
MPRI 2-9-1
“Algorithmic Aspects of WQO Theory”

Nov. 12th, 2020: Upper bounds for bad sequences

RECALLS ON WQOS

(A,6) is a well-quasi-ordering (a WQO) if any infinite sequence
x0,x1,x2 . . . over A contains an increasing pair xi 6 xj (for some i < j)

Ex.
1. (N,6) is a WQO

2. (
∏k
i=1Ai,6prod) is a WQO when each (Ai,6i) is (Dickson’s

Lemma)
where (x1, . . . ,xk)6prod (y1, . . . ,yk)

def⇔
∧
i xi 6i yi

3. (A∗,6∗) is a WQO when (A,6) is (Higman’s Lemma)
where, x= (x1 . . .xn)6∗ (y1 . . .ym) = y iff x6prod y ′ for a

length-n subsequence y ′ = (yk1 . . .ykn) for y (NB:
16 k1 < k2 < . . .< kn 6m)

E.g. over (N2)∗: | 1
0 |

0
2 6∗ |

2
0 |

1
1 |

1
3 while | 1

2 |
0
2 �∗ |

2
0 |

1
1 |

1
3

E.g. over ({a,b}∗)∗: (ab)(a)(ab) �∗ (a)(bab)(b)(bab)

2/24

RECALLS ON WQOS

(A,6) is a well-quasi-ordering (a WQO) if any infinite sequence
x0,x1,x2 . . . over A contains an increasing pair xi 6 xj (for some i < j)

Ex.
1. (N,6) is a WQO

2. (
∏k
i=1Ai,6prod) is a WQO when each (Ai,6i) is (Dickson’s

Lemma)
where (x1, . . . ,xk)6prod (y1, . . . ,yk)

def⇔
∧
i xi 6i yi

3. (A∗,6∗) is a WQO when (A,6) is (Higman’s Lemma)
where, x= (x1 . . .xn)6∗ (y1 . . .ym) = y iff x6prod y ′ for a

length-n subsequence y ′ = (yk1 . . .ykn) for y (NB:
16 k1 < k2 < . . .< kn 6m)

E.g. over (N2)∗: | 1
0 |

0
2 6∗ |

2
0 |

1
1 |

1
3 while | 1

2 |
0
2 �∗ |

2
0 |

1
1 |

1
3

E.g. over ({a,b}∗)∗: (ab)(a)(ab) �∗ (a)(bab)(b)(bab)

2/24

RECALLS ON WQOS

(A,6) is a well-quasi-ordering (a WQO) if any infinite sequence
x0,x1,x2 . . . over A contains an increasing pair xi 6 xj (for some i < j)

Ex.
1. (N,6) is a WQO

2. (
∏k
i=1Ai,6prod) is a WQO when each (Ai,6i) is (Dickson’s

Lemma)
where (x1, . . . ,xk)6prod (y1, . . . ,yk)

def⇔
∧
i xi 6i yi

3. (A∗,6∗) is a WQO when (A,6) is (Higman’s Lemma)
where, x= (x1 . . .xn)6∗ (y1 . . .ym) = y iff x6prod y ′ for a

length-n subsequence y ′ = (yk1 . . .ykn) for y (NB:
16 k1 < k2 < . . .< kn 6m)

E.g. over (N2)∗: | 1
0 |

0
2 6∗ |

2
0 |

1
1 |

1
3 while | 1

2 |
0
2 �∗ |

2
0 |

1
1 |

1
3

E.g. over ({a,b}∗)∗: (ab)(a)(ab) �∗ (a)(bab)(b)(bab)

2/24

RECALLS ON WQOS

(A,6) is a well-quasi-ordering (a WQO) if any infinite sequence
x0,x1,x2 . . . over A contains an increasing pair xi 6 xj (for some i < j)

Ex.
1. (N,6) is a WQO

2. (
∏k
i=1Ai,6prod) is a WQO when each (Ai,6i) is (Dickson’s

Lemma)
where (x1, . . . ,xk)6prod (y1, . . . ,yk)

def⇔
∧
i xi 6i yi

3. (A∗,6∗) is a WQO when (A,6) is (Higman’s Lemma)
where, x= (x1 . . .xn)6∗ (y1 . . .ym) = y iff x6prod y ′ for a

length-n subsequence y ′ = (yk1 . . .ykn) for y (NB:
16 k1 < k2 < . . .< kn 6m)

E.g. over (N2)∗: | 1
0 |

0
2 6∗ |

2
0 |

1
1 |

1
3 while | 1

2 |
0
2 �∗ |

2
0 |

1
1 |

1
3

E.g. over ({a,b}∗)∗: (ab)(a)(ab) �∗ (a)(bab)(b)(bab)

2/24

RECALLS ON WQOS

Def. A sequence x0,x1, . . . over A is bad def⇔ there is no increasing pair
“xi 6 xj with i < j”

NB. Over a WQO, a bad sequence is necessarily finite

Problem. Given A, how long can a bad sequence x0,x1, .. over A be?

