
Algorithmic Aspects
of WQO (Well-Quasi-Ordering) Theory

Part IV: Fast-growing complexity 2

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan
Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/˜phs

www.lsv.ens-cachan.fr/~phs

IF YOU MISSED THE EARLIER EPISODES

(Nk,6×) and (Σ∗,6∗) are well-quasi-orderings: any infinite
sequence x= x0,x1,x2, . . . contains an increasing pair xi 6 xj —we
say it is good—

If a sequence like x cannot grow too quickly —we say it is
controlled— then the position i, j of the first increasing pair in x can be
bounded by some length function LX,control(|x0|)

This gave us upper bounds for the complexity of wqo-based
algorithms. Furthermore, these length functions can be precisely
pinned down inside elegant subrecursive hierarchies

For example, it gave Fω upper-bounds for the verification —e.g.,
termination and/or safety— of monotonic counter machines, and
Fωω upper bounds for lossy channel systems

2/20

IF YOU MISSED THE EARLIER EPISODES

(Nk,6×) and (Σ∗,6∗) are well-quasi-orderings: any infinite
sequence x= x0,x1,x2, . . . contains an increasing pair xi 6 xj —we
say it is good—

If a sequence like x cannot grow too quickly —we say it is
controlled— then the position i, j of the first increasing pair in x can be
bounded by some length function LX,control(|x0|)

This gave us upper bounds for the complexity of wqo-based
algorithms. Furthermore, these length functions can be precisely
pinned down inside elegant subrecursive hierarchies

For example, it gave Fω upper-bounds for the verification —e.g.,
termination and/or safety— of monotonic counter machines, and
Fωω upper bounds for lossy channel systems

That was just the EASY part!!!

2/20

IF YOU MISSED THE EARLIER EPISODES

(Nk,6×) and (Σ∗,6∗) are well-quasi-orderings: any infinite
sequence x= x0,x1,x2, . . . contains an increasing pair xi 6 xj —we
say it is good—

If a sequence like x cannot grow too quickly —we say it is
controlled— then the position i, j of the first increasing pair in x can be
bounded by some length function LX,control(|x0|)

This gave us upper bounds for the complexity of wqo-based
algorithms. Furthermore, these length functions can be precisely
pinned down inside elegant subrecursive hierarchies

For example, it gave Fω upper-bounds for the verification —e.g.,
termination and/or safety— of monotonic counter machines, and
Fωω upper bounds for lossy channel systems

Today we consider the “hardness” question: are these upper bounds
optimal?, or equivalently: do we have matching lowing bounds?

—the answer is often “positive”

2/20

OUTLINE FOR TODAY

I What is the question exactly? And why isn’t it obvious?

I A strategy for proving hardness

I Hardness for Lossy Counter Machines

I Hardness for Lossy Channel Systems

3/20

PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

“Could be” for the simple-minded algorithms we presented in Part II
“No” for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n)
and A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)<A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑
i∈Kp

Fi
i ? where pi and

Fi are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal Turing machine halts on
x in at most Ack(|x|) steps?

4/20

PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

“Could be” for the simple-minded algorithms we presented in Part II
“No” for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n)
and A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)<A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑
i∈Kp

Fi
i ? where pi and

Fi are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal Turing machine halts on
x in at most Ack(|x|) steps?

4/20

PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

“Could be” for the simple-minded algorithms we presented in Part II
“No” for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n)
and A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)<A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑
i∈Kp

Fi
i ? where pi and

Fi are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal Turing machine halts on
x in at most Ack(|x|) steps?

4/20

PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

“Could be” for the simple-minded algorithms we presented in Part II
“No” for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n)
and A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)<A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑
i∈Kp

Fi
i ? where pi and

Fi are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal Turing machine halts on
x in at most Ack(|x|) steps?

4/20

PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

“Could be” for the simple-minded algorithms we presented in Part II
“No” for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n)
and A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)<A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑
i∈Kp

Fi
i ? where pi and

Fi are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal Turing machine halts on
x in at most Ack(|x|) steps?

4/20

PROVING LOWER BOUNDS FOR MONOTONIC MODELS

We shall adopt the following strategy:

1. Compute unreliably a function in the Fast-Growing hierarchy

2. Use the result as an unreliable computational ressource

3. “Check” in the end that everything was done reliably

4. NB: Need computing unreliably the inverses of Fast-Growing
functions

Great technical improvement: use Hardy hierarchy!

