Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory

Part I: Basics of WQO Theory

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/~phs

MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.
- Analysing the complexity of wqo-based algorithms is still one of the dark arts ...
- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the wqo-based algorithms and their complexity analysis.

MOTIVATIONS FOR THE COURSE

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.
- ► Analysing the complexity of wqo-based algorithms is still one of the dark arts . . .
- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the wqo-based algorithms and their complexity analysis.

OUTLINE OF THE COURSE

- (This) Lecture 1 = Basics of WQO's. Rather basic material: explaining and illustrating the definition of wqo's. Building new wqo's from simpler ones.
- ► Lecture 2 = **WQO-based reasoning.** Well-Structured Transition Systems (WSTS's), termination proofs, decidable logics, etc.
- ► Lecture 3 = **Fast-growing complexity I.** The Fast-growing hierarchy, Length function theorems for proving upper bounds.
- Lecture 4 = Fast-growing complexity II. Hardy computations for proving lower bounds.
- ► Lecture 5 = **Ideals of WQO's.** Basic concepts, Effective representations, Algorithms.

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

```
Examples. (\mathbb{N},\leqslant), also (\mathbb{R},\leqslant), (\mathbb{N}\cup\{\omega\},\leqslant), \dots
```

divisibility: $(\mathbb{Z}, | \bot)$ where $x | y \stackrel{\text{def}}{\Leftrightarrow} \exists a : a.x = y$

tuples: (\mathbb{N}^3 , \leqslant_{prod}), or simply (\mathbb{N}^3 , \leqslant_{\times}), where (0,1,2) $<_{\times}$ (10,1,5) and (1,2,3)# $_{\times}$ (3,1,2).

words: $(\Sigma^*, \leqslant_{\mathsf{pref}})$ for some alphabet $\Sigma = \{a, b, \ldots\}$ and $ab <_{\mathsf{pref}} abba$. $(\Sigma^*, \leqslant_{\mathsf{lex}})$ with e.g. $abba \leqslant_{\mathsf{lex}} abc$ (NB: this assumes Σ is linearly ordered: a < b < c)

 $(\Sigma^*, \leq_{\text{subword}})$, or simply (Σ^*, \leq_*) , with $aba \leq_* b\underline{a}a\underline{b}ba\underline{a}$.

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N},\leqslant) , also (\mathbb{R},\leqslant) , $(\mathbb{N}\cup\{\omega\},\leqslant)$, \dots

divisibility: $(\mathbb{Z}, | \)$ where $x | y \stackrel{\text{def}}{\Leftrightarrow} \exists \alpha : \alpha . x = y$

tuples: $(\mathbb{N}^3, \leqslant_{\text{prod}})$, or simply $(\mathbb{N}^3, \leqslant_{\times})$, where $(0,1,2) <_{\times} (10,1,5)$ and $(1,2,3) \#_{\times} (3,1,2)$.

words: $(\Sigma^*, \leqslant_{\mathsf{pref}})$ for some alphabet $\Sigma = \{a, b, \ldots\}$ and $ab <_{\mathsf{pref}} abba$. $(\Sigma^*, \leqslant_{\mathsf{lex}})$ with e.g. $abba \leqslant_{\mathsf{lex}} abc$ (NB: this assumes Σ is linearly ordered: a < b < c)

 $(\Sigma^*, \leqslant_{\text{subword}})$, or simply (Σ^*, \leqslant_*) , with $aba \leqslant_* b\underline{a}a\underline{b}ba\underline{a}$.