This will give bounds on the number of steps of many WSTS
algorithms

3/24

RECALLS ON WQOS

Def. A sequence x0,x1, . . . over A is bad def⇔ there is no increasing pair
“xi 6 xj with i < j”

NB. Over a WQO, a bad sequence is necessarily finite

Problem. Given A, how long can a bad sequence x0,x1, .. over A be?

This will give bounds on the number of steps of many WSTS
algorithms

3/24

THE LENGTH OF BAD SEQUENCES

A 1-player game over WQ (A,6):
I Pick an element a0, then some a1, then some a2 . . . , building a

sequence a0,a1,a2,a3,

I Player loses when/if he creates a good sequence.

Let’s play on (N,6).

Let’s play on (N2,6×).

4/24

THE LENGTH OF BAD SEQUENCES

A 1-player game over WQ (A,6):
I Pick an element a0, then some a1, then some a2 . . . , building a

sequence a0,a1,a2,a3,

I Player loses when/if he creates a good sequence.

Let’s play on (N,6).

Let’s play on (N2,6×).

4/24

THE LENGTH OF BAD SEQUENCES

A 1-player game over WQ (A,6):
I Pick an element a0, then some a1, then some a2 . . . , building a

sequence a0,a1,a2,a3,

I Player loses when/if he creates a good sequence.

Let’s play on (N,6).

Let’s play on (N2,6×).

4/24

THE LENGTH OF BAD SEQUENCES

Let’s play on (a,b,c∗,6∗)

Conclusions:
1. We need to restrict to sequences where x0 and [x0 . . .xk] 7→ xk+1
have limited complexity;
2. and accept enormous lengths (in the “fast growing hierarchy”)

5/24

THE LENGTH OF BAD SEQUENCES

Let’s play on (a,b,c∗,6∗)

Conclusions:
1. We need to restrict to sequences where x0 and [x0 . . .xk] 7→ xk+1
have limited complexity;
2. and accept enormous lengths (in the “fast growing hierarchy”)

5/24

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/24

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/24

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/24

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/24

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/24

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/24

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=
⋃
β<α

Fβ Fα
def
=
⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/24

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=
⋃
β<α

Fβ Fα
def
=
⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/24

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=
⋃
β<α

Fβ Fα
def
=
⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/24

THE FAST-GROWING HIERARCHY

F0 =F1
(linear)

F2
(elementary)

F3

⋃
kFk

(primitive-recursive)

Fω

⋃
kFωk

(multiply-recursive)

Fωω

(

(

· · ·
(

· · ·
(

· · ·

Def. Fα =
⋃
k∈N FDTIME

(
Fkα(n)

)
= FDTIME

(
F
O(1)
α (n)

)
9/24

THE LENGTH FUNCTION
Let n ∈N and g :N→N be strictly increasing
Def. A sequence x0,x1, . . . is (g,n)-controlled
def⇔ |xi|< g

i(n) = g(g(. . .g︸ ︷︷ ︸
i times

(n) . . .)) for all i= 0,1, ...

Def. L(A,g,n) def
= length of longest (g,n)-controlled bad sequence

x0,x1, . . . ,xl

Ex. L(N,g,n) = n

Fact. L(A,g,n) is a well-defined integer
(if each A<k

def
= {x ∈A | |x|< k} is finite –the norm function is proper).

It is computable if g is recursive (and (A,6) and ..)

Notation. Below we write LA,g(n), and even LA(n) when g is
understood.

Our goal. A complexity upper bound for LA,g

10/24

THE LENGTH FUNCTION
Let n ∈N and g :N→N be strictly increasing
Def. A sequence x0,x1, . . . is (g,n)-controlled
def⇔ |xi|< g

i(n) = g(g(. . .g︸ ︷︷ ︸
i times

(n) . . .)) for all i= 0,1, ...

Def. L(A,g,n) def
= length of longest (g,n)-controlled bad sequence

x0,x1, . . . ,xl

Ex. L(N,g,n) = n

Fact. L(A,g,n) is a well-defined integer
(if each A<k

def
= {x ∈A | |x|< k} is finite –the norm function is proper).

It is computable if g is recursive (and (A,6) and ..)

Notation. Below we write LA,g(n), and even LA(n) when g is
understood.