5/20

FAST-GROWING VS. HARDY HIERARCHY

F0(n)
def
= n+1 H0(n)

def
= n

Fα+1(n)
def
= Fn+1

α (n) =

n+1 times︷ ︸︸ ︷
Fα(Fα(. . .Fα(n) . . .)) Hα+1(n)

def
= Hα(n+1)

Fλ(n)
def
= Fλn(n) Hλ(n)

def
= Hλn(n)

with
(γ+ωβ+1)n

def
= γ+ωβ · (n+1) (γ+ωλ)n

def
= γ+ωλn

Prop. Hα+β(n) =Hα(Hβ(n)) for all α+β and n

Prop. Fα(n) =Hω
α
(n) for all α and n

Prop. Hα(n)6Hα
′
(n ′) and Fα(n)6 Fα ′(n ′) when αv α ′ & n6 n ′

6/20

FAST-GROWING VS. HARDY HIERARCHY

F0(n)
def
= n+1 H0(n)

def
= n

Fα+1(n)
def
= Fn+1

α (n) =

n+1 times︷ ︸︸ ︷
Fα(Fα(. . .Fα(n) . . .)) Hα+1(n)

def
= Hα(n+1)

Fλ(n)
def
= Fλn(n) Hλ(n)

def
= Hλn(n)

with
(γ+ωβ+1)n

def
= γ+ωβ · (n+1) (γ+ωλ)n

def
= γ+ωλn

Prop. Hα+β(n) =Hα(Hβ(n)) for all α+β and n

Prop. Fα(n) =Hω
α
(n) for all α and n

Prop. Hα(n)6Hα
′
(n ′) and Fα(n)6 Fα ′(n ′) when αv α ′ & n6 n ′

6/20

COMPUTING HARDY FUNCTIONS BY REWRITING

H0(n)
def
= n Hα+1(n)

def
= Hα(n+1) Hλ(n)

def
= Hλn(n)

seen as rewrite rules:

〈α+1,n〉 H−→ 〈α,n+1〉 〈λ,n〉 H−→ 〈λn,n〉

Note (Tail-recursive implementation)
Hα(n) can be evaluated by rewriting a pair
α,n= α0,n0

H−→ α1,n1
H−→ α2,n2

H−→ ·· · H−→ αk,nk with
α0 > α1 > α2 > · · · until eventually αk = 0 and nk =Hα(n)

Below we compute fast-growing functions and their inverses
by encoding α,n H−→α ′,n ′ and α ′,n ′ H−→−1 α,n

7/20

COMPUTING HARDY FUNCTIONS BY REWRITING

H0(n)
def
= n Hα+1(n)

def
= Hα(n+1) Hλ(n)

def
= Hλn(n)

seen as rewrite rules:

〈α+1,n〉 H−→ 〈α,n+1〉 〈λ,n〉 H−→ 〈λn,n〉

Note (Tail-recursive implementation)
Hα(n) can be evaluated by rewriting a pair
α,n= α0,n0

H−→ α1,n1
H−→ α2,n2

H−→ ·· · H−→ αk,nk with
α0 > α1 > α2 > · · · until eventually αk = 0 and nk =Hα(n)

Below we compute fast-growing functions and their inverses
by encoding α,n H−→α ′,n ′ and α ′,n ′ H−→−1 α,n

7/20

CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.

8/20

CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.

8/20

CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.

8/20

CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.

8/20

CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.

8/20

LCM = Lossy COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

(`,a)−→ (` ′,b) def⇔ (`,a)> (`,x)−→rel (`
′,y)> (` ′,b) for some x,y

A run of M: (`0,0,1,4)−→ (`1,1,1,2)−→ (`2,1,0,2)−→(`1,1,0,0)

The unreliable counter machine is a WSTS

Paradox: It does much more than its reliable twin but can compute
much less

9/20

LCM = Lossy COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

(`,a)−→ (` ′,b) def⇔ (`,a)> (`,x)−→rel (`
′,y)> (` ′,b) for some x,y

A run of M: (`0,0,1,4)−→ (`1,1,1,2)−→ (`2,1,0,2)−→(`1,1,0,0)