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leq) , also (\mathbb{R}, \leq) , $(\mathbb{N} \cup \{\omega\}, \leq)$, ...

```
divisibility: (\mathbb{Z}, | _{-}) where x | y \stackrel{\text{def}}{\Leftrightarrow} \exists a : a.x = y tuples: (\mathbb{N}^3, \leqslant_{\text{prod}}), or simply (\mathbb{N}^3, \leqslant_{\times}), where (0,1,2) <_{\times} (10,1,5) and (1,2,3) \#_{\times} (3,1,2). words: (\Sigma^*, \leqslant_{\text{pref}}) for some alphabet \Sigma = \{a,b,\ldots\} and ab <_{\text{pref}} abba.
```

 $(\Sigma^*, \leqslant_{\text{subword}})$, or simply (Σ^*, \leqslant_*) , with $aba \leqslant_* b\underline{a}a\underline{b}ba\underline{a}$.

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

```
Examples. (\mathbb{N},\leqslant), also (\mathbb{R},\leqslant), (\mathbb{N}\cup\{\omega\},\leqslant), \dots
```

divisibility: ($\mathbb{Z}_{,-}|_{-}$) where $x \mid y \stackrel{\text{def}}{\Leftrightarrow} \exists \alpha : \alpha.x = y$

tuples: $(\mathbb{N}^3, \leq_{\text{prod}})$, or simply $(\mathbb{N}^3, \leq_{\times})$, where $(0,1,2) <_{\times} (10,1,5)$

and (1,2,3)# \times (3,1,2).

words: $(\Sigma^*, \leqslant_{pref})$ for some alphabet $\Sigma = \{a, b, ...\}$ and $ab <_{pref} abba$.

 $(\Sigma^*, \leqslant_{lex})$ with e.g. abba \leqslant_{lex} abc (NB: this assumes Σ is linearly ordered: a < b < c)

 $(\Sigma^*, \leq_{\text{subword}})$, or simply (Σ^*, \leq_*) , with $aba \leq_* b\underline{a}a\underline{b}ba\underline{a}$.

Def. A non-empty (X, \leq) is a quasi-ordering (qo) $\stackrel{\text{def}}{\Leftrightarrow} \leq$ is a reflexive and transitive relation.

 $(\approx$ a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

```
Examples. (\mathbb{N},\leqslant), also (\mathbb{R},\leqslant), (\mathbb{N}\cup\{\omega\},\leqslant), ... divisibility: (\mathbb{Z},\_|\_) where x\mid y\stackrel{\text{def}}{\Rightarrow}\exists a: a.x=y tuples: (\mathbb{N}^3,\leqslant_{\text{prod}}), or simply (\mathbb{N}^3,\leqslant_\times), where (0,1,2)<_\times (10,1,5) and (1,2,3)\#_\times(3,1,2). words: (\Sigma^*,\leqslant_{\text{pref}}) for some alphabet \Sigma=\{a,b,...\} and ab<_{\text{pref}} abba. (\Sigma^*,\leqslant_{\text{lex}}) with e.g. abba\leqslant_{\text{lex}} abc (NB: this assumes \Sigma is linearly ordered: a< b< c) (\Sigma^*,\leqslant_{\text{subword}}), or simply (\Sigma^*,\leqslant_*), with aba\leqslant_* baabbaa.
```

Def. (X, \leqslant) is linear, a.k.a. total, if for any $x, y \in X$ either $x \leqslant y$ or $y \leqslant x$. (I.e., there is no x # y.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
N , ≤		
\mathbb{Z} ,		
$\mathbb{N} \cup \{\omega\}, \leqslant$		
$\mathbb{N}^3,\leqslant_{\times}$		
Σ^* , \leq_{pref}		
$\Sigma^*, \leqslant_{lex}$		
Σ*,≤∗		

Def. (X, \leqslant) is linear, a.k.a. total, if for any $x, y \in X$ either $x \leqslant y$ or $y \leqslant x$. (I.e., there is no x # y.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
\mathbb{N} , \leqslant	√	
\mathbb{Z} ,	×	
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	
$\mathbb{N}^3,\leqslant_{\times}$	×	
Σ^* , \leq_{pref}	×	
$\Sigma^*, \leqslant_{lex}$	✓	
Σ*,≤∗	×	

Def. (X, \leq) is linear, a.k.a. total, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$. (I.e., there is no $x \neq y$.)