Our goal. A complexity upper bound for LA,g

10/24

THE LENGTH FUNCTION
Let n ∈N and g :N→N be strictly increasing
Def. A sequence x0,x1, . . . is (g,n)-controlled
def⇔ |xi|< g

i(n) = g(g(. . .g︸ ︷︷ ︸
i times

(n) . . .)) for all i= 0,1, ...

Def. L(A,g,n) def
= length of longest (g,n)-controlled bad sequence

x0,x1, . . . ,xl

Ex. L(N,g,n) = n

Fact. L(A,g,n) is a well-defined integer
(if each A<k

def
= {x ∈A | |x|< k} is finite –the norm function is proper).

It is computable if g is recursive (and (A,6) and ..)

Notation. Below we write LA,g(n), and even LA(n) when g is
understood.

Our goal. A complexity upper bound for LA,g

10/24

THE LENGTH FUNCTION
Let n ∈N and g :N→N be strictly increasing
Def. A sequence x0,x1, . . . is (g,n)-controlled
def⇔ |xi|< g

i(n) = g(g(. . .g︸ ︷︷ ︸
i times

(n) . . .)) for all i= 0,1, ...

Def. L(A,g,n) def
= length of longest (g,n)-controlled bad sequence

x0,x1, . . . ,xl

Ex. L(N,g,n) = n

Fact. L(A,g,n) is a well-defined integer
(if each A<k

def
= {x ∈A | |x|< k} is finite –the norm function is proper).

It is computable if g is recursive (and (A,6) and ..)

Notation. Below we write LA,g(n), and even LA(n) when g is
understood.

Our goal. A complexity upper bound for LA,g

10/24

RESIDUALS

Def. For x ∈A, A/x def
= A− ↑ {x}= {y ∈A | y � x} is a residual of A.

Ex. N/5= {0,1,2,3,4} and Γ∗/ab= (b+ c)∗(a+ c)∗ (for Γ = {a,b,c})

Fact. (Descent Equation)

LA(n) = max
x∈A<n

{
1+ LA/x(g(n))

}
(*)

NB. (*) can be used as a well-founded recursive definition since
taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

A)A/x0)A/x0/x1)A/x0/x1/x2) · · ·

the sequence of elements x0,x1,x2, . . . is necessarily bad, hence finite

11/24

RESIDUALS

Def. For x ∈A, A/x def
= A− ↑ {x}= {y ∈A | y � x} is a residual of A.

Ex. N/5= {0,1,2,3,4} and Γ∗/ab= (b+ c)∗(a+ c)∗ (for Γ = {a,b,c})

Fact. (Descent Equation)

LA(n) = max
x∈A<n

{
1+ LA/x(g(n))

}
(*)

NB. (*) can be used as a well-founded recursive definition since
taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

A)A/x0)A/x0/x1)A/x0/x1/x2) · · ·

the sequence of elements x0,x1,x2, . . . is necessarily bad, hence finite

11/24

RESIDUALS

Def. For x ∈A, A/x def
= A− ↑ {x}= {y ∈A | y � x} is a residual of A.

Ex. N/5= {0,1,2,3,4} and Γ∗/ab= (b+ c)∗(a+ c)∗ (for Γ = {a,b,c})

Fact. (Descent Equation)

LA(n) = max
x∈A<n

{
1+ LA/x(g(n))

}
(*)

NB. (*) can be used as a well-founded recursive definition since
taking residuals eventually deplete A completely

Indeed, in a sequence of residuals

A)A/x0)A/x0/x1)A/x0/x1/x2) · · ·

the sequence of elements x0,x1,x2, . . . is necessarily bad, hence finite

11/24

ROADMAP

LA(n) = max
x∈A<n

{
1+ LA/x(g(n))

}
(*)

1. Define an algebra of WQOs to manage the A argument of LA

2. “Compute” A/x algebraically, perhaps overapproximating

3. Use ordinal arithmetic to represent/compute with the Ai’s and to
classify LA in the Fast-Growing Hierarchy

12/24

AN ALGEBRA OF WQOS WITH NORMS
“WQO with norm” def

= a WQO (A,6A) equipped with a norm function
|.|A :A→N (and usually just written “A”)

Ex. N with |n|
N

def
= n or Γ∗ with |abba|Γ∗

def
= 4

Simple (normed) WQOs can be combined/expanded to yield more
complex (normed) WQOs

Disjoint sum. A1+A2
def
= {1}×A1+ {2}×A2

(i,x)6A1+A2 (j,y)
def⇔ i= j∧ x6Ai y |(i,x)|A1+A2

def
= |x|Ai

Cartesian product.
(x1,x2)6A1×A2 (y1,y2)

def⇔ x1 6A1 y1∧ x2 6A2 y2

|(x1,x2)|A1×A2

def
= max(|x1|A1

, |x2|A2
)