The unreliable counter machine is a WSTS

Paradox: It does much more than its reliable twin but can compute
much less

9/20

LCM = Lossy COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

1c2

0c1

4c3

(`,a)−→ (` ′,b) def⇔ (`,a)> (`,x)−→rel (`
′,y)> (` ′,b) for some x,y

A run of M: (`0,0,1,4)−→ (`1,1,1,2)−→ (`2,1,0,2)−→(`1,1,0,0)

The unreliable counter machine is a WSTS

Paradox: It does much more than its reliable twin but can compute
much less

9/20

ENCODING ORDINALS <ωω IN TUPLES OF NUMBERS

Write α in CNF with coefficients
α=ωm.am+ωm−1.am−1+ · · ·+ω0a0

Encoding of α,n is 〈am, . . . ,a0;n〉 ∈Nm+2.

〈am, . . . ,a0+1;n〉 H−→ 〈am, . . . ,a0;n+1〉 %Hα+1(n) =Hα(n+1)

〈am, . . . ,ak+1,

k>0︷ ︸︸ ︷
0, . . . ,0;n〉 H−→ 〈am, . . . ,ak,n+1,

k−1︷ ︸︸ ︷
0, . . . ,0;n〉 %Hλ(n) =Hλn(n)

10/20

ENCODING ORDINALS <ωω IN TUPLES OF NUMBERS

Write α in CNF with coefficients
α=ωm.am+ωm−1.am−1+ · · ·+ω0a0

Encoding of α,n is 〈am, . . . ,a0;n〉 ∈Nm+2.

〈am, . . . ,a0+1;n〉 H−→ 〈am, . . . ,a0;n+1〉 %Hα+1(n) =Hα(n+1)

〈am, . . . ,ak+1,

k>0︷ ︸︸ ︷
0, . . . ,0;n〉 H−→ 〈am, . . . ,ak,n+1,

k−1︷ ︸︸ ︷
0, . . . ,0;n〉 %Hλ(n) =Hλn(n)

Recall: (γ+ωk+1)n
def
= γ+ωk · (n+1)

10/20

ENCODING ORDINALS <ωω IN TUPLES OF NUMBERS

Write α in CNF with coefficients
α=ωm.am+ωm−1.am−1+ · · ·+ω0a0
Encoding of α,n is 〈am, . . . ,a0;n〉 ∈Nm+2.

〈am, . . . ,a0+1;n〉 H−→ 〈am, . . . ,a0;n+1〉 %Hα+1(n) =Hα(n+1)

〈am, . . . ,ak+1,

k>0︷ ︸︸ ︷
0, . . . ,0;n〉 H−→ 〈am, . . . ,ak,n+1,

k−1︷ ︸︸ ︷
0, . . . ,0;n〉 %Hλ(n) =Hλn(n)

ℓH ℓ1 ℓ′1 ℓ′′1

ℓ2 ℓ′2 ℓ′′2

· · · · · ·
ℓm ℓ′m ℓ′′m

r

a0>0?

a0--
n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n+1

a2>0?a2-- a1:=n+1

am>0?am-- am−1:=n+1

...

n

a0

a1

am

10/20

NOW FOR
H−→−1 (DENOTED

H-1
−→ FROM NOW ON)

〈am, . . . ,a0;n+1〉 H
-1
−−→ 〈am, . . . ,a0+1;n〉 %Hα+1(n) =Hα(n+1)

〈am, . . . ,ak,n+1,

k−1︷ ︸︸ ︷
0, . . . ,0;n〉 H

-1
−−→ 〈am, . . . ,ak+1,

k︷ ︸︸ ︷
0, . . . ,0;n〉 %Hλ(n) =Hλn(n)

11/20

NOW FOR
H−→−1 (DENOTED

H-1
−→ FROM NOW ON)

〈am, . . . ,a0;n+1〉 H
-1
−−→ 〈am, . . . ,a0+1;n〉 %Hα+1(n) =Hα(n+1)

〈am, . . . ,ak,n+1,

k−1︷ ︸︸ ︷
0, . . . ,0;n〉 H

-1
−−→ 〈am, . . . ,ak+1,

k︷ ︸︸ ︷
0, . . . ,0;n〉 %Hλ(n) =Hλn(n)

...

n

a0

a1

am
· · ·

· · ·

· · ·

ℓH−1
n>0?

n--

a0++ a1++ a2++ am++

a0:=0 a1:=0 am−1:=0

a0=n+1? a1=n+1? am−1=n+1?

a0=0? ∧m−2
i=1 ai=0?

a0=0?

