Algorithmic Aspects
of WQO (Well-Quasi-Ordering) Theory

Part Ill: Fast-growing complexity

Philippe Schnoebelen
LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan
Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.1lsv.ens-cachan.fr/~phs

www.lsv.ens-cachan.fr/~phs

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q a» @ mil @

S

» . »
mee /l for “spawn

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q a» @ mil @

S

» . »
mee /l for “spawn

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

Steps: {¢2,q,1} > {a%,¢,q,7} > {a*,q,7} = {c*,r, L} 4, {c,q%, L1}

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q a» @ mil @

S

» . »
mee /l for “spawn

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

Steps: {¢2,q,1} > {a%,¢,q,7} > {a*,q,7} = {c*,r, L} 4, {c,q%, L1}

We’ll soon see: The above system does not have infinite runs

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q} C {c?,7,q}

Fact. Configurations (N{"¢4-L} C)is a wqo.

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q} C (c?,r,q}

Fact. Configurations (N{"¢4-L} C)is a wqo.

Proof: this is exactly (N°,<y)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s; C t; and consider all cases for a step
S1 — Sp.

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q} C {c?,7,q}

Fact. Configurations (N{"¢4-L} C)is a wqo.

Proof: this is exactly (N°,<y)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s; C t; and consider all cases for a step
s1 — s». In each case we have to find some t; — t, with s> C to.

Coro. Broadcast protocols are WSTS

BROADCAST PROTOCOLS AND TERMINATION

@ au Q a» @ mil @

s
? « »
me /l for “spawn

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

BROADCAST PROTOCOLS AND TERMINATION

@ d! Q d?»? @ ml! @

N

? « »
me /l for “spawn

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume so — s; — --- — sy and pick two positions i < j.
Write s; ={a™«,c™c,q™q,r™r, L*}, and s; ={a™a,c"¢, q™a, ", L*)
—if a d has been broadcast during s; - sj, thennf <n,,

—if no d but a m have been broadcast, then ng <ng,

— otherwise s; & sj uses only spawning steps, then n <n..

BROADCAST PROTOCOLS AND TERMINATION

@ d! Q d?»? @ ml! @

N
? « »
me /l for “spawn

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume so — s; — --- — sy and pick two positions i < j.
Write s; ={a™«,c™c,q™q,r™r, L*}, and s; ={a™a,c"¢, q™a, ", L*)
—if a d has been broadcast during s; - sj, thennf <n,,

—if no d but a m have been broadcast, then ng <ng,

— otherwise s; & sj uses only spawning steps, then n <n..

In all cases, s; ¢ sj. QED

BROADCAST PROTOCOLS TAKE THEIR TIME

@ dn /C\ d»? @ mll @
m?? /ls

“Doubling” run: {c™,q, L*} =5 {a™,q, L*} ™ {c2", L+}

BROADCAST PROTOCOLS TAKE THEIR TIME

“Doubling” run: {c™,q, L*} =5 {a™,q, L*} ™ {c2", L+}

I 0 20 1 2t 2
Building up: {c? ,q", 1} — 5 {c? ,q™ L) 5 (¢, g 1) —
n—1

n—1 s2 m d 0
e e g 5 e S {977}

BROADCAST PROTOCOLS TAKE THEIR TIME

@ au Q a» @ mil @

N

m??/l

“Doubling” run: {c™, q, L*} = {a®™,q, L*} ™ (2", L+)

- 0 20 1 2! 2
Building up: {c?',q"™, 1} =5 {c? ,q" 1} =5 {2, q" 2 1) —

1 2“71 d 0
e (e g S (e S (e, 927

Then: {c,q,m™} 5 {c,q2", 7" 1} 5 {c,qlower(n)y
2

def n times

where tower(n) % 22

BROADCAST PROTOCOLS TAKE THEIR TIME

@ dn Q d»? @ mll @

S

m?? /l

“Doubling” run: {c™,q, L*} *5 {a®™,q, L5} ™ {¢27, 1+)

I 0 20 1 _ 2t 2 _
Building up: {c? ,q", 7} — 5 {c? ,q™ L) 5 (¢, g 1) —
n—1

n— 2 n
o {02 g S (2) 5 (e g
Then: {c,q,7"} 5 {c,q2",r 1} 5 {c, glower(n)}
= Runs of terminating systems may have nonelementary lengths

=- Running time of termination verification algorithm is not
elementary (for broadcast protocols)

2“}

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F, F>, F3, ...

