Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory

Part V: Ideals of WQOs and Their Algorithms

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/~phs

IF YOU MISSED PARTS | & ||

Def. (X, \leq) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \leq x_i$ (for some i < j)

Examples.

- 1. $(\mathbb{N}^k, \leqslant_\times)$ is a wqo (Dickson's Lemma) where, e.g., $(3,2,1) \leqslant_\times (5,2,2)$ but $(1,2,3) \leqslant_\times (5,2,2)$
- 2. (Σ^*, \leqslant_*) is a wqo (Higman's Lemma) where, e.g., $abc \leqslant_* bacbc$ but $cba \leqslant_* bacbc$

Fact. It is possible to decide Safety, Termination, etc., for WSTS's, i.e. systems with well-quasi-ordered states and monotonic (aka compatible) steps.

Motivation for today's lecture:

WQO-based algorithms often have to handle/reason about/.. infinite upward- or downward-closed sets

- This is a non-trivial subtask
- But there exists a powerful & generic approach via ideals

IF YOU MISSED PARTS I & II

Def. (X, \le) is a well-quasi-ordering (a wqo) if any <u>infinite</u> sequence $x_0, x_1, x_2...$ over X contains an increasing pair $x_i \le x_j$ (for some i < j)

Fact. It is possible to decide Safety, Termination, etc., for WSTS's, i.e. systems with well-quasi-ordered states and monotonic (aka compatible) steps.

Motivation for today's lecture:

WQO-based algorithms often have to handle/reason about/.. infinite upward- or downward-closed sets

- This is a non-trivial subtask
- But there exists a powerful & generic approach via ideals

OUTLINE FOR PART V

- The need for data structure and algorithms for closed subsets
- Ideals and filters : basics
- Effective ideals and filters
- The Valk-Jantzen-Goubault-Larrecq algorithm
- Building complex effective wqos from simpler ones: tuples, sequences, powersets, substructures, weakening, etc.

Verifying safety for a WSTS is usually done by computing upward-closed subsets

$$B\subseteq \textit{Pre}^{\leqslant 1}(B)\subseteq \textit{Pre}^{\leqslant 2}(B)\subseteq \cdots \subseteq \bigcup_{\mathfrak{m}} \textit{Pre}^{\leqslant \mathfrak{m}}(B)=\textit{Pre}^*(B)$$

How is this implemented in practice?

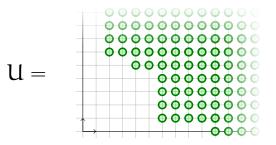
Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets $\mathbb{U}, \mathbb{U}', \mathbb{V}, \dots$

There is the finite basis presentation:

Verifying safety for a WSTS is usually done by computing upward-closed subsets

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets U, U', V, ...



There is the finite basis presentation:

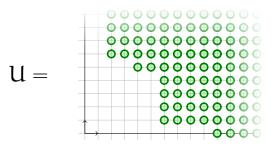
$$U = \uparrow(2,6) \cup \uparrow(4,5) \cup \uparrow(6,1) \cup \uparrow(10,0)$$

We also need algorithms for computing with this representation

E.a., testing whether U ⊂ V

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets U, U', V, ...



There is the finite basis presentation:

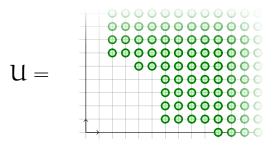
$$U={\uparrow}(2,6)\cup{\uparrow}(4,5)\cup{\uparrow}(6,1)\cup{\uparrow}(10,0)$$

We also need algorithms for computing with this representation

- E.g., testing whether $U \subseteq V$
- E.g., performing $U \leftarrow U \cup V$ or $U \leftarrow U \cap V$

How is this implemented in practice?

Consider $(\mathbb{N}^2, \leq_{\times})$ and upward-closed subsets U, U', V, ...



There is the finite basis presentation:

$$U = \uparrow(2,6) \cup \uparrow(4,5) \cup \uparrow(6,1) \cup \uparrow(10,0)$$

We also need algorithms for computing with this representation:

- E.g., testing whether $U \subseteq V$
- E.g., performing $U \leftarrow U \cup V$ or $U \leftarrow U \cap V$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

Bottom line: These are feasible but not trivial

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix}) \cap \uparrow (\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix})$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

Bottom line: These are feasible but not trivial!

