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IF YOU MISSED PART |

(X,<) is a well-quasi-ordering (a wqo) if any infinite sequence
X0,X1,X2 ... Over X contains an increasing pair x; < x; (for some i <j)

Examples.
1. (N*,<) is a wgo (Dickson’s Lemma)
where, e.g., (3,2,1) <« (5,2,2) but (1,2,3) £x (5,2,2)

2. (*,<,) is awqo (Higman’s Lemma)
where, e.g., abc <, bacbc but cba £, bacbce
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X0,X1,X2 ... Over X contains an increasing pair x; < x; (for some i <j)

Examples.
1. (N*,<) is a wgo (Dickson’s Lemma)
where, e.g., (3,2,1) <« (5,2,2) but (1,2,3) £x (5,2,2)

2. (*,<,) is awqo (Higman’s Lemma)
where, e.g., abc <, bacbc but cba £, bacbce

Objectives for today’s course:
» See algorithms that rely on wqos: verification of WSTS’s

» Reduce complexity analysis to bounds on bad sequences
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(in lecture notes only:) other wqo-based algorithms: other
termination proofs, relevance logic, Karp-Miller trees, ..

All of these are actual examples of algorithms that terminate thanks
to wqgo-theoretical arguments

Question for Part Ill. terminate in how many steps exactly?



WSTS: WELL-STRUCTURED TRANSITION SYSTEMS

In program verification, wqo’s appear prominently under the guise of
WSTS.

Def. A WSTS is a system (S,—, <) where
1. (S,—) with -C S x S is a transition system

2. the set of states (S, <) is wgo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s —+tand s < s’ imply s’ — t’ forsome t’ >t
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NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.
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A run of M: (£p,0,1,4) — (£1,1,1,4) — ({5,1,0,4) — (¢3,1,0,0)

Ordering states: (£1,0,0,0) < (£1,0,1,2) but (£1,0,0,0) £ (£»,0,1,2).
This is wqo as a product of wqo’s: (Loc,=) x (N3,<)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
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SOME WSTS’S: RELATIONAL AUTOMATA
c1<cy? cp:=??; cp:=c3 ‘1

2[0]

c1=10>cr=c3?
g

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “2?”

One does not use <x to compare states!! Rather
(all---;ak)gsparse(bl;---;bk)

®vij=1,....k: (@i < qj iff by <b;) A (las — a;] < [by —bj]) .

Fact. (Z*, <sparse) is WqO

(Lai,...,ax) < (¢',by,...,by) & &

Compatibility: We use
4 :gl/\(al,...,ak,—l,lo) gsparse (bl,...,bk,—l,lo) .
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SOME WSTS’s: LCS / LossY CHANNEL SYSTEMS

channel ¢;
P — i ack ! ack : hup !
cilack
channel ¢,
comsg - i msg istop!
P

A configuration o = ({1,{3, w1, w>) with w; € £*.
E.g., wi =hup.ack.ack.

Reliable steps: o — ¢ p read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
oo ¥oa p —e p’ 3 o’ for some p,p’
where (S,C) is the wqo (Locy,=) x (Locz,=) x (Xg,, <) x (X8, <x)

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...
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Termination is the question, given a TS (S, —,...) and a state sj,it € S,
whether there are no infinite runs starting from sjq;t

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,—,<) has an infinite run from s;,;; iff it has a finite run
from s;,it that is a good sequence.

. def .. .
Recall: sg,s1,s>,...,s1 is good £ there exist i <jstsi<s;
Proof. =-: the infinite run contains an increasing pair
.. . . +
«: good finite run s = s; % sj can be extended by simulating s; — s;
from above: s; 5 $2j—i, then sp;_; uN $3j_2i, etc.

Coro. Termination is co-r.e.
Since it is also r.e. (for finitely branching systems), it is decidable.



TERMINATION

Termination is the question, given a TS (S,—,...) and a state sj,i; € S,
whether there are no infinite runs starting from st

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,—, <) has an infinite run from s;,;; iff it has a finite run
from s;,it that is a good sequence.

. def C
Recall: sg,s1,s>,...,sn is good £ there exist i <jst sy <s;j

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from s;,; and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation
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Coverability is the question, given (S,—,...), a state sj,it and a target
state t, whether there is a run sjnjt — s1 — s>+ — s With sy > t.

This is equivalent to having a pseudo-run siit,s1,...,Sn With s, > t,
where a pseudo-run is a sequence of pseudo-steps si_1 — s/ > s;.

1st pseudo-step last pseudo-step
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2nd pseudo-step

Lem. [Finite Witnesses for Covering] There is a pseudo-run
Sinit, - - -» Sn._covering t iff there is a minimal pseudo-run
sg == - == s =t from some sg < sjnit t0 t such that
Sn/,Sn/—1,---,S0 IS @ bad sequence.

def

NB. a pseudo-run so,...,sy is minimal & forall0 <i<n’, s;isa
minimal (pseudo) predecessor of s; 1.

Coro. one can decide Coverability by enumerating all pseudo-runs
ending in t (backward-chaining!) that are minimal & bad sequences.
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COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence sg,s1,...,S¢
that is bad (for Coverability) or almost bad (for non-Termination) and
check that they are indeed correct witnesses.

We can give a complexity upper bound in (CO)NTIME(f(n)) or
(CO)NSPACE(f(n)) if we can bound the size of the sequence —in
practice: bound its length {— as a function of the input

(S!*)l g);sinitft'--

This is the topic for next course . ..