Prop. [Robustness] a6× a ′ and n6 n ′ imply Hα(n)6Hα
′
(n ′)

11/20

COUNTER MACHINES ON A BUDGET

M
ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mb (=on budget)

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Ensures:
1. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies B+ |a|= B ′+ |a ′|
2. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies M ` (`,a) ∗−→rel (`
′,a ′)

3. If M ` (`,a) ∗−→rel (`
′,a ′) then ∃B,B ′: Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′)
4. If Mb ` (`,B,a) ∗−→ (` ′,B ′,a ′)

then Mb ` (`,B,a) ∗−→rel (`
′,B ′,a ′) iff B+ |a|= B ′+ |a ′|

12/20

COUNTER MACHINES ON A BUDGET

M
ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mb (=on budget)

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Ensures:
1. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies B+ |a|= B ′+ |a ′|
2. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies M ` (`,a) ∗−→rel (`
′,a ′)

3. If M ` (`,a) ∗−→rel (`
′,a ′) then ∃B,B ′: Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′)
4. If Mb ` (`,B,a) ∗−→ (` ′,B ′,a ′)

then Mb ` (`,B,a) ∗−→rel (`
′,B ′,a ′) iff B+ |a|= B ′+ |a ′|

12/20

M(m): WRAPPING IT UP

MH

MH−1
Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin where all counters are bounded
by Hω

m
(m), i.e., by Fω(m)≈ Ackermann(m)

Cor. LCM verification is Fω-hard, hence Fω-complete
13/20

M(m): WRAPPING IT UP

MH

MH−1
Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin where all counters are bounded
by Hω

m
(m), i.e., by Fω(m)≈ Ackermann(m)

Cor. LCM verification is Fω-hard, hence Fω-complete
13/20

M(m): WRAPPING IT UP

MH

MH−1
Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin where all counters are bounded
by Hω

m
(m), i.e., by Fω(m)≈ Ackermann(m)

Cor. LCM verification is Fω-hard, hence Fω-complete
13/20

M(m): WRAPPING IT UP

MH

MH−1
Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin where all counters are bounded
by Hω

m
(m), i.e., by Fω(m)≈ Ackermann(m)

Cor. LCM verification is Fω-hard, hence Fω-complete
13/20

M(m): WRAPPING IT UP

MH

MH−1
Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n :m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n :m,0, . . .)

iff M has a reliable run from `ini to `fin where all counters are bounded
by Hω

m
(m), i.e., by Fω(m)≈ Ackermann(m)

Cor. LCM verification is Fω-hard, hence Fω-complete
13/20

RECALL: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗,6∗){c1,c2}

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

14/20

RECALL: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗,6∗){c1,c2}

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

14/20

RECALL: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗,6∗){c1,c2}

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

14/20

ENCODING ORDINALS <ωωω IN CHANNELS

We use Σ= {a0, . . . ,am}∪ { } to encode ordinals α <ωω
m+1

.

Two-level “differential” encoding:

β : {a0, . . . ,am}∗→ωm+1

β(ar1 . . .ark)
def
= ωr1 + · · ·+ωrk

E.g. β(ε) = 0, β(a3a0a0) =ω3+2, β(a0a0a3) = 2+ω3 =ω3

α : Σ∗→ωω
m+1

α(a1 a2 . . .al)
def
= ωβ(a1a2...al)+ · · ·+ωβ(a1a2)+ωβ(a1)

E.g. α() =ω0+ω0+ω0 = 3 α(a1a0 a1) =ωω·2+ωω+1 ·2

Difficulties. 1: α(w) is not always a CNF

2: w6∗ w ′ implies α(w)6 α(w ′) but not necessarily α(w)v α(w ′)

15/20

ENCODING ORDINALS <ωωω IN CHANNELS

We use Σ= {a0, . . . ,am}∪ { } to encode ordinals α <ωω
m+1

.