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix}) \cap \uparrow (\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix})$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

Bottom line: These are feasible but not trivial

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix}) \cap \uparrow (\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix})$

Let us consider words with subword ordering, e.g., for lossy channel systems:

$$U = \uparrow abc \cup \cdots \cup \uparrow ddca \quad V = \uparrow bb \cup \cdots$$

How do we compare such sets?

How do we add to them?

How do we remove from them ? E.g., how do we perform $U \leftarrow U \cap \uparrow cbab$ or $U \leftarrow U \setminus \downarrow baccbab$?

Bottom line: These are feasible but not trivial!

- Can we handle \mathbb{N}^k and Σ^* efficiently ?
- What about other WQOs? E.g. over $(\mathbb{N}^2)^*$: $\uparrow (\begin{vmatrix} 2 \\ 0 \end{vmatrix}, \begin{vmatrix} 2 \\ 2 \end{vmatrix}) \cap \uparrow (\begin{vmatrix} 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 1 \\ 0 \end{vmatrix})$

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$D = X \setminus \uparrow m_1 \setminus \uparrow m_2 \dots \setminus \uparrow m_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent \downarrow (2,2) in ($\mathbb{N}^2, \leqslant_{\times}$)? And \downarrow ab in (Σ^*, \leqslant_*)?

$$\downarrow(2,2) = \neg[\uparrow(0,3) \cup \uparrow(3,0)] \qquad \qquad \downarrow ab = \neg[\uparrow ba \cup \uparrow c \cup \cdots]$$

— How do you compute D ∪ D′ ?

There is a better solution: decompose into primes

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$D = X \setminus \uparrow m_1 \setminus \uparrow m_2 \dots \setminus \uparrow m_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent \downarrow (2,2) in ($\mathbb{N}^2, \leqslant_{\times}$)? And \downarrow ab in (Σ^*, \leqslant_*)?

$$(2,2) = \neg \lceil \uparrow (0,3) \cup \uparrow (3,0) \rceil \qquad \downarrow ab = \neg \lceil \uparrow ba \cup \uparrow c \cup \cdots \rceil$$

— How do you compute D ∪ D' ?

There is a better solution: decompose into primes

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$D = X \setminus \uparrow m_1 \setminus \uparrow m_2 \cdots \setminus \uparrow m_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent \downarrow (2,2) in ($\mathbb{N}^2, \leq_{\times}$)? And \downarrow ab in (Σ^*, \leq_*)?

$$\downarrow(2,2) = \neg \big[\uparrow(0,3) \cup \uparrow(3,0)\big] \qquad \qquad \downarrow ab = \neg \big[\uparrow ba \cup \uparrow c \cup \cdots \big]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes

Problem: downward-closed D can't always be represented under the form $D = \downarrow x_1 \cup \cdots \cup \downarrow x_\ell$, take e.g. $D = \mathbb{N}^2$.

Recall: D can always be represented by excluded minors:

$$D = X \setminus \uparrow m_1 \setminus \uparrow m_2 \cdots \setminus \uparrow m_\ell$$

This amounts to $D = \neg U$ with $U = \uparrow m_1 \cup \cdots \cup \uparrow m_\ell$.

Problem: Not very convenient for simple sets:

— How do you represent \downarrow (2,2) in (\mathbb{N}^2 , \leqslant_{\times})? And \downarrow ab in (Σ^* , \leqslant_*)?

$$\downarrow(2,2) = \neg \big[\uparrow(0,3) \cup \uparrow(3,0)\big] \qquad \qquad \downarrow ab = \neg \big[\uparrow ba \cup \uparrow c \cup \cdots \big]$$

— How do you compute $D \cup D'$?

There is a better solution: decompose into primes!

