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IF YOU MISSED PARTS | & Il
Def. (X, <) is a well-quasi-ordering (a wqo) if any infinite sequence
X0,X1,X2 ... Over X contains an increasing pair x; < x; (for some i < j)

Examples.
1. (N*,<) is a wqo (Dickson’s Lemma)
where, e.g., (3,2,1) <« (5,2,2) but (1,2,3) <« (5,2,2)

2. (Z*,<4) is awqgo (Higman’s Lemma)
where, e.g., abc <4 bacbc but cba £, bacbce

Fact. It is possible to decide Safety, Termination, etc., for WSTS’s, i.e.
systems with well-quasi-ordered states and monotonic (aka
compatible) steps.
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Def. (X, <) is a well-quasi-ordering (a wqo) if any infinite sequence
Xp,X1,X2... Over X contains an increasing pair x; < x; (for some i <)

Fact. It is possible to decide Safety, Termination, etc., for WSTS’s, i.e.
systems with well-quasi-ordered states and monotonic (aka
compatible) steps.

Motivation for today’s lecture:

WQO-based algorithms often have to handle/reason about/.. infinite
upward- or downward-closed sets

e This is a non-trivial subtask

e But there exists a powerful & generic approach via ideals



OUTLINE FOR PART V

» The need for data structure and algorithms for closed subsets
» |deals and filters : basics
» Effective ideals and filters

» The Valk-dantzen-Goubault-Larrecq algorithm

v

Building complex effective wqos from simpler ones : tuples,
sequences, powersets, substructures, weakening, etc.



HANDLING UPWARD-CLOSED SUBSETS

Verifying safety for a WSTS is usually done by computing
upward-closed subsets

B < Pre<'(B) < Pre~*(B) < --- < | J Pre<™(B) = Pre*(B)
m

How is this implemented in practice?
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HANDLING UPWARD-CLOSED SUBSETS
How is this implemented in practice?
Consider (IN?,<y) and upward-closed subsets U,U’,V,...

There is the finite basis presentation:
Uu=1(2,6)u (4,5 u1(6,1)u1(10,0)
We also need algorithms for computing with this representation:

e E.g., testing whether Uc V
e E.g., performingU—~UuVorUu—UnV
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Let us consider words with subword ordering, e.g., for lossy channel
systems:

U=1Tabcu---utddca V=1bbu---
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UPWARD-CLOSED SUBSETS OF (X%, <,)

Let us consider words with subword ordering, e.g., for lossy channel
systems:

U=1tabcu---utddca V=1bbu--

How do we compare such sets?

How do we add to them ?

How do we remove from them ? E.g., how do we perform
U<—UntcbaborU« U\ |baccbab ?

Bottom line: These are feasible but not trivial !

« Can we handle IN* and Z* efficiently ?
o What about other WQOs? E.g. over (N?)*: 1(13 |3) n1(|1 |5)
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NOW WHAT ABOUT DOWNWARD-CLOSED SUBSETS?

Problem: downward-closed D can’t always be represented under
the form D = |x1 U --- U |x¢, take e.g. D = IN?.

Recall: D can always be represented by excluded minors:
D=X\tTmy\tTmy--- N\ Tmy
This amounts to D = U with U =1mq u--- U Tmy.

Problem: Not very convenient for simple sets:
— How do you represent |(2,2) in (N?,<x)? And |ab in (Z*,<4)?

1(2,2) = =[1(0,3) U 1(3,0)] lab==[tbautcu---]

— How do you compute D uD’ ?

There is a better solution: decompose into primes!



PRIMES, UP AND DOWN

Fix (X,<) WQO and consider Up(X) = {U,U’,...} and
Down(X) = {D,D’,...}

Def. 1. U (# &) is (up-) prime Euc (U; uUy) implies U< U; or
ucu,.

2. D (# &) is (down-) prime D (D7 uDy) implies D < D; or
D < D».

Examples: for any x € X, 1x is up-prime and |x is down-prime

Lem. (Irreducibility)
1. Uis prime iff U=U; u---u Uy implies U = U; for some i
2.Disprimeiff D=Dju---uDy implies D = D; for some i

Lem. (Existence of Prime Decompositions, aka Completeness)
1. Every U e Up is a finite union of up-primes
2. Every D € Down is a finite union of down-primes



MINIMAL PRIME DECOMPOSITIONS

Def. A prime decomposition U (or D) = P; U --- U Py, is minimal
def . . . . . .
< Vi,j:Py € Py implies i =j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is
called its canonical decomposition



MINIMAL PRIME DECOMPOSITIONS
Def. A prime decomposition U (or D) = P; U --- U Py, is minimal
def . . . . . .
< Vi,j:Py € Py implies i =j.