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F, F>, F3, ...

Continues with transfinite indexes: Fy4, ..., Fw, Fwr1s Fwor2s -+ -5 Fw.2,
Fw.2+1, ey Fw.3, ey Fw-41 PR sz, Fw2+1’ "'1Fw2+w’ PR

F(,U2+(,U'2""’FLU2'2’""FLU3’""Fww’""F(,wa""’Fwwww""’

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F, F>, F3, ...

Continues with transfinite indexes: Fy4, ..., Fw, Fwr1s Fwor2s -+ -5 Fw.2,
Fw.2+1,...,Fw.3,...,Fw.4,...,Fw2,Fw2+1,...,Fw2+w,...,
F(,U2+(,U'2""’FLU2'2’""FLU3’""Fww’""F(,wa""’Fwwww""’

o We work with ordinals below ¢g written in Cantor normal form:
ax=w* +...+w* where x> > > xXm

NB: « is zero iff m = 0; it is a successor a = +1=p+w?iff m>0
and o, = 0; otherwise it is a limit «c = A

Alternative notation:
>0 > ... > Om

— X1 Xm H
x=w1l-c1+--+wm.c now with
1 m C1,-..,cm €N

FAST-GROWING FUNCTIONS

(Fa) xeorg: @n ordinal-indexed family of functions Fy : IN — IN

x+1

def defr——" T def
Fo(x) = x+1 Foyr1(x) = Fa(Fal...Fa(x)...)) Fw(x) = Fxy1(x)

FAST-GROWING FUNCTIONS

(Fa) xeorg: @n ordinal-indexed family of functions Fy : IN — IN

x+1

def defr——" T def
Fo(x) = x+1 Foyr1(x) = Fa(Fal...Fa(x)...)) Fw(x) = Fxy1(x)

gives F(x) =2x+1~2x, Fo(x)=2%"1(x+1)—1~ 2%,
F3(x) ~ tower(x) and F, (x) ~ ACKERMANN(x), the first F that is not
primitive recursive.

FAST-GROWING FUNCTIONS

(Fa) xeorg: @n ordinal-indexed family of functions Fy : IN — IN
x+1

def defr——" T def
Fo(x) = x+1 Foyr1(x) = Fa(Fal...Fa(x)...)) Fw(x) = Fxy1(x)

gives F(x) =2x+1~2x, Fo(x)=2%"1(x+1)—1~ 2%,
F3(x) ~ tower(x) and F, (x) ~ ACKERMANN(x), the first F that is not
primitive recursive.

Generally Fy (x) def Fa, (x) with Ag <A1 <A, <--- <A afundamental
sequence for A, given by

V+@P T Ey b (x+1) y+aM) Ey+at

8
E.9. F,2(7)=Fw.8(7)=Fw.748(7) =Fw.747(Fw.747(- - - (Fw.747(7)) ---))

THE FAST-GROWING HIERARCHY
By Schmitz (2013), after Wainer & Ldb (1970), Grzegorczyk (1953)

Fo & |) FDTIME(Fu(p(n))), ie all functions in time Fu(negligible(n))

PETF<u

THE FAST-GROWING HIERARCHY
By Schmitz (2013), after Wainer & Ldb (1970), Grzegorczyk (1953)

Fo & |) FDTIME(Fu(p(n))), ie all functions in time Fu(negligible(n))

PETF<u

g U % 7, % U S, FS def U FDTIME(FS, (p(n)))
B<oa celN P€~7<cx

THE FAST-GROWING HIERARCHY
By Schmitz (2013), after Wainer & Ldb (1970), Grzegorczyk (1953)

Fo & |) FDTIME(Fu(p(n))), ie all functions in time Fu(negligible(n))

PETF<u

g U % 7, % U S, FS def U FDTIME(FS, (p(n)))
B<a celN PE%O&

1. These classes admit many other characterizations and capture
some well-known cases:

F, =E =DTIME(29(M)), 5 =FELEM, % , = PR, % oo = MPR
2. Astrict hierarchy: Fp ¢ IF[C;L3l CIF, forall p < owandc> 0.

