
Algorithmic Aspects
of WQO (Well-Quasi-Ordering) Theory

Part II: Algorithmic Applications of WQOs

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan
Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/˜phs

www.lsv.ens-cachan.fr/~phs


IF YOU MISSED PART I

(X,6) is a well-quasi-ordering (a wqo) if any infinite sequence
x0,x1,x2 . . . over X contains an increasing pair xi 6 xj (for some i < j)

Examples.
1. (Nk,6×) is a wqo (Dickson’s Lemma)

where, e.g., (3,2,1)6× (5,2,2) but (1,2,3) 
× (5,2,2)

2. (Σ∗,6∗) is a wqo (Higman’s Lemma)
where, e.g., abc6∗ bacbc but cba 
∗ bacbc

Objectives for today’s course:

I See algorithms that rely on wqos: verification of WSTS’s

I Reduce complexity analysis to bounds on bad sequences

2/10



IF YOU MISSED PART I

(X,6) is a well-quasi-ordering (a wqo) if any infinite sequence
x0,x1,x2 . . . over X contains an increasing pair xi 6 xj (for some i < j)

Examples.
1. (Nk,6×) is a wqo (Dickson’s Lemma)

where, e.g., (3,2,1)6× (5,2,2) but (1,2,3) 
× (5,2,2)

2. (Σ∗,6∗) is a wqo (Higman’s Lemma)
where, e.g., abc6∗ bacbc but cba 
∗ bacbc

Objectives for today’s course:

I See algorithms that rely on wqos: verification of WSTS’s

I Reduce complexity analysis to bounds on bad sequences

2/10



OUTLINE FOR PART II

I Well-structured transition systems (WSTS’s)

I Deciding Termination

I Deciding Coverability

I (in lecture notes only:) other wqo-based algorithms: other
termination proofs, relevance logic, Karp-Miller trees, ..

All of these are actual examples of algorithms that terminate thanks
to wqo-theoretical arguments

Question for Part III. terminate in how many steps exactly?

3/10



OUTLINE FOR PART II

I Well-structured transition systems (WSTS’s)

I Deciding Termination

I Deciding Coverability

I (in lecture notes only:) other wqo-based algorithms: other
termination proofs, relevance logic, Karp-Miller trees, ..

All of these are actual examples of algorithms that terminate thanks
to wqo-theoretical arguments

Question for Part III. terminate in how many steps exactly?

3/10



WSTS: WELL-STRUCTURED TRANSITION SYSTEMS

In program verification, wqo’s appear prominently under the guise of
WSTS.

Def. A WSTS is a system (S,−→,6) where
1. (S,−→) with −→⊆ S×S is a transition system

2. the set of states (S,6) is wqo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s−→ t and s6 s ′ imply s ′ −→ t ′ for some t ′ > t

4/10



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) 
 (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

5/10



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) 
 (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

5/10



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) 
 (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

5/10



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) 
 (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

5/10



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) 
 (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

5/10



SOME WSTS’S: RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “??”

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse(b1, . . . ,bk)
def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
.

Fact. (Zk,6sparse) is wqo

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

Compatibility: We use

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10) .
6/10



SOME WSTS’S: RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “??”

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse(b1, . . . ,bk)
def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
.

Fact. (Zk,6sparse) is wqo

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

Compatibility: We use

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10) .
6/10



SOME WSTS’S: RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “??”

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse(b1, . . . ,bk)
def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
.

Fact. (Zk,6sparse) is wqo

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

Compatibility: We use

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10) .
6/10



SOME WSTS’S: RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, & “??”

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse(b1, . . . ,bk)
def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
.

