Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory Part III: Fast-growing complexity

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/~phs

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.'99) are dynamic & distributed collections of finite-state processes communicating via brodcasts and rendez-vous.

A configuration collects the local states of all processes. E.g., $s = \{c, r, c\}$, also denoted $\{c^2, r\}$.

Steps: $\{c^2, q, r\} \xrightarrow{s} \{a^2, c, q, r\} \xrightarrow{s} \{a^4, q, r\} \xrightarrow{m} \{c^4, r, \bot\} \xrightarrow{d} \{c, q^4, \bot\}$

We'll soon see: The above system does not have infinite runs

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.'99) are dynamic & distributed collections of finite-state processes communicating via brodcasts and rendez-vous.

A configuration collects the local states of all processes. E.g., $s = \{c, r, c\}$, also denoted $\{c^2, r\}$.

Steps: {
$$c^2$$
, q , r } \xrightarrow{s} { a^2 , c , q , r } \xrightarrow{s} { a^4 , q , r } \xrightarrow{m} { c^4 , r , \bot } \xrightarrow{d} { c , q^4 , \bot }

We'll soon see: The above system does not have infinite runs

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.'99) are dynamic & distributed collections of finite-state processes communicating via brodcasts and rendez-vous.

A configuration collects the local states of all processes. E.g., $s = \{c, r, c\}$, also denoted $\{c^2, r\}$.

Steps:
$$\{c^2, q, r\} \xrightarrow{s} \{a^2, c, q, r\} \xrightarrow{s} \{a^4, q, r\} \xrightarrow{m} \{c^4, r, \bot\} \xrightarrow{d} \{c, q^4, \bot\}$$

We'll soon see: The above system does not have infinite runs

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., $\{c,q\} \subseteq \{c^2, r, q\}$

Fact. Configurations $(\mathbb{N}^{\{r,c,a,q,\bot\}},\subseteq)$ is a wqo.

Proof: this is exactly $(\mathbb{N}^5, \leq_{\times})$

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume $s_1 \subseteq t_1$ and consider all cases for a step $s_1 \rightarrow s_2$. In each case we have to find some $t_1 \rightarrow t_2$ with $s_2 \subseteq t_2$.

Coro. Broadcast protocols are WSTS

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., $\{c,q\} \subseteq \{c^2, r, q\}$

Fact. Configurations $(\mathbb{N}^{\{r,c,\alpha,q,\perp\}},\subseteq)$ is a wqo. Proof: this is exactly $(\mathbb{N}^5,\leqslant_{\times})$

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume $s_1 \subseteq t_1$ and consider all cases for a step $s_1 \rightarrow s_2$. In each case we have to find some $t_1 \rightarrow t_2$ with $s_2 \subseteq t_2$.

Coro. Broadcast protocols are WSTS

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., $\{c,q\} \subseteq \{c^2, r, q\}$

Fact. Configurations $(\mathbb{N}^{\{r,c,\alpha,q,\perp\}},\subseteq)$ is a wqo. Proof: this is exactly $(\mathbb{N}^5,\leqslant_{\times})$

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume $s_1 \subseteq t_1$ and consider all cases for a step $s_1 \rightarrow s_2$. In each case we have to find some $t_1 \rightarrow t_2$ with $s_2 \subseteq t_2$.

Coro. Broadcast protocols are WSTS

BROADCAST PROTOCOLS AND TERMINATION

This broadcast protocol terminates: all its runs are bad sequences, hence are finite

Proof. Assume $s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n$ and pick two positions i < j. Write $s_i = \{a^{n_a}, c^{n_c}, q^{n_q}, r^{n_r}, \bot^*\}$, and $s_j = \{a^{n'_a}, c^{n'_c}, q^{n'_q}, r^{n'_r}, \bot^*\}$.

- if a d has been broadcast during ${
 m s_i} \xrightarrow{+} {
 m s_j}$, then ${
 m n}_r' < {
 m n_r}$,
- if no d but a \mathfrak{m} have been broadcast, then $\mathfrak{n}_q' < \mathfrak{n}_q$
- otherwise $s_i \xrightarrow{+} s_j$ uses only spawning steps, then $n_c' < n_c$.

```
In all cases, s_i \not\subseteq s_j. QED
```

BROADCAST PROTOCOLS AND TERMINATION

This broadcast protocol terminates: all its runs are bad sequences, hence are finite

Proof. Assume $s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n$ and pick two positions i < j. Write $s_i = \{a^{n_a}, c^{n_c}, q^{n_q}, r^{n_r}, \bot^*\}$, and $s_j = \{a^{n'_a}, c^{n'_c}, q^{n'_q}, r^{n'_r}, \bot^*\}$.