Finite sequences. (x1, . . . ,xn)6A∗ (y1, . . . ,ym)
def⇔
∧n
i=1 xi 6A yki for

some 16 k1 < k2 < · · ·< kn 6m

|(x1, . . . ,xn)|A∗
def
= max(n, |x1|A, . . . , |xn|A)

13/24

AN ALGEBRA OF WQOS WITH NORMS
“WQO with norm” def

= a WQO (A,6A) equipped with a norm function
|.|A :A→N (and usually just written “A”)

Ex. N with |n|
N

def
= n or Γ∗ with |abba|Γ∗

def
= 4

Simple (normed) WQOs can be combined/expanded to yield more
complex (normed) WQOs

Disjoint sum. A1+A2
def
= {1}×A1+ {2}×A2

(i,x)6A1+A2 (j,y)
def⇔ i= j∧ x6Ai y |(i,x)|A1+A2

def
= |x|Ai

Cartesian product.
(x1,x2)6A1×A2 (y1,y2)

def⇔ x1 6A1 y1∧ x2 6A2 y2

|(x1,x2)|A1×A2

def
= max(|x1|A1

, |x2|A2
)

Finite sequences. (x1, . . . ,xn)6A∗ (y1, . . . ,ym)
def⇔
∧n
i=1 xi 6A yki for

some 16 k1 < k2 < · · ·< kn 6m

|(x1, . . . ,xn)|A∗
def
= max(n, |x1|A, . . . , |xn|A)

13/24

AN ALGEBRA OF WQOS WITH NORMS — CONTINUED

We consider all “elementary WQOs”

A ::= ∅ | A+A | A×A | A∗

Def. Γp = {a1, . . . ,ap} is a p-letter alphabet well-ordered by IdΓp and
normed with |ai|Γp = 0

Fact. Γ0 ≡ ∅ and Γ1 ≡ ∅∗ are elementary WQOs (modulo
isomorphism). Γp ≡ Γ1+ · · ·+ Γ1 also is elementary

Fact. N≡ Γ∗1 is elementary

NB. If A≡ B then LA,g(n) = LB,g(n).

Reasoning modulo isomorphism is simplified by laws like ∅×A≡ ∅ or
A× (B+C)≡A×B+A×C.

We write A.k for A+ · · ·+A (equivalently, Γk×A), and Ak for
A× ·· ·×A

14/24

AN ALGEBRA OF WQOS WITH NORMS — CONTINUED

We consider all “elementary WQOs”

A ::= ∅ | A+A | A×A | A∗

Def. Γp = {a1, . . . ,ap} is a p-letter alphabet well-ordered by IdΓp and
normed with |ai|Γp = 0

Fact. Γ0 ≡ ∅ and Γ1 ≡ ∅∗ are elementary WQOs (modulo
isomorphism). Γp ≡ Γ1+ · · ·+ Γ1 also is elementary

Fact. N≡ Γ∗1 is elementary

NB. If A≡ B then LA,g(n) = LB,g(n).

Reasoning modulo isomorphism is simplified by laws like ∅×A≡ ∅ or
A× (B+C)≡A×B+A×C.

We write A.k for A+ · · ·+A (equivalently, Γk×A), and Ak for
A× ·· ·×A

14/24

AN ALGEBRA OF WQOS WITH NORMS — CONTINUED

We consider all “elementary WQOs”

A ::= ∅ | A+A | A×A | A∗

Def. Γp = {a1, . . . ,ap} is a p-letter alphabet well-ordered by IdΓp and
normed with |ai|Γp = 0

Fact. Γ0 ≡ ∅ and Γ1 ≡ ∅∗ are elementary WQOs (modulo
isomorphism). Γp ≡ Γ1+ · · ·+ Γ1 also is elementary

Fact. N≡ Γ∗1 is elementary

NB. If A≡ B then LA,g(n) = LB,g(n).

Reasoning modulo isomorphism is simplified by laws like ∅×A≡ ∅ or
A× (B+C)≡A×B+A×C.

We write A.k for A+ · · ·+A (equivalently, Γk×A), and Ak for
A× ·· ·×A

14/24

AN ALGEBRA OF WQOS WITH NORMS — CONTINUED

We consider all “elementary WQOs”

A ::= ∅ | A+A | A×A | A∗

Def. Γp = {a1, . . . ,ap} is a p-letter alphabet well-ordered by IdΓp and
normed with |ai|Γp = 0

Fact. Γ0 ≡ ∅ and Γ1 ≡ ∅∗ are elementary WQOs (modulo
isomorphism). Γp ≡ Γ1+ · · ·+ Γ1 also is elementary

Fact. N≡ Γ∗1 is elementary

NB. If A≡ B then LA,g(n) = LB,g(n).