Fact. (Zk,6sparse) is wqo

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

Compatibility: We use

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10) .
6/10



SOME WSTS’S: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗c1 ,6∗)× (Σ∗c2 ,6∗)

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

7/10



SOME WSTS’S: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗c1 ,6∗)× (Σ∗c2 ,6∗)

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

7/10



SOME WSTS’S: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗c1 ,6∗)× (Σ∗c2 ,6∗)

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

7/10



TERMINATION

Termination is the question, given a TS (S,→, . . .) and a state sinit ∈ S,
whether there are no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,→,6) has an infinite run from sinit iff it has a finite run
from sinit that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from sinit and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

8/10



TERMINATION

Termination is the question, given a TS (S,→, . . .) and a state sinit ∈ S,
whether there are no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,→,6) has an infinite run from sinit iff it has a finite run
from sinit that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from sinit and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

8/10



TERMINATION
Termination is the question, given a TS (S,→, . . .) and a state sinit ∈ S,
whether there are no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,→,6) has an infinite run from sinit iff it has a finite run
from sinit that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof. ⇒: the infinite run contains an increasing pair
⇐: good finite run s0

∗−→ si
+−→ sj can be extended by simulating si

+−→ sj

from above: sj
+−→ s2j−i, then s2j−i

+−→ s3j−2i, etc.

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from sinit and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

8/10



TERMINATION
Termination is the question, given a TS (S,→, . . .) and a state sinit ∈ S,
whether there are no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,→,6) has an infinite run from sinit iff it has a finite run
from sinit that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof. ⇒: the infinite run contains an increasing pair
⇐: good finite run s0

∗−→ si
+−→ sj can be extended by simulating si

+−→ sj

from above: sj
+−→ s2j−i, then s2j−i

+−→ s3j−2i, etc.

Coro. Termination is co-r.e.
Since it is also r.e. (for finitely branching systems), it is decidable.

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from sinit and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

8/10



TERMINATION

Termination is the question, given a TS (S,→, . . .) and a state sinit ∈ S,
whether there are no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S,→,6) has an infinite run from sinit iff it has a finite run
from sinit that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Coro. One can decide Termination for a WSTS by enumerating all
finite runs from sinit and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

8/10



COVERABILITY (IN PRACTICE: SAFETY)
Coverability is the question, given (S,→, . . .), a state sinit and a target
state t, whether there is a run sinit→ s1→ s2 · · · → sn with sn > t.

This is equivalent to having a pseudo-run sinit,s1, . . . ,sn with sn > t,
where a pseudo-run is a sequence of pseudo-steps si−1→ s ′i > si.

Picture

1st pseudo-step︷            ︸︸            ︷
s0→ s ′1 > s1→ s ′2 > s2︸           ︷︷           ︸

2nd pseudo-step

→ ·· ·> · · ·

last pseudo-step︷                 ︸︸                 ︷
sn−1→ s ′n > sn > t

Lem. [Finite Witnesses for Covering] There is a pseudo-run
sinit, . . . ,sn covering t iff there is a minimal pseudo-run
s0 −→> · · · −→> sn ′ = t from some s0 6 sinit to t such that
sn ′ ,sn ′−1, . . . ,s0 is a bad sequence.

NB. a pseudo-run s0, . . . ,sn ′ is minimal def⇔ for all 06 i < n ′, si is a
minimal (pseudo) predecessor of si+1.

Coro. one can decide Coverability by enumerating all pseudo-runs
ending in t (backward-chaining!) that are minimal & bad sequences.

9/10



COVERABILITY (IN PRACTICE: SAFETY)
Coverability is the question, given (S,→, . . .), a state sinit and a target
state t, whether there is a run sinit→ s1→ s2 · · · → sn with sn > t.

This is equivalent to having a pseudo-run sinit,s1, . . . ,sn with sn > t,
where a pseudo-run is a sequence of pseudo-steps si−1→ s ′i > si.

Picture

1st pseudo-step︷            ︸︸            ︷
s0→ s ′1 > s1→ s ′2 > s2︸           ︷︷           ︸

2nd pseudo-step

→ ·· ·> · · ·

last pseudo-step︷                 ︸︸                 ︷
sn−1→ s ′n > sn > t

Lem. [Finite Witnesses for Covering] There is a pseudo-run
sinit, . . . ,sn covering t iff there is a minimal pseudo-run
s0 −→> · · · −→> sn ′ = t from some s0 6 sinit to t such that
sn ′ ,sn ′−1, . . . ,s0 is a bad sequence.