- if a d has been broadcast during $s_i \xrightarrow{+} s_j$, then $n'_r < n_r$,
- if no d but a m have been broadcast, then $n'_q < n_q$,
- otherwise $s_i \xrightarrow{+} s_j$ uses only spawning steps, then $n_c' < n_c.$

In all cases, s_i ⊈ s_j. QED

BROADCAST PROTOCOLS AND TERMINATION

This broadcast protocol terminates: all its runs are bad sequences, hence are finite

Proof. Assume $s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n$ and pick two positions i < j. Write $s_i = \{a^{n_a}, c^{n_c}, q^{n_q}, r^{n_r}, \bot^*\}$, and $s_j = \{a^{n'_a}, c^{n'_c}, q^{n'_q}, r^{n'_r}, \bot^*\}$. – if a d has been broadcast during $s_i \xrightarrow{+} s_j$, then $n'_r < n_r$, – if no d but a m have been broadcast, then $n'_q < n_q$, – otherwise $s_i \xrightarrow{+} s_j$ uses only spawning steps, then $n'_c < n_c$. In all cases, $s_i \not\subseteq s_j$. QED

"Doubling" run: $\{c^n, q, \bot^*\} \xrightarrow{s^n} \{a^{2n}, q, \bot^*\} \xrightarrow{m} \{c^{2n}, \bot^+\}$

Building up: { $c^{2^{0}}, q^{n}, r$ } $\xrightarrow{s^{2^{0}}m}$ { $c^{2^{1}}, q^{n-1}, r$ } $\xrightarrow{s^{2^{1}}m}$ { $c^{2^{2}}, q^{n-2}, r$ } $\rightarrow \cdots \rightarrow$ { $c^{2^{n-1}}, q, r$ } $\xrightarrow{s^{2^{n-1}}m}$ { $c^{2^{n}}, r$ } \xrightarrow{d} { $c^{2^{0}}, q^{2^{n}}$ } **Then:** { c, q, r^{n} } $\xrightarrow{*}$ { $c, q^{2^{n}}, r^{n-1}$ } $\xrightarrow{*}$ { $c, q^{tower(n)}$ }

"Doubling" run: $\{c^{n},q,\perp^{*}\} \xrightarrow{s^{n}} \{a^{2n},q,\perp^{*}\} \xrightarrow{m} \{c^{2n},\perp^{+}\}$ Building up: $\{c^{2^{0}},q^{n},r\} \xrightarrow{s^{2^{0}}m} \{c^{2^{1}},q^{n-1},r\} \xrightarrow{s^{2^{1}}m} \{c^{2^{2}},q^{n-2},r\} \rightarrow \cdots \rightarrow \{c^{2^{n-1}},q,r\} \xrightarrow{s^{2^{n-1}}m} \{c^{2^{n}},r\} \xrightarrow{d} \{c^{2^{0}},q^{2^{n}}\}$ Then: $\{c,q,r^{n}\} \xrightarrow{*} \{c,q^{2^{n}},r^{n-1}\} \xrightarrow{*} \{c,q^{\text{lower}(n)}\}$

"Doubling" run: { c^n, q, \bot^* } $\xrightarrow{s^n}$ { a^{2n}, q, \bot^* } \xrightarrow{m} { c^{2n}, \bot^+ }

Building up: {
$$c^{2^{0}}$$
, q^{n} , r } $\xrightarrow{s^{2^{0}}m}$ { $c^{2^{1}}$, q^{n-1} , r } $\xrightarrow{s^{2^{1}}m}$ { $c^{2^{2}}$, q^{n-2} , r } \rightarrow
 $\dots \rightarrow \{c^{2^{n-1}}$, q, r } $\xrightarrow{s^{2^{n-1}}m}$ { $c^{2^{n}}$, r } \xrightarrow{d} { $c^{2^{0}}$, $q^{2^{n}}$ }
Then: { c, q, r^{n} } $\xrightarrow{*}$ { $c, q^{2^{n}}$, r^{n-1} } $\xrightarrow{*}$ { $c, q^{tower(n)}$ }
where tower(n) $\stackrel{\text{def}}{=} 2^{2^{2^{2}}}$ $\stackrel{?}{\rightarrow}$ n times