Reasoning modulo isomorphism is simplified by laws like ∅×A≡ ∅ or
A× (B+C)≡A×B+A×C.

We write A.k for A+ · · ·+A (equivalently, Γk×A), and Ak for
A× ·· ·×A

14/24

REFLECTING RESIDUALS

Earlier we observed Γ∗3 /ab= (b+ c)∗(a+ c)∗

Can we write Γ∗3 /ab ≡ Γ∗2 × Γ∗2 ? This would (perhaps) simplify the
computation of LA/x(n) in the Descent Equation

Answer. Γ∗3 /ab . Γ
∗
2 × Γ∗2

However, Γ∗3 /ab can be reflected in Γ∗2 × Γ∗2

Def. h :A↪→B def⇔ h :A→ B is a mapping that satisfies |h(x)|B 6 |x|A
and h(x)6B h(y)⇒ x6A y

For x ∈ Γ∗3 /ab we let h(x) = 〈x1,x2〉 where x= x1x2 is a factorization
with x1 the longest prefix in (b+ c)∗ (hence x2 ∈ ε+a(a+ c)∗)
Check. |h(x)|=max(|x1|, |x2|)6 |x|
Check. h(x) = 〈x1,x2〉6Γ∗2×Γ∗2 〈y1,y2〉= h(y) implies x6Γ∗3 y

15/24

REFLECTING RESIDUALS

Earlier we observed Γ∗3 /ab= (b+ c)∗(a+ c)∗

Can we write Γ∗3 /ab ≡ Γ∗2 × Γ∗2 ? This would (perhaps) simplify the
computation of LA/x(n) in the Descent Equation

Answer. Γ∗3 /ab . Γ
∗
2 × Γ∗2

However, Γ∗3 /ab can be reflected in Γ∗2 × Γ∗2

Def. h :A↪→B def⇔ h :A→ B is a mapping that satisfies |h(x)|B 6 |x|A
and h(x)6B h(y)⇒ x6A y

For x ∈ Γ∗3 /ab we let h(x) = 〈x1,x2〉 where x= x1x2 is a factorization
with x1 the longest prefix in (b+ c)∗ (hence x2 ∈ ε+a(a+ c)∗)
Check. |h(x)|=max(|x1|, |x2|)6 |x|
Check. h(x) = 〈x1,x2〉6Γ∗2×Γ∗2 〈y1,y2〉= h(y) implies x6Γ∗3 y

15/24

REFLECTING RESIDUALS

Earlier we observed Γ∗3 /ab= (b+ c)∗(a+ c)∗

Can we write Γ∗3 /ab ≡ Γ∗2 × Γ∗2 ? This would (perhaps) simplify the
computation of LA/x(n) in the Descent Equation

Answer. Γ∗3 /ab . Γ
∗
2 × Γ∗2

However, Γ∗3 /ab can be reflected in Γ∗2 × Γ∗2

Def. h :A↪→B def⇔ h :A→ B is a mapping that satisfies |h(x)|B 6 |x|A
and h(x)6B h(y)⇒ x6A y

For x ∈ Γ∗3 /ab we let h(x) = 〈x1,x2〉 where x= x1x2 is a factorization
with x1 the longest prefix in (b+ c)∗ (hence x2 ∈ ε+a(a+ c)∗)
Check. |h(x)|=max(|x1|, |x2|)6 |x|
Check. h(x) = 〈x1,x2〉6Γ∗2×Γ∗2 〈y1,y2〉= h(y) implies x6Γ∗3 y

15/24

REFLECTING RESIDUALS –2

Def. B reflects A, written A↪→B, when h :A↪→B for some h.

Prop. x= x0,x1, .. bad in A implies h(x) bad in B too. And x

(g,n)-controlled implies h(x) controlled too.

Cor. A↪→B implies LA(n)6 LB(n)

Hence reflections can be used to overapproximate residuals

Prop. Reflections are transitive, compatible with isomorphism, and a
precongruence for sum, product, and star
E.g., A↪→B implies A∗↪→B∗ and (A×C)↪→(B×C).

16/24

REFLECTING RESIDUALS –2

Def. B reflects A, written A↪→B, when h :A↪→B for some h.

Prop. x= x0,x1, .. bad in A implies h(x) bad in B too. And x

(g,n)-controlled implies h(x) controlled too.

Cor. A↪→B implies LA(n)6 LB(n)

Hence reflections can be used to overapproximate residuals

Prop. Reflections are transitive, compatible with isomorphism, and a
precongruence for sum, product, and star
E.g., A↪→B implies A∗↪→B∗ and (A×C)↪→(B×C).