Def. (X, \leq) is well-founded if there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \cdots$

	linear?	well-founded?
N ,≤	√	✓
\mathbb{Z} ,	×	✓
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓
$\mathbb{N}^3,\leqslant_{\times}$	×	✓
Σ^* , \leq_{pref}	×	✓
$\Sigma^*, \leqslant_{lex}$	\	×
Σ*,≤∗	×	✓

Well-quasi-ordering (wqo)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent. Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3. But the reverse implications are non-trivial.

Well-quasi-ordering (wqo)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \ldots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent. Clearly, $Def2 \Rightarrow Def1$ and $Def1 \Rightarrow Def3$. But the reverse implications are non-trivial.

WELL-QUASI-ORDERING (WQO)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leq x_{n_1} \leq x_{n_2} \leq \ldots$

Def3. (X,\leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0>x_1>x_2>\dots$ —i.e., (X,\leqslant) is well-founded— and no infinite set $\{x_0,x_1,x_2,\dots\}$ of mutually incomparable elements $x_i\#x_j$ when $i\neq j$ —we say " (X,\leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent. Clearly, $Def2 \Rightarrow Def1$ and $Def1 \Rightarrow Def3$. But the reverse implications are non-trivial.

Well-quasi-ordering (wqo)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some i < j.

Def2. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \ldots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

Fact. These three definitions are equivalent. Clearly, $Def2 \Rightarrow Def1$ and $Def1 \Rightarrow Def3$. But the reverse implications are non-trivial.

Well-quasi-ordering (wqo)

Def1. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an increasing pair: $x_i \leq x_j$ for some i < j.

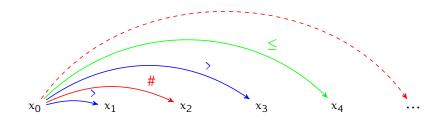
Def2. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ any infinite sequence x_0, x_1, x_2, \ldots contains an infinite increasing subsequence: $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \ldots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_0 > x_1 > x_2 > \ldots$ —i.e., (X, \leqslant) is well-founded— and no infinite set $\{x_0, x_1, x_2, \ldots\}$ of mutually incomparable elements $x_i \# x_j$ when $i \neq j$ —we say " (X, \leqslant) has no infinite antichain"—.

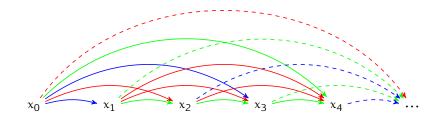
Fact. These three definitions are equivalent. Clearly, $Def2 \Rightarrow Def1$ and $Def1 \Rightarrow Def3$. But the reverse implications are non-trivial.

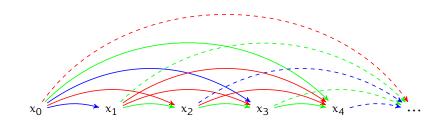
 $x_0 \qquad \qquad x_1 \qquad \qquad x_2 \qquad \qquad x_3 \qquad \qquad x_4 \qquad \qquad \dots$

Proving Def3 \Rightarrow Def2



Proving Def3 \Rightarrow Def2





Infinite Ramsey Theorem:

there is an infinite subset $\{x_i\}_{i\in I}$ that is monochromatic

Infinite Ramsey Theorem:

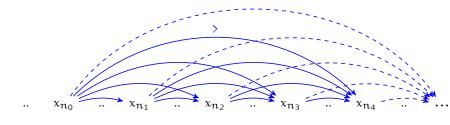
there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,...}$ that is monochromatic

 $\dots \quad x_{n_0} \quad \dots \quad x_{n_1} \quad \dots \quad x_{n_2} \quad \dots \quad x_{n_3} \quad \dots \quad x_{n_4} \quad \dots \quad \dots$

What color?