PRIMES, UP AND DOWN

Fix
$$(X, \leq)$$
 WQO and consider $Up(X) = \{U, U', ...\}$ and $Down(X) = \{D, D', ...\}$

Def. 1. U ($\neq \emptyset$) is (up-) prime $\stackrel{\text{def}}{\Leftrightarrow} U \subseteq (U_1 \cup U_2)$ implies $U \subseteq U_1$ or $U \subseteq U_2$.

2. $D \ (\neq \varnothing)$ is (down-) prime $\stackrel{\text{def}}{\Leftrightarrow} D \subseteq (D_1 \cup D_2)$ implies $D \subseteq D_1$ or $D \subseteq D_2$.

Examples: for any $x \in X$, $\uparrow x$ is up-prime and $\downarrow x$ is down-prime

Lem. (Irreducibility)

- 1. U is prime iff $U = U_1 \cup \cdots \cup U_n$ implies $U = U_i$ for some i
- 2. D is prime iff $D=D_1 \cup \cdots \cup D_n$ implies $D=D_i$ for some i

Lem. (Existence of Prime Decompositions, aka Completeness)

- 1. Every $U \in Up$ is a finite union of up-primes
- 2. Every $D \in Down$ is a finite union of down-primes

MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) = $P_1 \cup \cdots \cup P_n$ is minimal $\stackrel{\text{def}}{\Leftrightarrow} \forall i,j: P_i \subseteq P_j$ implies i=j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Thm. (Primes are Filters/Ideals)

- 1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters)
- The down-primes of X are exactly the ideals of X (see below

Def. An ideal I of X is a non-empty directed downward-closed subset

Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leqslant z \geqslant y$

Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3 \dots$ is an increasing sequence then $\bigcup_i \downarrow x_i$ is

an ideal

Exercise: Let us look at \neg U for our earlier $\exists \mathbb{N}^2$

MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) = $P_1 \cup \cdots \cup P_n$ is minimal $\stackrel{\text{def}}{\Leftrightarrow} \forall i,j: P_i \subseteq P_j$ implies i=j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is called its canonical decomposition

Thm. (Primes are Filters/Ideals)

- 1. The up-primes of X are exactly the $\uparrow x$ for $x \in X$ (the principal filters)
- 2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset

Recall: I directed $\stackrel{\text{def}}{\Leftrightarrow} x, y \in I \implies \exists z \in I : x \leqslant z \geqslant y$

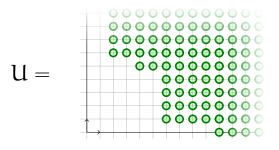
Example: any $\downarrow x$ is an ideal (called a principal ideal)

Example: If $x_1 < x_2 < x_3 \dots$ is an increasing sequence then $\bigcup_i \downarrow x_i$ is

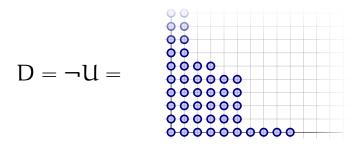
an ideal

Exercise: Let us look at $\neg U$ for our earlier $U \subseteq \mathbb{N}^2$

A DOWNWARD-CLOSED SUBSET OF IN²



A DOWNWARD-CLOSED SUBSET OF IN²



A DOWNWARD-CLOSED SUBSET OF IN²

$$D = I_1 \cup \cdots \cup I_4$$

NAILING DOWN THE IDEALS

The ideals of (\mathbb{N}, \leqslant) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leqslant)$, denoted \mathbb{N}_{ω} ($\equiv \omega + 1$)

Thm. The ideals of $(X_1 \times X_2, \leq_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i = 1, 2)

Hence $(Idl(X_1 \times X_2),\subseteq) \equiv Idl(X_1,\subseteq) \times Idl(X_2,\subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k,\leqslant_\times)$ are handled like \mathbb{N}^k_ω

Example: Assume $U = \uparrow(2,2)$ and $D = \downarrow(4,\omega) \cup \downarrow(6,3)$. What is $U \setminus D$ and $D \setminus U$?