16/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

Consider a bad sequence x= x0,x1, . . . over N3/〈1,4,0〉

x =

∣∣∣∣ 063
∣∣∣∣ 233

∣∣∣∣ 018
∣∣∣∣ 136

∣∣∣∣ 109
∣∣∣∣ 213

∣∣∣∣ 203
∣∣∣∣ 100

∣∣∣∣ 000

17/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

We use colors to witness that 〈1,4,0〉 � xi for i= 0, . . .

x =

∣∣∣∣ 063
∣∣∣∣ 233

∣∣∣∣ 018
∣∣∣∣ 136

∣∣∣∣ 109
∣∣∣∣ 213

∣∣∣∣ 203
∣∣∣∣ 100

∣∣∣∣ 000

17/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

x =

∣∣∣∣ 063
∣∣∣∣ 233

∣∣∣∣ 018
∣∣∣∣ 136

∣∣∣∣ 109
∣∣∣∣ 213

∣∣∣∣ 203
∣∣∣∣ 100

∣∣∣∣ 000
∣∣∣∣ .
6
3

∣∣∣∣ .
1
8

∣∣∣∣ .
0
0

xi[1] = 0∣∣∣∣ 1.9
∣∣∣∣ 2.3

∣∣∣∣ 1.0 xi[2] = 0∣∣∣∣ 2.3 xi[2] = 1∣∣∣∣ 2.3
∣∣∣∣ 1.6 xi[2] = 3

17/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

x =

∣∣∣∣ 063
∣∣∣∣ 233

∣∣∣∣ 018
∣∣∣∣ 136

∣∣∣∣ 109
∣∣∣∣ 213

∣∣∣∣ 203
∣∣∣∣ 100

∣∣∣∣ 000
∣∣∣∣ •63

∣∣∣∣ 2•3
∣∣∣∣ •18

∣∣∣∣ 1•6
∣∣∣∣ 1•9

∣∣∣∣ 2•3
∣∣∣∣ 2•3

∣∣∣∣ 1•0
∣∣∣∣ •00

∣∣∣∣ •63
∣∣∣∣ •23

∣∣∣∣ •18
∣∣∣∣ •16

∣∣∣∣ •19
∣∣∣∣ •23

∣∣∣∣ •23
∣∣∣∣ •10

∣∣∣∣ •00

17/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

x =

∣∣∣∣ 063
∣∣∣∣ 233

∣∣∣∣ 018
∣∣∣∣ 136

∣∣∣∣ 109
∣∣∣∣ 213

∣∣∣∣ 203
∣∣∣∣ 100

∣∣∣∣ 000
∣∣∣∣ •63

∣∣∣∣ 2•3
∣∣∣∣ •18

∣∣∣∣ 1•6
∣∣∣∣ 1•9

∣∣∣∣ 2•3
∣∣∣∣ 2•3

∣∣∣∣ 1•0
∣∣∣∣ •00

∣∣∣∣ •63
∣∣∣∣ •23

∣∣∣∣ •18
∣∣∣∣ •16

∣∣∣∣ •19
∣∣∣∣ •23

∣∣∣∣ •23
∣∣∣∣ •10

∣∣∣∣ •00
N

3/〈1,4,0〉 ↪→•×N2+•×N2+•×N2+•×N2+•×N2 ↪→ Γ5×N2

17/24

REFLECTING RESIDUALS: E.G., N3/〈1,4,0〉

N
3/〈1,4,0〉 ↪→•×N2+•×N2+•×N2+•×N2+•×N2 ↪→ Γ5×N2

N
k/〈n1, . . . ,nk〉 ↪→ ΓP ×Nk−1 for P def

=
∑k
i=1(ni−1)

17/24

REFLECTING RESIDUALS: E.G., Γ ∗3/abb

Consider a bad sequence x= x0,x1, . . . over Γ∗3 /abb

x =
aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

18/24

REFLECTING RESIDUALS: E.G., Γ ∗3/abb

We use colors to witness that abb �∗ xi for i= 0, . . .

x =
aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

18/24

REFLECTING RESIDUALS: E.G., Γ ∗3/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

bbcb cbc ε
〈ε,aa〉 〈c,ac〉 〈b,ε〉 〈ε,ε〉

〈c,ε,a〉 〈ε,ε,cc〉 〈ε,cac,ε〉

u in 1st line belongs to {b,c}∗

〈u,v〉 in 2nd line belongs to {b,c}∗× {a,c}∗

〈u,v,w〉 in 3rd line belongs to {b,c}∗× {a,c}∗× {a,c}∗

18/24

REFLECTING RESIDUALS: E.G., Γ ∗3/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

bbcb cbc ε
〈ε,aa〉 〈c,ac〉 〈b,ε〉 〈ε,ε〉

〈c,ε,a〉 〈ε,ε,cc〉 〈ε,cac,ε〉

Thus Γ∗3 /abb ↪→ Γ∗2 + (Γ∗2)
2 + (Γ∗2)