Infinite Ramsey Theorem:

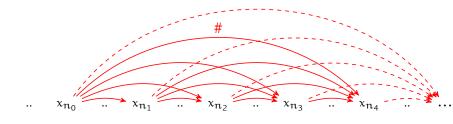
there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,...}$ that is monochromatic



Blue ⇒ infinite strictly decreasing sequence, contradicts WF

Infinite Ramsey Theorem:

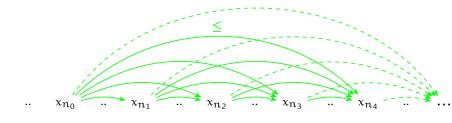
there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,\dots}$ that is monochromatic



Red ⇒ infinite antichain, contradicts FAC

Infinite Ramsey Theorem:

there is an infinite subset $\{x_{n_i}\}_{i=0,1,2,...}$ that is monochromatic



Must be green ⇒ infinite increasing sequence! QED

	linear?	well-founded?	wqo?
$\overline{\mathbb{N},\leqslant}$	✓	✓	
\mathbb{Z} ,	×	✓	
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	
$\mathbb{N}^3,\leqslant_{\times}$	×	✓	
Σ^* , \leq_{pref}	×	✓	
$\Sigma^*, \leqslant_{lex}$	✓	×	
Σ*,≤∗	×	✓	

	linear?	well-founded?	wqo?
N , ≤	√	✓	✓
\mathbb{Z} ,	×	✓	
$\mathbb{N} \cup \{\omega\}, \leqslant$	√	✓	
$\mathbb{N}^3,\leqslant_{\times}$	×	✓	
Σ^* , \leq_{pref}	×	✓	
$\Sigma^*, \leqslant_{lex}$	✓	×	
Σ*,≤∗	×	√	

	linear?	well-founded?	wqo?
\mathbb{N},\leqslant	✓	✓	✓
\mathbb{Z} ,	×	✓	
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	✓
$\mathbb{N}^3, \leqslant_{\times}$	×	✓	
$\Sigma^*, \leqslant_{pref}$	×	✓	
$\Sigma^*, \leqslant_{lex}$	√	×	
Σ*,≤∗	×	√	

More generally

Fact. For linear qo's: well-founded ⇔ wqo.

Cor. Any ordinal is wqo.

	linear?	well-founded?	wqo?
$\overline{\mathbb{N},\leqslant}$	✓	✓	✓
\mathbb{Z} ,	×	✓	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	✓
$\mathbb{N}^3,\leqslant_{\times}$	×	✓	
Σ^* , \leq_{pref}	×	✓	
$\Sigma^*, \leqslant_{lex}$	√	×	
Σ*,≤∗	×	✓	

 $(\mathbb{Z},|)$: The prime numbers $\{2,3,5,7,11,\ldots\}$ are an infinite antichain.

	linear?	well-founded?	wqo?
\mathbb{N},\leqslant	✓	✓	√
\mathbb{Z} ,	×	✓	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	√
$\mathbb{N}^3, \leqslant_{\times}$	×	✓	✓
Σ^* , \leq_{pref}	×	✓	
$\Sigma^*, \leqslant_{lex}$	√	×	
Σ*,≤∗	×	✓	

More generally

(Generalized) Dickson's lemma. If $(X_1,\leqslant_1),\ldots,(X_n,\leqslant_n)$'s are wqo's, then $\prod_{i=1}^n X_i,\leqslant_\times$ is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite Ramsey Theorem.

(Usual) Dickson's Lemma. $(\mathbb{N}^k, \leq_{\times})$ is wqo for any k.

	linear?	well-founded?	wqo?
N, ≤	✓	✓	✓
\mathbb{Z} ,	×	✓	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	✓
$\mathbb{N}^3,\leqslant_{\times}$	×	✓	✓
Σ^* , \leq_{pref}	×	✓	×
Σ^* , \leqslant_{lex}	✓	×	×
Σ*,≤∗	×	✓	

 $(\Sigma^*, \leqslant_{\text{pref}})$ has an infinite antichain

b, ab, aab, aaab, ...

