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Nov. 12th, 2020: Hardness of LCM verification



COUNTER MACHINES ON A BUDGET

Ensures:
1. Mb ` (`,B,a) ∗−→rel (`,B ′,a ′) implies B+ |a|= B ′+ |a ′|
2. Mb ` (`,B,a) ∗−→rel (`,B ′,a ′) implies M ` (`,a) ∗−→rel (`

′,a ′)
3. If M ` (`,a) ∗−→rel (`,a ′) then ∃B,B ′: Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′)
4. If Mb ` (`,B,a) ∗−→ (`,B ′,a ′)

then Mb ` (`,B,a) ∗−→rel (`,B ′,a ′) iff B+ |a|= B ′+ |a ′|
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THE FAST-GROWING HIERARCHY

For k ∈N, Fk :N→N is defined by:

F0(n)
def
= n+1,

Fk+1(n)
def
= Fn+1

k (n) =

n+1 times︷           ︸︸           ︷
Fk(Fk(. . .Fk(n) . . .)),

Yields
F1(n) = 2n+1
F2(n) = (n+1)2n+1−1

and
F3(n)> 22

...
2
}
n times.

Further ensures Fk(n+1)> Fk(n) and Fk+1(n)> Fk(n).

Every Fk is primitive-recursive. Every primitive-recursive function is
dominated by some Fk.

Ackermann’s function, Ack(m)
def
= Fm(m), is not primitive-recursive.
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FAST-GROWING VS. HARDY HIERARCHY

F0(n)
def
= n+1 H0(n)

def
= n

Fα+1(n)
def
= Fn+1

α (n) =

n+1 times︷            ︸︸            ︷
Fα(Fα(. . .Fα(n) . . .)) Hα+1(n)

def
= Hα(n+1)

Fλ(n)
def
= Fλn(n) Hλ(n)

def
= Hλn(n)

with λn given by (γ+ωk+1)n
def
= γ+ωk · (n+1)

Prop. Hωα(n) = Fα(n) for all α and n

Nb. Hα(n) can be evaluated by transforming a pair
α,n= α0,n0

H−→ α1,n1
H−→ α2,n2

H−→ ·· · H−→ αk,nk with
α0 > α1 > α2 > · · · until eventually αk = 0 and nk =Hα(n) %
tail-recursion!!

We compute fast-growing functions and their inverses
by encoding α,n H−→α ′,n ′ and α ′,n ′ H−→−1 α,n
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LCM WEAKLY COMPUTING
H−→ FOR α <ωω

Write α<ωm+1 in Cantor normal form with coefficients
α=ωm.am+ωm−1.am−1+ · · ·+ω0a0.
Encoding of α is [am, . . . ,a0] ∈N

m+1.

[am, . . . ,a0+1],n H−→ [am, . . . ,a0],n+1 %Hα+1(n) =Hα(n+1)

[am, . . . ,ak+1,0,0, . . . ,0],n H−→ [am, . . . ,ak,n+1,0, . . . ,0],n %Hλ(n) =Hλn(n)

Recall (γ+ωk+1)n = γ+ωk · (n+1)
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LCM WEAKLY COMPUTING
H−→−1 FOR α <ωω

[am, . . . ,a0],n+1 H−→−1 [am, . . . ,a0+1],n %Hα+1(n) =Hα(n+1)

[am, . . . ,ak,n+1, . . . ,0],n H−→−1 [am, . . . ,ak+1,0, . . . ,0],n %Hλ(n) =Hλn(n)
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LCM WEAKLY COMPUTING
H−→−1 FOR α <ωω

[am, . . . ,a0],n+1 H−→−1 [am, . . . ,a0+1],n %Hα+1(n) =Hα(n+1)

[am, . . . ,ak,n+1, . . . ,0],n H−→−1 [am, . . . ,ak+1,0, . . . ,0],n %Hλ(n) =Hλn(n)

Prop. [Robustness] a6 a ′ and n6 n ′ imply H[a](n)6H[a ′](n
′)
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M(m): WRAPPING IT UP

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin that is bounded by Hωm(m),
i.e., by Ackermann(m)

Cor. LCM verification is Ackermann-hard
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