3

18/24

REFLECTING RESIDUALS: E.G., Γ ∗3/abb

x = aaa, caba, caac, bbcb, abcc, ba, acacb, cbc, a, ε

bbcb cbc ε
〈ε,aa〉 〈c,ac〉 〈b,ε〉 〈ε,ε〉

〈c,ε,a〉 〈ε,ε,cc〉 〈ε,cac,ε〉

Thus Γ∗3 /abb ↪→ Γ∗2 + (Γ∗2)
2 + (Γ∗2)

3

More generally Γ∗p+1/x ↪→
∑n=|x|
i=1 (Γ∗p)

i ↪→ Γn× (Γ∗p)
n

18/24

GETTING RID OF RESIDUALS BY REFLECTIONS

(A+B)/(1,x) ≡ (A/x)+B (A+B)/(2,x) ≡ A+(B/x)

(A×B)/〈x,y〉 ↪→ [(A/x)×B] + [A× (B/y)]

Γ∗p+1/(x1 . . .xn) ↪→ Γn× (Γ∗p)
n

More generally;

A∗/(x1 . . .xn) ↪→ (A/x1)
∗ + (A/x1)

∗×A× (A/x2)
∗ + · · ·

+ (A/x1)
∗×A× (A/x2)

∗×A× ·· ·× (A/xn)
∗

↪→ Γn×An× (A/x1)
∗× ·· ·× (A/xn)

∗

Nb. Computations are quickly messy
E.g., (N3)∗/x ↪→ Γn× (N3)n× ((ΓP ×N2)∗)n for P = n2

19/24

GETTING RID OF RESIDUALS BY REFLECTIONS

(A+B)/(1,x) ≡ (A/x)+B (A+B)/(2,x) ≡ A+(B/x)

(A×B)/〈x,y〉 ↪→ [(A/x)×B] + [A× (B/y)]

Γ∗p+1/(x1 . . .xn) ↪→ Γn× (Γ∗p)
n

More generally;

A∗/(x1 . . .xn) ↪→ (A/x1)
∗ + (A/x1)

∗×A× (A/x2)
∗ + · · ·

+ (A/x1)
∗×A× (A/x2)

∗×A× ·· ·× (A/xn)
∗

↪→ Γn×An× (A/x1)
∗× ·· ·× (A/xn)

∗

Nb. Computations are quickly messy
E.g., (N3)∗/x ↪→ Γn× (N3)n× ((ΓP ×N2)∗)n for P = n2

19/24

GETTING RID OF RESIDUALS BY REFLECTIONS

(A+B)/(1,x) ≡ (A/x)+B (A+B)/(2,x) ≡ A+(B/x)

(A×B)/〈x,y〉 ↪→ [(A/x)×B] + [A× (B/y)]

Γ∗p+1/(x1 . . .xn) ↪→ Γn× (Γ∗p)
n

More generally;

A∗/(x1 . . .xn) ↪→ (A/x1)
∗ + (A/x1)

∗×A× (A/x2)
∗ + · · ·

+ (A/x1)
∗×A× (A/x2)

∗×A× ·· ·× (A/xn)
∗

↪→ Γn×An× (A/x1)
∗× ·· ·× (A/xn)

∗

Nb. Computations are quickly messy
E.g., (N3)∗/x ↪→ Γn× (N3)n× ((ΓP ×N2)∗)n for P = n2

19/24

REFLECTING RESIDUALS IN ORDINAL ARITHMETIC

Def. “Exponential WQO” def⇔ a WQO built with Γ∗p’s, sums and products

There is a “bijective” correspondence between ordinals below ωω
ω

and exponential WQOs

o(Γp)
def
= p o(Γ∗p+1)

def
= ωω

p

o(A+B)
def
= o(A)⊕o(B) o(A×B) def

= o(A)⊗o(B)

C
(
ωβ1 + · · ·+ωβk

)
= C

(m⊕
i=1

ki⊗
j=1

ωω
pi,j
)

=

m∑
i=1

ki∏
j=1

Γ∗(pi,j+1)

20/24

REFLECTING RESIDUALS IN ORDINAL ARITHMETIC

Def. “Exponential WQO” def⇔ a WQO built with Γ∗p’s, sums and products

There is a “bijective” correspondence between ordinals below ωω
ω

and exponential WQOs

o(Γp)
def
= p o(Γ∗p+1)

def
= ωω

p

o(A+B)
def
= o(A)⊕o(B) o(A×B) def

= o(A)⊗o(B)