- "Doubling" run: { c^n, q, \bot^* } $\xrightarrow{s^n}$ { a^{2n}, q, \bot^* } \xrightarrow{m} { c^{2n}, \bot^+ }
- **Building up:** { $c^{2^{0}}, q^{n}, r$ } $\xrightarrow{s^{2^{0}}m}$ { $c^{2^{1}}, q^{n-1}, r$ } $\xrightarrow{s^{2^{1}}m}$ { $c^{2^{2}}, q^{n-2}, r$ } $\rightarrow \cdots \rightarrow \{c^{2^{n-1}}, q, r\} \xrightarrow{s^{2^{n-1}}m} \{c^{2^{n}}, r\} \xrightarrow{d} \{c^{2^{0}}, q^{2^{n}}\}$ **Then:** { c, q, r^{n} } \xrightarrow{s} { $c, q^{2^{n}}, r^{n-1}$ } \xrightarrow{s} { $c, q^{tower(n)}$ }

 \Rightarrow Runs of terminating systems may have nonelementary lengths \Rightarrow Running time of termination verification algorithm is not elementary (for broadcast protocols)

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: $F_1,\,F_2,\,F_3,\,\ldots$

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega,2}, F_{\omega,2+1}, \ldots, F_{\omega,3}, \ldots, F_{\omega,4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^2+\omega,2}, \ldots, F_{\omega^{2},2}, \ldots, F_{\omega^3}, \ldots, F_{\omega^{\omega}}, \ldots, F_{\omega^{\omega}},$

• We work with ordinals below ε_0 written in Cantor normal form:

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 where $\alpha > \alpha_1 \ge \dots \ge \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \begin{array}{l} \alpha > \alpha_1 > \dots > \alpha_m \\ c_1, \dots, c_m \in \mathbb{N} \end{array}$$

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: $F_1,\,F_2,\,F_3,\,\ldots$

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega\cdot 2}, F_{\omega\cdot 2+1}, \ldots, F_{\omega\cdot 3}, \ldots, F_{\omega\cdot 4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^{\omega+1}}, \ldots, F_{\omega^{\omega+1}},$

• We work with ordinals below ε_0 written in Cantor normal form:

 $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$ where $\alpha > \alpha_1 \ge \dots \ge \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \begin{array}{l} \alpha > \alpha_1 > \dots > \alpha_m \\ c_1, \dots, c_m \in \mathbb{N} \end{array}$$

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new complexity classes: F_1, F_2, F_3, \ldots

Continues with transfinite indexes: $F_4, \ldots, F_{\omega}, F_{\omega+1}, F_{\omega+2}, \ldots, F_{\omega\cdot 2}, F_{\omega\cdot 2+1}, \ldots, F_{\omega\cdot 3}, \ldots, F_{\omega\cdot 4}, \ldots, F_{\omega^2}, F_{\omega^2+1}, \ldots, F_{\omega^2+\omega}, \ldots, F_{\omega^{\omega}}, \ldots, F_{\omega^{\omega}$

• We work with ordinals below ε_0 written in Cantor normal form:

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_m}$$
 where $\alpha > \alpha_1 \ge \dots \ge \alpha_m$

NB: α is zero iff m = 0; it is a successor $\alpha = \beta + 1 = \beta + \omega^0$ iff m > 0and $\alpha_m = 0$; otherwise it is a limit $\alpha = \lambda$

Alternative notation:

$$\alpha = \omega^{\alpha_1} \cdot c_1 + \dots + \omega^{\alpha_m} \cdot c_m \quad \text{now with} \begin{array}{l} \alpha > \alpha_1 > \dots > \alpha_m \\ c_1, \dots, c_m \in \mathbb{N} \end{array}$$

FAST-GROWING FUNCTIONS

 $(F_{\alpha})_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_{\alpha}:\mathbb{N}\to\mathbb{N}$

$$F_0(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x) \dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma+\omega^{\beta+1})_x \stackrel{\text{def}}{=} \gamma+\omega^{\beta}\cdot(x+1) \qquad \quad (\gamma+\omega^{\lambda})_x \stackrel{\text{def}}{=} \gamma+\omega^{\lambda_x}$$

E.g. $F_{\omega^2}(7) = F_{\omega \cdot 8}(7) = F_{\omega \cdot 7+8}(7) = \overbrace{F_{\omega \cdot 7+7}(F_{\omega \cdot 7+7}(\cdots (F_{\omega \cdot 7+7}(7))\cdots))}^{\bullet}$