3. There exist IFy-complete problems for each « > 2

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:
— 999,998, ...,1,0

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:

— 999,998, ...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:
— 999,998, ...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

Same over (A*, <gubword) for A ={a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:

— 999,998, ...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

Same over (A*, <gubword) for A ={a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
cccebeeebecececcecbecceccecebececeeceecbeceeceebeccecaccecc, ...

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:

— 999,998, ...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

Same over (A*, <gubword) for A ={a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
cccebeeebecececcecbecceccecebececeeceecbeceeceebeccecaccecc, ...

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

CONTROLLED BAD SEQUENCES

. def ;
Def. A sequence xg,x1,... is controlled Z x| < g'(ng) for all
i=0,1,...

Here the control is the pair (ng,g) of np € N and g:IN — IN.

CONTROLLED BAD SEQUENCES

. def ;
Def. A sequence xg,x1,... is controlled Z x| < g'(ng) for all
i=0,1,...

Here the control is the pair (ng,g) of np € N and g:IN — IN.

Fact. For a fixed wgo (A, <,|.]) and control (ng, g), there is max length
on controlled bad sequences (Kénig’s Lemma again)

Write Ly A (no) for this maximum length.

CONTROLLED BAD SEQUENCES

. def ;
Def. A sequence xg,x1,... is controlled Z x| < g'(ng) for all
i=0,1,...

Here the control is the pair (ng,g) of np € N and g:IN — IN.

Fact. For a fixed wgo (A, <,|.]) and control (ng, g), there is max length
on controlled bad sequences (Kénig’s Lemma again)

Write Ly A (no) for this maximum length.
Satisfies well-founded recurrence:

Lg,A (n) = max 1 +I—g,A\TX(9(n))

Ix|<n

CONTROLLED BAD SEQUENCES

. def ;
Def. A sequence xg,x1,... is controlled E xil < g'(ng) for all
i=0,1,...

Fact. For a fixed wgo (A, <,|.]) and control (ng, g), there is max length
on controlled bad sequences (Kénig’s Lemma again)

Write Ly A (no) for this maximum length.
Satisfies well-founded recurrence:

Lg,A (n) = max 1 JFI—g,A\TX(g(n))

Ix|sn

Length Function Theorems for (IN¥,<):
elfgisin & fory>0then L,k isin F ;i

elfgisinge Athenly o, N« isin IFLQI

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with [sinit| @and Succ: IN — IN.

= Time/space bound in [Fy for broadcast protocols with k states, and
in IF,, when k is not fixed.

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with [sinit| @and Succ: IN — IN.

= Time/space bound in [Fy for broadcast protocols with k states, and
in IF,, when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |s¢argedl and Succ.

= .- same upper bounds - - -

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with [sinit| @and Succ: IN — IN.

= Time/space bound in [Fy for broadcast protocols with k states, and
in IF,, when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |s¢argedl and Succ.

= .- same upper bounds - - -

This is a general situation:

— WSTS model (or WQO-based algorithm) provides g

— Length function theorem provides bounds for L5 4

— Translates as complexity upper bounds for WQO-based algorithm

MORE LENGTH FUNCTION THEOREMS

For finite words with <g;pwords LA+ I8 in IF ja;-1, and in [F,« when
alphabet is not fixed. Applies e.g. to lossy channel systems.

MORE LENGTH FUNCTION THEOREMS
For finite words with <g;pwords LA+ I8 in IF ja;-1, and in [F,« when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over IN* with embedding, L (k)= isin F ok and in
IF ,oo when k is not fixed. Applies e.g. to timed-arc Petri nets.

MORE LENGTH FUNCTION THEOREMS
For finite words with <g;pwords LA+ I8 in IF ja;-1, and in [F,« when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over IN* with embedding, L (k)= isin F ok and in
IF ,oo when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, La+ is in IF¢, Applies e.g. to
priority channel systems and higher-order LCS.

MORE LENGTH FUNCTION THEOREMS
For finite words with <g;pwords LA+ I8 in IF ja;-1, and in [F,« when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over IN* with embedding, L (k)= isin F ok and in
IF ,oo when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, La+ is in IF¢, Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

Next course: are these tight upper bounds? how does one prove
fast-growing lower bounds?