NAILING DOWN THE IDEALS

The ideals of (\mathbb{N}, \leq) are exactly all $\downarrow n$ together with \mathbb{N} itself Hence $(Idl(\mathbb{N}), \subseteq) \equiv (\mathbb{N} \cup \{\omega\}, \leq)$, denoted \mathbb{N}_{ω} ($\equiv \omega + 1$)

Thm. The ideals of $(X_1 \times X_2, \leqslant_\times)$ are exactly the $J_1 \times J_2$ for $J_\mathfrak{t}$ an ideal of $X_\mathfrak{t}$ $(\mathfrak{t}=1,2)$

Hence $(Idl(X_1 \times X_2),\subseteq) \equiv Idl(X_1,\subseteq) \times Idl(X_2,\subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k,\leqslant_\times)$ are handled like \mathbb{N}^k_ω

Example: Assume $U = \uparrow(2,2)$ and $D = \downarrow(4,\omega) \cup \downarrow(6,3)$. What is $U \setminus D$ and $D \setminus U$?

NAILING DOWN THE IDEALS

The ideals of (\mathbb{N}, \leqslant) are exactly all $\downarrow n$ together with \mathbb{N} itself

Hence $(Idl(\mathbb{N}),\subseteq) \equiv (\mathbb{N} \cup \{\omega\},\leqslant)$, denoted $\mathbb{N}_{\omega} \ (\equiv \omega+1)$

Thm. The ideals of $(X_1 \times X_2, \leqslant_{\times})$ are exactly the $J_1 \times J_2$ for J_i an ideal of X_i (i=1,2)

Hence $(Idl(X_1 \times X_2),\subseteq) \equiv Idl(X_1,\subseteq) \times Idl(X_2,\subseteq)$ Very nice !!!!

Coro. The ideals of $(\mathbb{N}^k,\leqslant_\times)$ are handled like \mathbb{N}^k_ω

Example: Assume $U = \uparrow(2,2)$ and $D = \downarrow(4,\omega) \cup \downarrow(6,3)$. What is $U \setminus D$ and $D \setminus U$?

IDEALS FOR (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \epsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow \alpha = \{\alpha, \epsilon\}$ with $\alpha \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subset \Sigma$.

IDEALS FOR (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow \alpha = \{\alpha, \epsilon\}$ with $\alpha \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subset \Sigma$.

IDEALS FOR (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow \alpha = \{\alpha, \epsilon\}$ with $\alpha \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subset \Sigma$.

IDEALS FOR (Σ^*, \leqslant_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow \alpha = \{\alpha, \epsilon\}$ with $\alpha \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

IDEALS FOR (Σ^*, \leq_*) ?

Recall: $\downarrow w$ is an ideal for any $w \in \Sigma^*$. E.g. $\downarrow abc = \{abc, ab, ac, bc, a, b, c, \varepsilon\}$

What else?

- Σ* ?
- $(ab)^* = \{\varepsilon, ab, abab, ababab, ...\}$?
- $a^* + b^* = \{\epsilon, a, aa, aaa, ..., b, bb, bbb, ...\}$?
- $(a+b)^*$?

Lem. $I \cdot J \in Idl(\Sigma^*)$ for all $I, J \in Idl(\Sigma^*)$

Thm. The ideals of Σ^* are exactly the concatenation products $P = A_1 \cdot A_2 \cdots A_n$ for atoms of the form $A = \downarrow \alpha = \{\alpha, \varepsilon\}$ with $\alpha \in \Sigma$ or $A = \Gamma^*$ with $\Gamma \subseteq \Sigma$.

Exercise. Use this to compute $\Sigma^* \setminus bad$

What is required for handling (X, \leq) ?

```
Def. X is ideally effective \stackrel{\text{def}}{\Leftrightarrow}
(XR): X is recursive
(OR): \leq is decidable over X
(IR): Idl(X) is recursive
(II): \subseteq is decidable over Idl(X)
(CF): F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n is recursive
(CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n is recursive
(IF) & (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots and I_1, I_2 \mapsto I_1 \cap I_2 = I_1 \cup \cdots
are recursive
(IM): membership x \in I is decidable over X and Idl(X)
(XF) & (XI): X = F_1 \cup \cdots F_n and X = I_1 \cup \cdots I_m are effective
(PI): x \mapsto \bot x is recursive
```