FAST-GROWING FUNCTIONS

 $(F_{\alpha})_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_{\alpha}:\mathbb{N}\to\mathbb{N}$

$$F_0(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x) \dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma + \omega^{\beta + 1})_{\chi} \stackrel{\text{def}}{=} \gamma + \omega^{\beta} \cdot (\chi + 1) \qquad (\gamma + \omega^{\lambda})_{\chi} \stackrel{\text{def}}{=} \gamma + \omega^{\lambda_{\chi}}$$

E.g. $F_{\omega^2}(7) = F_{\omega \cdot 8}(7) = F_{\omega \cdot 7+8}(7) = F_{\omega \cdot 7+7}(F_{\omega \cdot 7+7}(\cdots (F_{\omega \cdot 7+7}(7))\cdots))$

FAST-GROWING FUNCTIONS

 $(F_{\alpha})_{\alpha\in\textit{Ord}}$: an ordinal-indexed family of functions $F_{\alpha}:\mathbb{N}\to\mathbb{N}$

$$F_0(x) \stackrel{\text{def}}{=} x + 1 \qquad F_{\alpha+1}(x) \stackrel{\text{def}}{=} \overbrace{F_{\alpha}(F_{\alpha}(\dots F_{\alpha}(x) \dots))}^{x+1} \qquad F_{\omega}(x) \stackrel{\text{def}}{=} F_{x+1}(x)$$

gives $F_1(x) = 2x + 1 \approx 2x$, $F_2(x) = 2^{x+1}(x+1) - 1 \approx 2^x$, $F_3(x) \approx \text{tower}(x)$ and $F_{\omega}(x) \approx \text{ACKERMANN}(x)$, the first F_{α} that is not primitive recursive.

Generally $F_{\lambda}(x) \stackrel{\text{def}}{=} F_{\lambda_x}(x)$ with $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda$ a fundamental sequence for λ , given by

$$(\gamma + \omega^{\beta+1})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\beta} \cdot (x+1) \qquad (\gamma + \omega^{\lambda})_{x} \stackrel{\text{def}}{=} \gamma + \omega^{\lambda_{x}}$$

E.g. $F_{\omega^{2}}(7) = F_{\omega \cdot 8}(7) = F_{\omega \cdot 7+8}(7) = \overbrace{F_{\omega \cdot 7+7}(F_{\omega \cdot 7+7}(\cdots (F_{\omega \cdot 7+7}(7))\cdots)}^{8}$

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

 $\mathscr{T}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathscr{T}_{\beta} \qquad \mathscr{T}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbb{F}_{\alpha}^{c} \qquad \mathbb{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{T}_{<\alpha}} \text{FDTIME}(F_{\alpha}^{c}(p(n)))$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{\mathsf{O}(n)}), \ \mathscr{T}_{<3} = \mathsf{FELEM}, \ \mathscr{T}_{<\omega} = \mathsf{PR}, \ \mathscr{T}_{<\omega^{\omega}} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbf{F}_{\beta} \subsetneq \mathbf{F}_{\beta}^{c+1} \subsetneq \mathbf{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

$$\mathscr{F}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathscr{F}_{\beta} \qquad \mathscr{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbb{F}_{\alpha}^{c} \qquad \mathbb{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}^{c}(p(n)))$$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{\mathsf{O}(n)}), \ \mathscr{T}_{<3} = \mathsf{FELEM}, \ \mathscr{T}_{<\omega} = \mathsf{PR}, \ \mathscr{T}_{<\omega^{\omega}} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbf{F}_{\beta} \subsetneq \mathbf{F}_{\beta}^{c+1} \subsetneq \mathbf{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

 $\mathbb{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}(p(n))), \text{ ie all functions in time } \mathsf{F}_{\alpha}(\textit{negligible}(n))$

$$\mathscr{F}_{<\alpha} \stackrel{\text{def}}{=} \bigcup_{\beta < \alpha} \mathscr{F}_{\beta} \qquad \mathscr{F}_{\alpha} \stackrel{\text{def}}{=} \bigcup_{c \in \mathbb{N}} \mathbb{F}_{\alpha}^{c} \qquad \mathbb{F}_{\alpha}^{c} \stackrel{\text{def}}{=} \bigcup_{p \in \mathscr{F}_{<\alpha}} \mathsf{FDTIME}(\mathsf{F}_{\alpha}^{c}(p(n)))$$

1. These classes admit many other characterizations and capture some well-known cases:

 $\mathbb{F}_2 = \mathsf{E} = \mathsf{DTIME}(2^{O(n)}), \ \mathscr{F}_{<3} = \mathsf{FELEM}, \ \mathscr{F}_{<\omega} = \mathsf{PR}, \ \mathscr{F}_{<\omega^\omega} = \mathsf{MPR}$

2. A strict hierarchy: $\mathbb{F}_{\beta} \subsetneq \mathbb{F}_{\beta}^{c+1} \subsetneq \mathbb{F}_{\alpha}$ for all $\beta < \alpha$ and c > 0.

3. There exist \mathbb{F}_{α} -complete problems for each $\alpha \ge 2$

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leq_{\times})$, one can find arbitrarily long bad sequences:

- 999, 998, ..., 1, 0
- $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leqslant_{\times})$, one can find arbitrarily long bad sequences:

- 999, 998, ..., 1, 0
- $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leq_{\times})$, one can find arbitrarily long bad sequences:

- $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leq_{\times})$, one can find arbitrarily long bad sequences:

— 999, 998, ..., 1, 0

 $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

Same over $(A^*, \leq_{subword})$ for $A = \{a, b, c\}$: — aa, bbabb, bbbab, bbbbbbba,

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leq_{\times})$, one can find arbitrarily long bad sequences:

 $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

When analyzing the termination algorithm, the main question is "how long can a bad sequence be?"

WQO-theory only says that a bad sequence is finite

Over $(\mathbb{N}^k, \leq_{\times})$, one can find arbitrarily long bad sequences:

 $-(2,2), (2,1), (2,0), (1,999), \dots, (1,0), (0,999999999), \dots$

Def. A sequence x_0, x_1, \ldots is controlled $\stackrel{\text{def}}{\Leftrightarrow} |x_i| \leqslant g^i(n_0)$ for all $i=0,1,\ldots$

Here the control is the pair (n_0, g) of $n_0 \in \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$.

Fact. For a fixed wqo $(A, \leq, |.|)$ and control (n_0, g) , there is max length on controlled bad sequences (Kőnig's Lemma again) Write $L_{g,A}(n_0)$ for this maximum length.

Satisfies well-founded recurrence:

$$L_{g,A}(n) = \max_{|x| \leqslant n} 1 + L_{g,A \smallsetminus \uparrow x}(g(n))$$

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

• If g is in \mathscr{T}_{γ} for $\gamma > 0$ then L_{q,\mathbb{N}^k} is in $\mathscr{T}_{\gamma+k}$

• If g is in
$$g \in \mathscr{F}_1$$
 then $\mathrm{L}_{g, Q imes \mathbb{N}^k}$ is in $\mathbf{F}_k^{|Q|}$

Def. A sequence $x_0, x_1, ...$ is controlled $\stackrel{\text{def}}{\Leftrightarrow} |x_i| \leqslant g^i(n_0)$ for all i = 0, 1, ...

Here the control is the pair (n_0, g) of $n_0 \in \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$.

Fact. For a fixed wqo $(A, \leq, |.|)$ and control (n_0, g) , there is max length on controlled bad sequences (Kőnig's Lemma again) Write $L_{q,A}(n_0)$ for this maximum length.

Satisfies well-founded recurrence:

$$L_{g,A}(n) = \max_{|\mathbf{x}| \leq n} 1 + L_{g,A \setminus \uparrow \mathbf{x}}(g(n))$$

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

• If g is in \mathscr{T}_{γ} for $\gamma > 0$ then L_{q,\mathbb{N}^k} is in $\mathscr{T}_{\gamma+k}$

• If g is in
$$g \in \mathscr{F}_1$$
 then $\mathrm{L}_{g, Q imes \mathbb{N}^k}$ is in $\mathbf{F}_k^{|Q|}$

Def. A sequence $x_0, x_1, ...$ is controlled $\stackrel{\text{def}}{\Leftrightarrow} |x_i| \leqslant g^i(n_0)$ for all i = 0, 1, ...

Here the control is the pair (n_0, g) of $n_0 \in \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$.

Fact. For a fixed wqo $(A, \leq, |.|)$ and control (n_0, g) , there is max length on controlled bad sequences (Kőnig's Lemma again) Write $L_{q,A}(n_0)$ for this maximum length.

Satisfies well-founded recurrence:

$$L_{g,A}(n) = \max_{|x| \leqslant n} 1 + L_{g,A \land \uparrow x}(g(n))$$

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

• If g is in \mathscr{T}_{γ} for $\gamma > 0$ then L_{q,\mathbb{N}^k} is in $\mathscr{T}_{\gamma+k}$

$$ullet$$
 If g is in g $\in \mathscr{F}_1$ then $\mathtt{L}_{g, Q imes \mathbb{N}^k}$ is in $\mathbf{F}_k^{|Q|}$

Def. A sequence x_0, x_1, \ldots is controlled $\stackrel{\text{def}}{\Leftrightarrow} |x_i| \leqslant g^i(n_0)$ for all $i=0,1,\ldots$

Fact. For a fixed wqo $(A, \leq, |.|)$ and control (n_0, g) , there is max length on controlled bad sequences (Kőnig's Lemma again) Write $L_{q,A}(n_0)$ for this maximum length.

Satisfies well-founded recurrence:

$$L_{g,A}(n) = \max_{|x| \leqslant n} 1 + L_{g,A \land \uparrow x}(g(n))$$

Length Function Theorems for $(\mathbb{N}^k, \leq_{\times})$:

- If g is in \mathscr{F}_{γ} for $\gamma>0$ then L_{g,\mathbb{N}^k} is in $\mathscr{F}_{\gamma+k}$
- \bullet If g is in $g\in \mathscr{F}_1$ then $L_{g,Q\times \mathbb{N}^k}$ is in ${\rm I\!F}_k^{|Q|}$

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled with $|s_{init}|$ and $Succ : \mathbb{N} \to \mathbb{N}$.

 \Rightarrow Time/space bound in ${\rm I\!F}_k$ for broadcast protocols with k states, and in ${\rm I\!F}_\omega$ when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining Coverability algorithm are controlled by |*s*_{target}| and *Succ*.

 $\Rightarrow \cdots$ same upper bounds \cdots

This is a general situation:

- WSTS model (or WQO-based algorithm) provides g
- Length function theorem provides bounds for L_{A,g}
- Translates as complexity upper bounds for WQO-based algorithm

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled with $|s_{init}|$ and $Succ : \mathbb{N} \to \mathbb{N}$.

 \Rightarrow Time/space bound in ${\rm I\!F}_k$ for broadcast protocols with k states, and in ${\rm I\!F}_\omega$ when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining Coverability algorithm are controlled by $|s_{target}|$ and Succ.

 $\Rightarrow \cdots$ same upper bounds \cdots

This is a general situation:

- WSTS model (or WQO-based algorithm) provides g
- Length function theorem provides bounds for L_{A,g}
- Translates as complexity upper bounds for WQO-based algorithm

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled with $|s_{init}|$ and $Succ : \mathbb{N} \to \mathbb{N}$.

 \Rightarrow Time/space bound in ${\rm I\!F}_k$ for broadcast protocols with k states, and in ${\rm I\!F}_\omega$ when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining Coverability algorithm are controlled by $|s_{target}|$ and Succ.

 $\Rightarrow \cdots$ same upper bounds \cdots

This is a general situation:

- WSTS model (or WQO-based algorithm) provides g
- Length function theorem provides bounds for LA,q
- Translates as complexity upper bounds for WQO-based algorithm

For finite words with \leq_{subword} , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^\omega}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in $\mathbb{F}_{\varepsilon_0}$ Applies e.g. to priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for WQO-based algorithms

For finite words with \leq_{subword} , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^\omega}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in $\mathbb{F}_{\varepsilon_0}$ Applies e.g. to priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for WQO-based algorithms

For finite words with \leq_{subword} , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^\omega}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in \mathbb{F}_{ϵ_0} Applies e.g. to priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for WQO-based algorithms

For finite words with \leq_{subword} , L_{A^*} is in $\mathbb{F}_{\omega^{|A|-1}}$, and in $\mathbb{F}_{\omega^{\omega}}$ when alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over \mathbb{N}^k with embedding, $L_{(\mathbb{N}^k)^*}$ is in $\mathbb{F}_{\omega^{\omega^k}}$, and in $\mathbb{F}_{\omega^{\omega^\omega}}$ when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, L_{A^*} is in \mathbb{F}_{ϵ_0} Applies e.g. to priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for WQO-based algorithms