C
(
ωβ1 + · · ·+ωβk

)
= C

(m⊕
i=1

ki⊗
j=1

ωω
pi,j
)

=

m∑
i=1

ki∏
j=1

Γ∗(pi,j+1)

20/24

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂n is a well-founded relation over ωω
ω

such that

x ∈A<n and o(A) = α imply A/x↪→C(β) for some β ∈ ∂nα

Example
Γ∗2

ωω

Γ3× (Γ∗1)
3

ω3 ·3

⋃
|x|<4[·/x ↪→ ·]

o

∂4

o

Prop. LA(n) = LC(α)(n) 6 max
α ′∈∂nα

{
1+ LC(α ′)(g(n))

}

21/24

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂n is a well-founded relation over ωω
ω

such that

x ∈A<n and o(A) = α imply A/x↪→C(β) for some β ∈ ∂nα

Example
Γ∗2

ωω

Γ3× (Γ∗1)
3

ω3 ·3

⋃
|x|<4[·/x ↪→ ·]

o

∂4

o

Prop. LA(n) = LC(α)(n) 6 max
α ′∈∂nα

{
1+ LC(α ′)(g(n))

}

21/24

COMPUTING RESIDUALS WITH ORDINAL ARITHMETIC

Def. (omitted) ∂n is a well-founded relation over ωω
ω

such that

x ∈A<n and o(A) = α imply A/x↪→C(β) for some β ∈ ∂nα

Example
Γ∗2

ωω

Γ3× (Γ∗1)
3

ω3 ·3

⋃
|x|<4[·/x ↪→ ·]

o

∂4

o

Prop. LA(n) = LC(α)(n) 6 max
α ′∈∂nα

{
1+ LC(α ′)(g(n))

}

21/24

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

Def. Mα,g(n)
def
= max
α ′∈∂nα

{
1+Mα ′,g(g(n))

}
(This is a well-founded definition)

Prop. LA,g(n) 6 Mo(A),g(n)

Def of (Mα)α<ωωω is similar to a standard hierarchy (hα)α<···

h0(x)
def
= 0 hα+1(x)

def
= 1+hα(h(x)) hλ(x)

def
= hλx(x)

that satisfies hωα(x)6 Fα(x)− x for (Fα)α<··· built on h

Two problems remain:
– can one relate α ′ ∈ ∂nα with αn−1?
– maxα ′...Mα ′(n) is in general > Msup{α ′...}(n)

22/24

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

Def. Mα,g(n)
def
= max
α ′∈∂nα

{
1+Mα ′,g(g(n))

}
(This is a well-founded definition)

Prop. LA,g(n) 6 Mo(A),g(n)

Def of (Mα)α<ωωω is similar to a standard hierarchy (hα)α<···

h0(x)
def
= 0 hα+1(x)

def
= 1+hα(h(x)) hλ(x)

def
= hλx(x)

that satisfies hωα(x)6 Fα(x)− x for (Fα)α<··· built on h

Two problems remain:
– can one relate α ′ ∈ ∂nα with αn−1?
– maxα ′...Mα ′(n) is in general > Msup{α ′...}(n)

22/24

CLASSIFYING L IN THE FAST-GROWING HIERARCHY

Def. Mα,g(n)
def
= max
α ′∈∂nα

{
1+Mα ′,g(g(n))

}
(This is a well-founded definition)

Prop. LA,g(n) 6 Mo(A),g(n)

Def of (Mα)α<ωωω is similar to a standard hierarchy (hα)α<···

h0(x)
def
= 0 hα+1(x)

def
= 1+hα(h(x)) hλ(x)

def
= hλx(x)

that satisfies hωα(x)6 Fα(x)− x for (Fα)α<··· built on h

Two problems remain:
– can one relate α ′ ∈ ∂nα with αn−1?
– maxα ′...Mα ′(n) is in general > Msup{α ′...}(n)

22/24

MAIN RESULT

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk for Lossy Counter Machines with k
counters, and in Fω when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

⇒ ·· · same upper bounds · · ·

23/24

MAIN RESULT

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk for Lossy Counter Machines with k
counters, and in Fω when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

⇒ ·· · same upper bounds · · ·

23/24

MORE LENGTH FUNCTION THEOREMS

For finite words with 6∗, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

24/24

MORE LENGTH FUNCTION THEOREMS

For finite words with 6∗, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

24/24

MORE LENGTH FUNCTION THEOREMS

For finite words with 6∗, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

24/24

MORE LENGTH FUNCTION THEOREMS

For finite words with 6∗, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

24/24