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

What is required for handling (X, \leq) ?

```
Def. X is ideally effective \stackrel{\text{def}}{\Leftrightarrow}
(XR): X is recursive
(OR): \leq is decidable over X
(IR): Idl(X) is recursive
(II): \subseteq is decidable over Idl(X)
(CF): F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n is recursive
(CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n is recursive
(IF) & (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots and I_1, I_2 \mapsto I_1 \cap I_2 = I_1 \cup \cdots
are recursive
(IM): membership x \in I is decidable over X and Idl(X)
(XF) & (XI): X = F_1 \cup \cdots F_n and X = I_1 \cup \cdots I_m are effective
(PI): x \mapsto \bot x is recursive
```

Examples: Is (\mathbb{N}, \leq) ideally effective? What about (Σ^*, \leq_*) ?

Thm. If (X, \leq) satisfies the first 4 axioms above and (CF), (II), (PI),(XI) then it is ideally effective.

```
\begin{split} &(\mathsf{IR})\colon \mathit{Idl}(\mathsf{X}) \text{ is recursive} \\ &(\mathsf{II})\colon \subseteq \mathsf{is decidable over } \mathit{Idl}(\mathsf{X}) \\ &(\mathsf{CF})\colon \mathsf{F} = \uparrow \mathsf{x} \mapsto \neg \mathsf{F} = \mathsf{X} \setminus \mathsf{F} = \mathsf{I}_1 \cup \cdots \cup \mathsf{I}_n \text{ is recursive} \\ &(\mathsf{CI})\colon \mathsf{I} \mapsto \neg \mathsf{I} = \uparrow \mathsf{x}_1 \cup \cdots \cup \uparrow \mathsf{x}_n \text{ is recursive} \\ &(\mathsf{II})\colon \mathsf{F}_1, \mathsf{F}_2 \mapsto \mathsf{F}_1 \cap \mathsf{F}_2 = \uparrow \mathsf{x}_1 \cup \cdots \text{ and } \mathsf{I}_1, \mathsf{I}_2 \mapsto \mathsf{I}_1 \cap \mathsf{I}_2 = \mathsf{J}_1 \cup \cdots \\ &(\mathsf{III})\colon \mathsf{F}_1, \mathsf{F}_2 \mapsto \mathsf{F}_1 \cap \mathsf{F}_2 = \uparrow \mathsf{x}_1 \cup \cdots \text{ and } \mathsf{I}_1, \mathsf{I}_2 \mapsto \mathsf{I}_1 \cap \mathsf{I}_2 = \mathsf{J}_1 \cup \cdots \\ &\mathsf{are recursive} \\ &(\mathsf{IM})\colon \mathsf{membership} \ \mathsf{x} \in \mathsf{I} \text{ is decidable over } \mathsf{X} \text{ and } \mathit{Idl}(\mathsf{X}) \\ &(\mathsf{XF})\ \& \ (\mathsf{XI})\colon \mathsf{X} = \mathsf{F}_1 \cup \cdots \mathsf{F}_n \text{ and } \mathsf{X} = \mathsf{I}_1 \cup \cdots \mathsf{I}_m \text{ are effective} \\ &(\mathsf{PI})\colon \mathsf{x} \mapsto \downarrow \mathsf{x} \text{ is recursive} \end{split}
```

```
(XR): X is recursive
(OR): \leq is decidable over X
(IR): Idl(X) is recursive
(II): \subseteq is decidable over Idl(X)
(CF): F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n is recursive
(CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n is recursive
(IF) & (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots and I_1, I_2 \mapsto I_1 \cap I_2 = I_1 \cup \cdots
are recursive
(IM): membership x \in I is decidable over X and Idl(X)
(XF) & (XI): X = F_1 \cup \cdots F_n and X = I_1 \cup \cdots I_m are effective
(PI): x \mapsto \downarrow x is recursive
```

Proof. We first show (CD) $\stackrel{\text{def}}{\Leftrightarrow}$ one can design a recursive $D = I_1 \cup \cdots I_n \mapsto \neg D = U = \uparrow x_1 \cup \uparrow x_2 \cup \cdots$ For this, set $U_0 = \emptyset$ and, as long as $D \subsetneq \neg U_i$, we pick some x s.t. $D \not\ni x \not\in U_i$ and set $U_{i+1} = U_i \cup \uparrow x$. Eventually $U_i = \neg D$ will happen

```
(XR): X is recursive
(OR): \leq is decidable over X
(IR): Idl(X) is recursive
(II): \subseteq is decidable over Idl(X)
(CF): F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n is recursive
(CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n is recursive
(IF) & (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots and I_1, I_2 \mapsto I_1 \cap I_2 = I_1 \cup \cdots
are recursive
(IM): membership x \in I is decidable over X and Idl(X)
(XF) & (XI): X = F_1 \cup \cdots F_n and X = I_1 \cup \cdots I_m are effective
(PI): x \mapsto \downarrow x is recursive
```

Proof. Then we get (IF) from (CD) and (CI), by expressing intersection as dual of union, (IM) from (PI) and (II), (XF) from (CD) by computing $\neg \varnothing$

```
(XR): X is recursive
(OR): \leq is decidable over X
(IR): Idl(X) is recursive
(II): \subseteq is decidable over Idl(X)
(CF): F = \uparrow x \mapsto \neg F = X \setminus F = I_1 \cup \cdots \cup I_n is recursive
(CI): I \mapsto \neg I = \uparrow x_1 \cup \cdots \cup \uparrow x_n is recursive
(IF) & (II): F_1, F_2 \mapsto F_1 \cap F_2 = \uparrow x_1 \cup \cdots and I_1, I_2 \mapsto I_1 \cap I_2 = I_1 \cup \cdots
are recursive
(IM): membership x \in I is decidable over X and Idl(X)
(XF) & (XI): X = F_1 \cup \cdots F_n and X = I_1 \cup \cdots I_m are effective
(PI): x \mapsto \downarrow x is recursive
```

Thm [Halfon]. There are no more redundancies in the blue axioms

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- $\mathcal{P}_f(X)$ and $\mathcal{M}_f(X)$ and (X^*, \leq_{st}) and \cdots are ideally ...
- \bullet T(X) is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- \bullet $\mathfrak{P}_f(X)$ and $\mathfrak{M}_f(X)$ and $(X^*,\leqslant_{\text{st}})$ and \cdots are ideally ..
- \bullet T(X) is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- \bullet $\mathcal{P}_f(X)$ and $\mathcal{M}_f(X)$ and (X^*, \leqslant_{st}) and \cdots are ideally ...
- \bullet T(X) is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- \bullet $\mathfrak{P}_f(X)$ and $\mathfrak{M}_f(X)$ and $(X^*,\leqslant_{\text{st}})$ and \cdots are ideally ..
- $\mathfrak{T}(X)$ is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- $\mathcal{P}_f(X)$ and $\mathcal{M}_f(X)$ and (X^*, \leq_{st}) and \cdots are ideally ...
- $\mathfrak{T}(X)$ is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

- $(X \times Y, \leq_X)$ is ideally effective when X and Y are.
- (X^*, \leq_*) is ideally effective when X is. The ideals are the products of atoms $A = D^*$ for $D \in Down(X)$ and $A = \downarrow I$ for $I \in Idl(X)$
- $(X \sqcup Y, \leqslant_{\sqcup})$ is ideally effective when X and Y are. $Idl(X \sqcup Y) \equiv Idl(X) \sqcup Idl(Y)$.
- $X \times_{lex} Y$ and $X \sqcup_{lex} Y$ are ideally effective when ..
- $\mathcal{P}_f(X)$ and $\mathcal{M}_f(X)$ and (X^*, \leq_{st}) and \cdots are ideally ...
- \bullet $\Im(X)$ is ideally effective when X is but the ideals are more complex (see Goubault-Larrecq & Schmitz, ICALP 2016)

1. Assume (X, \leq') is an extension of (X, \leq) , i.e., $\leq \subseteq \leq'$.

Then
$$Idl(X, \leq') = \{ \downarrow_{\leq'} I \mid I \in Idl(X, \leq) \}.$$

Furthermore (X, \leq') is ideally effective when (X, \leq) is and the functions

$$I \mapsto {\downarrow_{\leqslant'}} I = I_1 \cup \dots \cup I_\ell \quad \text{ and } \quad {\uparrow_{x}} = F \mapsto {\uparrow_{\leqslant'}} F = {\uparrow_{x_1}} \cup \dots \cup {\uparrow_{x_m}}$$

are recursive.