Thm. Every U (or D) has a unique minimal prime decomposition. It is
called its canonical decomposition

Thm. (Primes are Filters/Ideals)
1. The up-primes of X are exactly the 1x for x € X (the principal filters)
2. The down-primes of X are exactly the ideals of X (see below)

Def. An ideal I of X is a non-empty directed downward-closed subset
Recall: I directed & x,yel = Jzel:ix<z>y
Example: any |x is an ideal (called a principal ideal)

Example: If x; <x, <x3...is an increasing sequence then [ J; | x; is
an ideal

Exercise: Let us look at —=U for our earlier U < IN?



A DOWNWARD-CLOSED SUBSET OF IN?
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A DOWNWARD-CLOSED SUBSET OF IN?

D=ILu---uls
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NAILING DOWN THE IDEALS

The ideals of (IN, <) are exactly all |n together with IN itself
Hence (IdI(N),c) = (Nu{w}, <), denoted N, (= w + 1)
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NAILING DOWN THE IDEALS

The ideals of (IN, <) are exactly all |n together with IN itself
,<

Hence (IdI(IN),c) = (N u {w}, <), denoted N, (= w + 1)

Thm. The ideals of (X1 x X,,<x) are exactly the J; x J, for J; an
ideal of X; (i=1,2)

Hence (Idl(X1 x X3),€) = Idl(X1,<) x I[dl(X3,<)  Very nice Il
Coro. The ideals of (N¥,<) are handled like N,

Example: Assume U =1(2,2)and D = |[(4,w) U |(6,3).
What is U\ D and D\ U?
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Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}
What else?
o X* 7
e (ab)* = {¢,ab,abab,ababab,...} ?

e a*+b*={¢,a,aa,aaq,...,b,bb,bbb,..

e (a+b)*?

Lem. I-JeIdi(X*) forall I,] € IdI(Z*)
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Recall: |w is an ideal for any w e £*.
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IDEALS FOR (Z*,<,)?

Recall: |w is an ideal for any w e £*.
E.g. labc = {abc,ab,ac,bc,a,b,c, e}

What else?

o X*7?

e (ab)* = {¢,ab,abab,ababab,...} ?

e a*+b*={¢, a,aq,aaq,...,b,bb,bbb,...} ?

e (a+b)*?

Lem. I-JeIdi(X*) forall I,] € IdI(Z*)

Thm. The ideals of Z* are exactly the concatenation products
P=A;1-A,---A, for atoms of the form A = |a = {a,e} withae Z or

A=T*withlcX.

Exercise. Use this to compute X* \ tbad



WHAT IS REQUIRED FOR HANDLING (X,<)?

Def. X is ideally effective &

(XR): X is recursive

(OR): < is decidable over X
(IR): IdI(X) is recursive

(I): < is decidable over IdI(X)

CF):F=tx—-F=X\F=1;u---ul, is recursive
Ch: I —=I=1x1uU--- U txn is recursive

|F)&(||)ZF1,F2>—>F1 szsz1u~« and 11,12*—>11012=]1U~~

M): membership x € I is decidable over X and Idl(X)
F)&(XD):X=F,u---Fp and X =1; u--- I, are effective

(

(
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are recursive
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(PI): x — |x is recursive



WHAT IS REQUIRED FOR HANDLING (X,<)?

Def. X is ideally effective &

(XR): X is recursive

(OR): < is decidable over X
(IR): IdI(X) is recursive

(I): < is decidable over IdI(X)

CF):F=tx—-F=X\F=1;u---ul, is recursive
Ch: I —=I=1x1uU--- U txn is recursive

|F)&(||)ZF1,F2>—>F1 ﬂFZITxlu'H and 11,12*—>11012=]1U~~

(

(

( .
are recursive
(IM): membership x € I is decidable over X and Id1(X)
(XF) & (X): X=F,u---F, and X =1; u--- I, are effective
(PI): x — |x is recursive

Examples: Is (N, <) ideally effective?

What about (£*,<) ?



VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

Thm. If (X, <) satisfies the first 4 axioms above and (CF), (Il),
(P1),(X1) then it is ideally effective.



VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

(XR): X is recursive

(OR): < is decidable over X

(IR): IdI(X) is recursive

(I): < is decidable over IdI(X)
(CF):F=1x—-F=X\F=1;u---uly is recursive
(Ch: T+ =I=1x1 U U Ixy is recursive

(IF) & (I): F1,F2 = Fy sz =txqu--and I, Lb—Iinkh=J1u--
are recursive

(IM): membership x € I is decidable over X and Idl(X)

(XF) & (X): X=F,u---Fp and X =1; u--- I, are effective

(Pl): x — |x is recursive

Proof. We first show (CD) % one can design a recursive
D=lLu--Ih—="D=U=1x1ulxpu---

For this, set Ug = &g and, as long as D < —U;, we pick some x s.t.
D $x¢ U; and set Ui, 1 = U; u Tx. Eventually U; = =D will happen



VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

(XR): X is recursive

(OR): < is decidable over X
(IR): Id1(X) is recursive

(l): < is decidable over IdI(X)

CF):F=1x——-F= X\F—Ilu -u I is recursive
(CD: T— =I=1x1uU--- U Txy IS recursive

( ) () F1,F2»—>F1mF2:Tx1u~--andIl,IzHllmIZ:hu--.
are recursive

(IM): membership x € I is decidable over X and IdI(X)

(XF) & (XI): X=F, u---Fp and X =1; u --- 11 are effective

(P): x— |x is recursive

Proof. Then we get (IF) from (CD) and (Cl), by expressing
intersection as dual of union, (IM) from (Pl) and (Il), (XF) from (CD)
by computing =&



VALK-JANTZEN-GOUBAULT-LARRECQ ALGORITHM

(XR): X is recursive

(OR): < is decidable over X
(IR): Id1(X) is recursive

(I): < is decidable over IdI(X)

CF):F=tx——-F=X\F=1;u---ul, isrecursive
Ch:l——=I=1TxguU---Ulxnis recursive

(IF) & (I1): F1,F2 = F1 sz =Mxqu--and I, Lh—Iinlh=Ju--
are recursive

(IM): membership x € I is decidable over X and IdI(X)

(XF) & (XI): X=F, u---Fpand X =1; u --- 11 are effective

(P1): x — |x is recursive

Thm [Halfon]. There are no more redundancies in the blue axioms
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CONSTRUCTING IDEALLY EFFECTIVE WQOs

e (X xY,<x) is ideally effective when X and Y are.

o (X*,<,) is ideally effective when X is. The ideals are the products
of atoms A = D* for D € Down(X) and A = |I for I € IdI(X)

o (XUY,<,) is ideally effective when X and Y are.
IdIXuY) = 1dI(X) uIdl(Y).

o X Xjex Y and X L Y are ideally effective when ..
e P¢(X) and M¢(X) and (X*,<gt) and --- are ideally ..

e T(X) is ideally effective when X is but the ideals are more complex
(see Goubault-Larrecq & Schmitz, ICALP 2016)



CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

1. Assume (X,<’) is an extension of (X,<),i.e.,, <c <.

Then IdI(X,<') = {| </ | Te IdI(X,<)}.

Furthermore (X, <) is ideally effective when (X,<) is and the
functions

I'—>l</1211U"'UI(g and Tx:FHTglF:Txlu---uTxm

are recursive.



CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

1. Assume (X,<’) is an extension of (X,<),i.e.,, <c <.
Then 1dI(X,<’) = {l</1 | Te IdI(X,<)}.

Furthermore (X, <’) is ideally effective when (X, <) is and the
functions

I'—>l</1211U"'UI(g and Tx:FHTg/F:Txlu---uTxm
are recursive.
Example. Subwords cum conjugacy:

abcd <) acbadbbdbdbdbadbe

Example. Quotienting (X, <) by some equivalence ~ such that
ro<=<o0o~x



CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

2. Assume (Y, <y) is a subwqo of (X,<x), i.e., Y < X and
<y=<xnYxY.

Then IdI(Y,<) = {InY | TeIdI(X)st. 1S |xY A InY = &}

Furthermore (Y, <) is ideally effective when (X, <) is and when Y and
the functions

Id1(X) — Down(X) nd Fil(X) — Up(X)
I oIV =L ol 3 =P 1y (FAY) = g U

are recursive.



CONSTRUCTING MORE IDEALLY EFFECTIVE WQOSs

2. Assume (Y, <y) is a subwqo of (X,<x), i.e., Y < X and
<y=<xnYxY.

Then dI(Y,<) ={InY|Ieldl(X)st.IC |[xY A InY # &}
Furthermore (Y, <) is ideally effective when (X,<) is and when Y and

the functions

Id1(X) — Down(X)
I »|xInY)=1L1u--I

Fil(X) — Up(X)

and tx=F Ix(FAY) = 1x1 U Txm

are recursive.

Example. (L, <. ) for a context-free L = X*.

Example. Decreasing sequences in IN* with the subsequence
ordering.



CONCLUSION FOR PART V

Ideal-based algorithms already have several applications.

Handling WQOQO's raise many interesting algorithmic questions:

e Best algorithms for (£*,<,)? (Karandikar et al., TCS 2016)
« Best algorithms for (IN¥)*?

e Fully generic library of data structures and algorithms?

e Separating the polynomial and the exponential cases?

e More constructions .. Beyond WQOs ..