Two-level “differential” encoding:

β : {a0, . . . ,am}∗→ωm+1

β(ar1 . . .ark)
def
= ωr1 + · · ·+ωrk

E.g. β(ε) = 0, β(a3a0a0) =ω3+2, β(a0a0a3) = 2+ω3 =ω3

α : Σ∗→ωω
m+1

α(a1 a2 . . .al)
def
= ωβ(a1a2...al)+ · · ·+ωβ(a1a2)+ωβ(a1)

E.g. α() =ω0+ω0+ω0 = 3 α(a1a0 a1) =ωω·2+ωω+1 ·2

Difficulties. 1: α(w) is not always a CNF

2: w6∗ w ′ implies α(w)6 α(w ′) but not necessarily α(w)v α(w ′)

15/20

ENCODING ORDINALS <ωωω IN CHANNELS

We use Σ= {a0, . . . ,am}∪ { } to encode ordinals α <ωω
m+1

.

Two-level “differential” encoding:

β : {a0, . . . ,am}∗→ωm+1

β(ar1 . . .ark)
def
= ωr1 + · · ·+ωrk

E.g. β(ε) = 0, β(a3a0a0) =ω3+2, β(a0a0a3) = 2+ω3 =ω3

α : Σ∗→ωω
m+1

α(a1 a2 . . .al)
def
= ωβ(a1a2...al)+ · · ·+ωβ(a1a2)+ωβ(a1)

E.g. α() =ω0+ω0+ω0 = 3 α(a1a0 a1) =ωω·2+ωω+1 ·2

Difficulties. 1: α(w) is not always a CNF

2: w6∗ w ′ implies α(w)6 α(w ′) but not necessarily α(w)v α(w ′)

15/20

ENCODING ORDINALS <ωωω IN CHANNELS

We use Σ= {a0, . . . ,am}∪ { } to encode ordinals α <ωω
m+1

.

Two-level “differential” encoding:

β : {a0, . . . ,am}∗→ωm+1

β(ar1 . . .ark)
def
= ωr1 + · · ·+ωrk

E.g. β(ε) = 0, β(a3a0a0) =ω3+2, β(a0a0a3) = 2+ω3 =ω3

α : Σ∗→ωω
m+1

α(a1 a2 . . .al)
def
= ωβ(a1a2...al)+ · · ·+ωβ(a1a2)+ωβ(a1)

E.g. α() =ω0+ω0+ω0 = 3 α(a1a0 a1) =ωω·2+ωω+1 ·2

Difficulties. 1: α(w) is not always a CNF

2: w6∗ w ′ implies α(w)6 α(w ′) but not necessarily α(w)v α(w ′)

15/20

WEAKLY COMPUTING
H−→ WITH LCS’S

(w,n) H−→ (w,n+1) %Hα+1(n) =Hα(n+1)

(ua0 w,n)
H−→ (u n+1

a0w,n) %Hγ+ω
k+1

(n) =Hγ+ω
k·(n+1)(n)

(uar+1 w,n)
H−→ (uan+1

r arw,n) %Hγ+ω
β+ωk+1

(n) =Hγ+ω
β+ωk·(n+1)

(n)

(· · · similar rules for H
-1
−−→ ·· ·)

Prop. [Robustness]
w6∗ w ′ and n6 n ′ and w ′ pure imply Hα(w)(n)6Hα(w

′)(n ′)

where purity means that w ′ has no superfluous symbols
(a regular condition that can be enforced by LCS’s)

16/20

WEAKLY COMPUTING
H−→ WITH LCS’S

(w,n) H−→ (w,n+1) %Hα+1(n) =Hα(n+1)

(ua0 w,n)
H−→ (u n+1

a0w,n) %Hγ+ω
k+1

(n) =Hγ+ω
k·(n+1)(n)

(uar+1 w,n)
H−→ (uan+1

r arw,n) %Hγ+ω
β+ωk+1

(n) =Hγ+ω
β+ωk·(n+1)

(n)

(· · · similar rules for H
-1
−−→ ·· ·)

Prop. [Robustness]
w6∗ w ′ and n6 n ′ and w ′ pure imply Hα(w)(n)6Hα(w

′)(n ′)

where purity means that w ′ has no superfluous symbols
(a regular condition that can be enforced by LCS’s)

16/20

COMPUTING
H−→ WITH LCS’S: FIRST RULE

We now store u and n as two strings (with endmarker #) on two
channels p and d.

p : u#

d : n#

∗−→ u#

n+1#

17/20

COMPUTING
H−→ WITH LCS’S: SECOND RULE

p : ai1 . . .aipa0 u#

d : n#

∗−→ ai1 . . .aip
n+1

a0u#

n#

18/20

WRAPPING IT UP (SKETCHILY)