NB. a pseudo-run s0, . . . ,sn ′ is minimal def⇔ for all 06 i < n ′, si is a
minimal (pseudo) predecessor of si+1.

Coro. one can decide Coverability by enumerating all pseudo-runs
ending in t (backward-chaining!) that are minimal & bad sequences.

9/10



COVERABILITY (IN PRACTICE: SAFETY)
Coverability is the question, given (S,→, . . .), a state sinit and a target
state t, whether there is a run sinit→ s1→ s2 · · · → sn with sn > t.

This is equivalent to having a pseudo-run sinit,s1, . . . ,sn with sn > t,
where a pseudo-run is a sequence of pseudo-steps si−1→ s ′i > si.

Picture

1st pseudo-step︷            ︸︸            ︷
s0→ s ′1 > s1→ s ′2 > s2︸           ︷︷           ︸

2nd pseudo-step

→ ·· ·> · · ·

last pseudo-step︷                 ︸︸                 ︷
sn−1→ s ′n > sn > t

Lem. [Finite Witnesses for Covering] There is a pseudo-run
sinit, . . . ,sn covering t iff there is a minimal pseudo-run
s0 −→> · · · −→> sn ′ = t from some s0 6 sinit to t such that
sn ′ ,sn ′−1, . . . ,s0 is a bad sequence.

NB. a pseudo-run s0, . . . ,sn ′ is minimal def⇔ for all 06 i < n ′, si is a
minimal (pseudo) predecessor of si+1.

Coro. one can decide Coverability by enumerating all pseudo-runs
ending in t (backward-chaining!) that are minimal & bad sequences.

9/10



COVERABILITY (IN PRACTICE: SAFETY)
Coverability is the question, given (S,→, . . .), a state sinit and a target
state t, whether there is a run sinit→ s1→ s2 · · · → sn with sn > t.

This is equivalent to having a pseudo-run sinit,s1, . . . ,sn with sn > t,
where a pseudo-run is a sequence of pseudo-steps si−1→ s ′i > si.

Picture

1st pseudo-step︷            ︸︸            ︷
s0→ s ′1 > s1→ s ′2 > s2︸           ︷︷           ︸

2nd pseudo-step

→ ·· ·> · · ·

last pseudo-step︷                 ︸︸                 ︷
sn−1→ s ′n > sn > t

Lem. [Finite Witnesses for Covering] There is a pseudo-run
sinit, . . . ,sn covering t iff there is a minimal pseudo-run
s0 −→> · · · −→> sn ′ = t from some s0 6 sinit to t such that
sn ′ ,sn ′−1, . . . ,s0 is a bad sequence.

NB. a pseudo-run s0, . . . ,sn ′ is minimal def⇔ for all 06 i < n ′, si is a
minimal (pseudo) predecessor of si+1.

Coro. one can decide Coverability by enumerating all pseudo-runs
ending in t (backward-chaining!) that are minimal & bad sequences.

9/10



COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence s0,s1, . . . ,s`
that is bad (for Coverability) or almost bad (for non-Termination) and
check that they are indeed correct witnesses.

We can give a complexity upper bound in (CO)NTIME(f(n)) or
(CO)NSPACE(f(n)) if we can bound the size of the sequence —in
practice: bound its length `— as a function of the input
(S,→,6),sinit,t, ..

This is the topic for next course . . .

10/10



COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence s0,s1, . . . ,s`
that is bad (for Coverability) or almost bad (for non-Termination) and
check that they are indeed correct witnesses.

We can give a complexity upper bound in (CO)NTIME(f(n)) or
(CO)NSPACE(f(n)) if we can bound the size of the sequence —in
practice: bound its length `— as a function of the input
(S,→,6),sinit,t, ..

This is the topic for next course . . .

10/10



COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence s0,s1, . . . ,s`
that is bad (for Coverability) or almost bad (for non-Termination) and
check that they are indeed correct witnesses.

We can give a complexity upper bound in (CO)NTIME(f(n)) or
(CO)NSPACE(f(n)) if we can bound the size of the sequence —in
practice: bound its length `— as a function of the input
(S,→,6),sinit,t, ..

This is the topic for next course . . .

10/10