Example. Subwords *cum* conjugacy:

abcd ≤_Ω acbadbbdbdbdbadbc

Example. Quotienting (X, \leq) by some equivalence \approx such that $\approx \circ \leq = \leq \circ \approx$

1. Assume (X, \leq') is an extension of (X, \leq) , i.e., $\leq \subseteq \leq'$.

Then
$$Idl(X, \leq') = \{ \downarrow_{\leq'} I \mid I \in Idl(X, \leq) \}.$$

Furthermore (X, \leq') is ideally effective when (X, \leq) is and the functions

$$I \mapsto {\downarrow_{\leqslant'}} I = I_1 \cup \dots \cup I_\ell \quad \text{ and } \quad {\uparrow_{x}} = F \mapsto {\uparrow_{\leqslant'}} F = {\uparrow_{x_1}} \cup \dots \cup {\uparrow_{x_m}}$$

are recursive.

Example. Subwords *cum* conjugacy:

$$abcd \leq_{\Omega} acbadbbdbdbdbadbc$$

Example. Quotienting (X, \leq) by some equivalence \approx such that $\approx \circ \leq = \leq \circ \approx$

2. Assume (Y, \leqslant_Y) is a subwqo of (X, \leqslant_X) , i.e., $Y \subseteq X$ and $\leqslant_Y = \leqslant_X \cap Y \times Y$.

Then $Idl(Y, \leq) = \{I \cap Y \mid I \in Idl(X) \text{ st. } I \subseteq \downarrow_X Y \land I \cap Y \neq \emptyset\}.$

Furthermore (Y, \leq) is ideally effective when (X, \leq) is and when Y and the functions

$$\begin{array}{ll} \mathit{Idl}(X) \to \mathit{Down}(X) & \mathit{Fil}(X) \to \mathit{Up}(X) \\ I & \mapsto \downarrow_X (I \cap Y) = I_1 \cup \cdots I_\ell & \text{and} & \uparrow_X = F \mapsto \uparrow_X (F \cap Y) = \uparrow_{X_1} \cup \cdots \uparrow_{X_m} \end{array}$$

are recursive.

Example. (L, \leq_*) for a context-free $L \subseteq \Sigma^*$

Example. Decreasing sequences in \mathbb{N}^* with the subsequence ordering.

2. Assume (Y, \leqslant_Y) is a subwqo of (X, \leqslant_X) , i.e., $Y \subseteq X$ and $\leqslant_Y = \leqslant_X \cap Y \times Y$.

Then
$$Idl(Y, \leq) = \{I \cap Y \mid I \in Idl(X) \text{ st. } I \subseteq \downarrow_X Y \land I \cap Y \neq \emptyset\}.$$

Furthermore (Y, \leq) is ideally effective when (X, \leq) is and when Y and the functions

$$\begin{array}{ll} \mathit{Idl}(X) \to \mathit{Down}(X) & \mathit{Fil}(X) \to \mathit{Up}(X) \\ I & \mapsto \downarrow_X (I \cap Y) = I_1 \cup \cdots I_\ell & \text{and} & \uparrow_X = F \mapsto \uparrow_X (F \cap Y) = \uparrow_{X_1} \cup \cdots \uparrow_{X_m} \end{array}$$

are recursive.

Example. (L, \leq_*) for a context-free $L \subseteq \Sigma^*$.

Example. Decreasing sequences in \mathbb{N}^* with the subsequence ordering.

CONCLUSION FOR PART V

Ideal-based algorithms already have several applications.

Handling WQO's raise many interesting algorithmic questions:

- Best algorithms for (Σ*,≤*)? (Karandikar et al., TCS 2016)
- Best algorithms for $(\mathbb{N}^k)^*$?
- Fully generic library of data structures and algorithms?
- Separating the polynomial and the exponential cases?
- More constructions .. Beyond WQOs ..

• . . .