Xx = aaa, caba, caac, bbcb, abce, ba, acach,

bbcb
(e,aa) (c,ac) (b,€)
(c,e,a) (e,€,cc) (e,cac,€)

u in 1st line belongs to {b,c}*
(u,v) in 2nd line belongs to {b,c}* x {a,c}*
(u,v,w) in 3rd line belongs to {b,c}* x{a,c}* x{a,c}"

cbc,

a,

€



REFLECTING RESIDUALS: E.G., F_;j/abb

X = aaa, caba, caac, bbcb, abce, ba, acacb, cbe, a, €

bbcb cbce €
(e,aa) (c,ac) (b, €) (€,€)
(c,e,a) (e,€,cc) (e,cac,€)

Thus T3/abb < T3 + (I3)2 + (13)3



REFLECTING RESIDUALS: E.G., F;‘/abb

X = aaa, caba, caac, bbcb, abce, ba, acacb, cbe, a, €

bbcb cbce €
(e,aa) (c,ac) (b,€) (e,€)
(c,e,a) (e,€,cc) (e,cac,€)

Thus T3/abb < T3 + (I3)2 + (I3)3

More generally T ;/x < > Ix| (F5)E = T x ()™
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(A+B)/(1,x) = (A/x)+B  (A+B)/(2,x) = A+ (B/x)
(AxB)/(xy) — [(A/x)xBI+I[Ax(B/y)]
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(A+B)/(1,x) = (A/x)+B  (A+B)/(2,x) = A+ (B/x)
(AxB)/(xy) = [(A/x) xBI+[A X (B/y)]
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GETTING RID OF RESIDUALS BY REFLECTIONS

(A+B)/(1,x) = (A/x)+B  (A+B)/(2,x) = A+ (B/x)
(AxB)/(xy) = [(A/x)xBl+[Ax(B/y]]

F;H/(xl...xn) — T X (I";)“
More generally;
A/(x1...xn) = (A/x1)* + (A/x1)* x A x (A/x2)* + -
+ (A/x1)* x Ax (A/x2)" x Ax---x (A/xn)*

— T x AT X (A/x1)* x---x (A/xn)*

Nb. Computations are quickly messy
E.g., (IN3)*/x < Ty x (IN3)™ x ((Tp x N2)*)™ for P =n?
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Def. “Exponential WQO” %' 2 WQO built with I3’s, sums and products
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and exponential WQOs



REFLECTING RESIDUALS IN ORDINAL ARITHMETIC

Def. “Exponential WQO” %' 2 WQO built with I3’s, sums and products

There is a “bijective” correspondence between ordinals below w®*
and exponential WQOs

ofp) € p oMt ) & we”
o(A+B) ¥ o(A)®o(B) o(AxB) ¥ 6(A)®0(B)
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Def. (omitted) 9, is a well-founded relation over w®“ such that

x€A-nando(A)=« imply A/x—C(p) forsome 3 € 0«
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COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) 9, is a well-founded relation over w®“ such that

x€A-nando(A)=« imply A/x—C(p) forsome 3 € 0«

Example Ungeal /x> 1
x| <
s 3 x (T7)3
(0] (¢]
w® w3-3
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Def. Myg(n) & max {1+My 4(g(n))}
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CLASSIFYING L IN THE FAST-GROWING HIERARCHY

Def. Myg(n) & max {1+My 4(g(n))}

x/€E0n

(This is a well-founded definition)

Prop. Lag(n) < Mgay,q(n)

9



CLASSIFYING L IN THE FAST-GROWING HIERARCHY

Def. Myg(n) & max {1+My 4(g(n))}

o/ €D x
(This is a well-founded definition)
Prop. LA,g (TL) < Mo(A),g (TL)
Def of (Ma ), ,we is similar to a standard hierarchy (ha)a<...

hox) €0 hap1(x) € 14ha(h(x)  ha(x) €y (x)

that satisfies ho(x) < Fu(x) —x for (Fo)x<... builton h

Two problems remain:
—can one relate o’ € 9, o with oy — 17
—maxy/ Mgy/(n) isin general > Mg 1o 1 (M)



MAIN RESULT

Length Function Theorems for (IN*, < ):
e lfgisinJ, fory>O0then Ly« isinFy

elfgisinge Fithen Ly o,k isin IF‘kQ‘
Fact. The runs explored by the Termination algorithm are controlled
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elfgisinge Fithen Ly o,k isin IF‘kQ‘
Fact. The runs explored by the Termination algorithm are controlled
with [sinitl and Succ: IN — IN.

= Time/space bound in [Fy for Lossy Counter Machines with k
counters, and in IF, when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by [starget| and Succ.

= ... same upper bounds - - -
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MORE LENGTH FUNCTION THEOREMS

For finite words with <., Lo« isinF a1, and in IF,« when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over IN* with embedding, Linky- isinTF |, andin
IF ,oo when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L+ is in IF¢, Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms



