
Algorithmic Aspects
of WQO (Well-Quasi-Ordering) Theory

Part III: Fast-growing complexity

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan
Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/˜phs

www.lsv.ens-cachan.fr/~phs

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} s−→ {a2,c,q,r} s−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll soon see: The above system does not have infinite runs

2/12

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} s−→ {a2,c,q,r} s−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll soon see: The above system does not have infinite runs

2/12

EXAMPLE OF WSTS: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r} s−→ {a2,c,q,r} s−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll soon see: The above system does not have infinite runs

2/12

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

Fact. Configurations (N{r,c,a,q,⊥},⊆) is a wqo.

Proof: this is exactly (N5,6×)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s1 ⊆ t1 and consider all cases for a step
s1→ s2. In each case we have to find some t1→ t2 with s2 ⊆ t2.

Coro. Broadcast protocols are WSTS

3/12

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

Fact. Configurations (N{r,c,a,q,⊥},⊆) is a wqo.

Proof: this is exactly (N5,6×)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s1 ⊆ t1 and consider all cases for a step
s1→ s2. In each case we have to find some t1→ t2 with s2 ⊆ t2.

Coro. Broadcast protocols are WSTS

3/12

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

Fact. Configurations (N{r,c,a,q,⊥},⊆) is a wqo.

Proof: this is exactly (N5,6×)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s1 ⊆ t1 and consider all cases for a step
s1→ s2. In each case we have to find some t1→ t2 with s2 ⊆ t2.

Coro. Broadcast protocols are WSTS

3/12

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {ana ,cnc ,qnq ,rnr ,⊥∗}, and sj = {an

′
a ,cn

′
c ,qn

′
q ,rn

′
r ,⊥∗}.

– if a d has been broadcast during si
+−→ sj, then n ′r < nr,

– if no d but a m have been broadcast, then n ′q < nq,

– otherwise si
+−→ sj uses only spawning steps, then n ′c < nc.

In all cases, si * sj. QED

4/12

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {ana ,cnc ,qnq ,rnr ,⊥∗}, and sj = {an

′
a ,cn

′
c ,qn

′
q ,rn

′
r ,⊥∗}.

– if a d has been broadcast during si
+−→ sj, then n ′r < nr,

– if no d but a m have been broadcast, then n ′q < nq,

– otherwise si
+−→ sj uses only spawning steps, then n ′c < nc.

In all cases, si * sj. QED

4/12

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

s

for “spawn”m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {ana ,cnc ,qnq ,rnr ,⊥∗}, and sj = {an

′
a ,cn

′
c ,qn

′
q ,rn

′
r ,⊥∗}.

– if a d has been broadcast during si
+−→ sj, then n ′r < nr,

– if no d but a m have been broadcast, then n ′q < nq,

– otherwise si
+−→ sj uses only spawning steps, then n ′c < nc.

In all cases, si * sj. QED

4/12

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

s

m??

d?? m!!

“Doubling” run: {cn,q,⊥∗} s
n

−−→ {a2n,q,⊥∗} m−→ {c2n,⊥+}

Building up: {c2
0
,qn,r} s

20m−−−→ {c2
1
,qn−1,r} s

21m−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} s
2n−1

m−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

5/12

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

s

m??

d?? m!!

“Doubling” run: {cn,q,⊥∗} s
n

−−→ {a2n,q,⊥∗} m−→ {c2n,⊥+}

Building up: {c2
0
,qn,r} s

20m−−−→ {c2
1
,qn−1,r} s

21m−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} s
2n−1

m−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

5/12

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

s

m??

d?? m!!

“Doubling” run: {cn,q,⊥∗} s
n

−−→ {a2n,q,⊥∗} m−→ {c2n,⊥+}

Building up: {c2
0
,qn,r} s

20m−−−→ {c2
1
,qn−1,r} s

21m−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} s
2n−1

m−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

where tower(n) def
= 22

...
2
}
n times

5/12

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

s

m??

d?? m!!

“Doubling” run: {cn,q,⊥∗} s
n

−−→ {a2n,q,⊥∗} m−→ {c2n,⊥+}

Building up: {c2
0
,qn,r} s

20m−−−→ {c2
1
,qn−1,r} s

21m−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} s
2n−1

m−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

⇒ Runs of terminating systems may have nonelementary lengths
⇒ Running time of termination verification algorithm is not
elementary (for broadcast protocols)

5/12

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/12

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/12

ORDINAL INDEXES FOR COMPLEXITY CLASSES

The complexity analysis for WQO-based algorithms use new
complexity classes: F1, F2, F3, . . .

Continues with transfinite indexes: F4, . . . , Fω, Fω+1, Fω+2, . . . , Fω·2,
Fω·2+1, . . . , Fω·3, . . . , Fω·4, . . . , Fω2 , Fω2+1, . . . , Fω2+ω, . . . ,
Fω2+ω·2, . . . , Fω2·2, . . . , Fω3 , . . . , Fωω , . . . , Fωωω , . . . , F

ωω
ωω , . . . ,

•We work with ordinals below ε0 written in Cantor normal form:

α=ωα1 + · · ·+ωαm where α > α1 > · · ·> αm

NB: α is zero iff m= 0; it is a successor α= β+1= β+ω0 iff m> 0
and αm = 0; otherwise it is a limit α= λ

Alternative notation:

α=ωα1 · c1+ · · ·+ωαm · cm now with α > α1 > . . .> αm
c1, . . . ,cm ∈N

6/12

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/12

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/12

FAST-GROWING FUNCTIONS

(Fα)α∈Ord: an ordinal-indexed family of functions Fα :N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .)) Fω(x)

def
= Fx+1(x)

gives F1(x) = 2x+1≈ 2x, F2(x) = 2x+1(x+1)−1≈ 2x,
F3(x)≈ tower(x) and Fω(x)≈ ACKERMANN(x), the first Fα that is not
primitive recursive.

Generally Fλ(x)
def
= Fλx(x) with λ0 < λ1 < λ2 < · · ·< λ a fundamental

sequence for λ, given by

(γ+ωβ+1)x
def
= γ+ωβ · (x+1) (γ+ωλ)x

def
= γ+ωλx

E.g. Fω2(7)=Fω·8(7)=Fω·7+8(7)=

8︷ ︸︸ ︷
Fω·7+7(Fω·7+7(· · ·(Fω·7+7(7)) · · ·))

7/12

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=

⋃
β<α

Fβ Fα
def
=

⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/12

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=

⋃
β<α

Fβ Fα
def
=

⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/12

THE FAST-GROWING HIERARCHY

By Schmitz (2013), after Wainer & Löb (1970), Grzegorczyk (1953)

Fα
def
=

⋃
p∈F<α

FDTIME(Fα(p(n))), ie all functions in time Fα(negligible(n))

F<α
def
=

⋃
β<α

Fβ Fα
def
=

⋃
c∈N

F
c
α F

c
α

def
=

⋃
p∈F<α

FDTIME(Fcα(p(n)))

1. These classes admit many other characterizations and capture
some well-known cases:

F2 = E = DTIME(2O(n)), F<3 = FELEM, F<ω = PR, F<ωω = MPR

2. A strict hierarchy: Fβ (F
c+1
β (Fα for all β < α and c > 0.

3. There exist Fα-complete problems for each α> 2

8/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Same over (A∗,6subword) for A= {a,b,c}:
— aa, bbabb, bbbab, bbbbbbba,
ccccbcccbccccccccbcccccccccbccccccccccbcccccccbcccccacccc, . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

9/12

CONTROLLED BAD SEQUENCES
Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Here the control is the pair (n0,g) of n0 ∈N and g :N→N.

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is max length
on controlled bad sequences (Kőnig’s Lemma again)
Write Lg,A(n0) for this maximum length.

Satisfies well-founded recurrence:

Lg,A(n) = max
|x|6n

1+Lg,Ar↑x(g(n))

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

10/12

CONTROLLED BAD SEQUENCES
Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Here the control is the pair (n0,g) of n0 ∈N and g :N→N.

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is max length
on controlled bad sequences (Kőnig’s Lemma again)
Write Lg,A(n0) for this maximum length.

Satisfies well-founded recurrence:

Lg,A(n) = max
|x|6n

1+Lg,Ar↑x(g(n))

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

10/12

CONTROLLED BAD SEQUENCES
Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Here the control is the pair (n0,g) of n0 ∈N and g :N→N.

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is max length
on controlled bad sequences (Kőnig’s Lemma again)
Write Lg,A(n0) for this maximum length.

Satisfies well-founded recurrence:

Lg,A(n) = max
|x|6n

1+Lg,Ar↑x(g(n))

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

10/12

CONTROLLED BAD SEQUENCES

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is max length
on controlled bad sequences (Kőnig’s Lemma again)
Write Lg,A(n0) for this maximum length.

Satisfies well-founded recurrence:

Lg,A(n) = max
|x|6n

1+Lg,Ar↑x(g(n))

Length Function Theorems for (Nk,6×):
• If g is in Fγ for γ > 0 then Lg,Nk is in Fγ+k

• If g is in g ∈ F1 then Lg,Q×Nk is in F
|Q|
k

10/12

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk for broadcast protocols with k states, and
in Fω when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— Length function theorem provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

11/12

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk for broadcast protocols with k states, and
in Fω when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— Length function theorem provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

11/12

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

⇒ Time/space bound in Fk for broadcast protocols with k states, and
in Fω when k is not fixed.

Fact. The minimal pseudo-runs explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— Length function theorem provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

11/12

MORE LENGTH FUNCTION THEOREMS

For finite words with 6subword, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

Next course: are these tight upper bounds? how does one prove
fast-growing lower bounds?

12/12

MORE LENGTH FUNCTION THEOREMS

For finite words with 6subword, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

Next course: are these tight upper bounds? how does one prove
fast-growing lower bounds?

12/12

MORE LENGTH FUNCTION THEOREMS

For finite words with 6subword, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

Next course: are these tight upper bounds? how does one prove
fast-growing lower bounds?

12/12

MORE LENGTH FUNCTION THEOREMS

For finite words with 6subword, LA∗ is in Fω|A|−1 , and in Fωω when
alphabet is not fixed. Applies e.g. to lossy channel systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωω

ω when k is not fixed. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LA∗ is in Fε0 Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: we have definite complexity upper bounds for
WQO-based algorithms

Next course: are these tight upper bounds? how does one prove
fast-growing lower bounds?

12/12