As we did for lossy counter machines, this time with channels

Bottom line: a LCS with |Σ|=m+3
— can build a workspace of size

Hω
ωm+1

(m) =Hω
ωω

(m) = Fωω(m),
— use this as a computational resource,
— and fold back the workspace by computing the inverse of H

Checking that the above computation is performed reliably can be
stated as (reduces to) a reachability (or termination) question

Cor. LCS verification is hard for Fωω , hence Fωω -complete

Confirms: the main parameter for complexity is the size of the
message alphabet

19/20

WRAPPING IT UP (SKETCHILY)

As we did for lossy counter machines, this time with channels

Bottom line: a LCS with |Σ|=m+3
— can build a workspace of size

Hω
ωm+1

(m) =Hω
ωω

(m) = Fωω(m),
— use this as a computational resource,
— and fold back the workspace by computing the inverse of H

Checking that the above computation is performed reliably can be
stated as (reduces to) a reachability (or termination) question

Cor. LCS verification is hard for Fωω , hence Fωω -complete

Confirms: the main parameter for complexity is the size of the
message alphabet

19/20

WRAPPING IT UP (SKETCHILY)

As we did for lossy counter machines, this time with channels

Bottom line: a LCS with |Σ|=m+3
— can build a workspace of size

Hω
ωm+1

(m) =Hω
ωω

(m) = Fωω(m),
— use this as a computational resource,
— and fold back the workspace by computing the inverse of H

Checking that the above computation is performed reliably can be
stated as (reduces to) a reachability (or termination) question

Cor. LCS verification is hard for Fωω , hence Fωω -complete

Confirms: the main parameter for complexity is the size of the
message alphabet

19/20

CONCLUSION FOR LAST TWO LECTURES

Length of bad sequences is key to bounding the complexity of
WQO-based algorithms

Here computer scientists need results/theories from other fields:
proof-theory and combinatorics

Proving matching lower bounds is not necessarily tricky (and is easy
for LCM’s or LCS’s) but we still lack:
— a collection of hard problems: Post Embedding Problem, . . .
— a tutorial/textbook on subrecursive hierarchies (like fast-growing
and Hardy hierarchies)
— a toolkit of coding tricks for computing with ordinals
— a large enough user community

The approach is workable: we could characterize the complexity of
Timed-Arc Petri nets and Data Petri Nets at level Fωωω

20/20

CONCLUSION FOR LAST TWO LECTURES

Length of bad sequences is key to bounding the complexity of
WQO-based algorithms

Here computer scientists need results/theories from other fields:
proof-theory and combinatorics

Proving matching lower bounds is not necessarily tricky (and is easy
for LCM’s or LCS’s) but we still lack:
— a collection of hard problems: Post Embedding Problem, . . .
— a tutorial/textbook on subrecursive hierarchies (like fast-growing
and Hardy hierarchies)
— a toolkit of coding tricks for computing with ordinals
— a large enough user community

The approach is workable: we could characterize the complexity of
Timed-Arc Petri nets and Data Petri Nets at level Fωωω

20/20

CONCLUSION FOR LAST TWO LECTURES

Length of bad sequences is key to bounding the complexity of
WQO-based algorithms

Here computer scientists need results/theories from other fields:
proof-theory and combinatorics

Proving matching lower bounds is not necessarily tricky (and is easy
for LCM’s or LCS’s) but we still lack:
— a collection of hard problems: Post Embedding Problem, . . .
— a tutorial/textbook on subrecursive hierarchies (like fast-growing
and Hardy hierarchies)
— a toolkit of coding tricks for computing with ordinals
— a large enough user community

The approach is workable: we could characterize the complexity of
Timed-Arc Petri nets and Data Petri Nets at level Fωωω

20/20

CONCLUSION FOR LAST TWO LECTURES

Length of bad sequences is key to bounding the complexity of
WQO-based algorithms

Here computer scientists need results/theories from other fields:
proof-theory and combinatorics

Proving matching lower bounds is not necessarily tricky (and is easy
for LCM’s or LCS’s) but we still lack:
— a collection of hard problems: Post Embedding Problem, . . .
— a tutorial/textbook on subrecursive hierarchies (like fast-growing
and Hardy hierarchies)
— a toolkit of coding tricks for computing with ordinals
— a large enough user community

The approach is workable: we could characterize the complexity of
Timed-Arc Petri nets and Data Petri Nets at level Fωωω

20/20