 $(\Sigma^*, \leqslant_{lex})$ is not well-founded:

 $b>_{\text{lex}}\alpha b>_{\text{lex}}\alpha \alpha b>_{\text{lex}}\alpha \alpha \alpha b>_{\text{lex}}\cdots$

	linear?	well-founded?	wqo?
N, ≤	✓	✓	✓
\mathbb{Z} ,	×	√	×
$\mathbb{N} \cup \{\omega\}, \leqslant$	✓	✓	✓
$\mathbb{N}^3, \leqslant_{\times}$	×	√	✓
$\Sigma^*, \leqslant_{pref}$	×	✓	×
$\Sigma^*, \leqslant_{lex}$	✓	×	×
Σ*,≤∗	×	✓	✓

 (Σ^*, \leq_*) is wqo by Higman's Lemma (see next slide).

We can get some feeling by trying to build a bad sequence, i.e., some w_0, w_1, w_2, \dots without an increasing pair $w_i \leqslant_* w_j$.

HIGMAN'S LEMMA

Def. The sequence extension of a qo (X, \leq) is the qo (X^*, \leq_*) of finite sequences over X ordered by embedding:

$$\begin{split} w = & \ x_1 \dots x_n \leqslant_* y_1 \dots y_m = \nu \overset{\text{def}}{\Leftrightarrow} \begin{array}{l} x_1 \leqslant y_{l_1} \wedge \dots \wedge x_n \leqslant y_{l_n} \\ \text{for some } 1 \leqslant l_1 < l_2 < \dots < l_n \leqslant m \\ \overset{\text{def}}{\Leftrightarrow} w \leqslant_\times \nu' \text{ for a length-} n \text{ subsequence } \nu' \text{ of } \nu \end{split}$$

Higman's Lemma. (X^*, \leq_*) is a wqo iff (X, \leq) is.

With (Σ^*, \leq_*) , we are considering the sequence extension of $(\Sigma, =)$ which is finite, hence necessarily wgo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^2 :

$$\begin{vmatrix} 0 & | & 2 & | & 0 \\ 1 & | & 0 & | & 2 & | & * \end{vmatrix}$$
 $\geqslant_* ? \begin{vmatrix} 2 & | & 0 & | & 0 & | & 2 & | & 2 & | & 2 & | & 0 & | & 1 \end{vmatrix}$

HIGMAN'S LEMMA

Def. The sequence extension of a qo (X, \leq) is the qo (X^*, \leq_*) of finite sequences over X ordered by embedding:

$$\begin{split} w = x_1 \dots x_n \leqslant_* y_1 \dots y_m = v & \stackrel{\text{def}}{\Leftrightarrow} x_1 \leqslant y_{l_1} \wedge \dots \wedge x_n \leqslant y_{l_n} \\ & \text{for some } 1 \leqslant l_1 < l_2 < \dots < l_n \leqslant m \\ & \stackrel{\text{def}}{\Leftrightarrow} w \leqslant_\times \nu' \text{ for a length-} n \text{ subsequence } \nu' \text{ of } \nu \end{split}$$

Higman's Lemma. (X^*, \leq_*) is a wqo iff (X, \leq) is.

With (Σ^*, \leq_*) , we are considering the sequence extension of $(\Sigma, =)$ which is finite, hence necessarily wqo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^2 :

$$|{\stackrel{0}{_{1}}}\>|{\stackrel{2}{_{0}}}\>|{\stackrel{0}{_{0}}}\>|{\stackrel{0}{_{2}}}\>|{\stackrel{0}{_{*}}}\>|{\stackrel{2}{_{0}}}\>|{\stackrel{0}{_{2}}}\>|{\stackrel{2}{_{2}}}\>|{\stackrel{2}{_{2}}}\>|{\stackrel{2}{_{0}}}\>|{\stackrel{1}{_{1}}}\>$$

PROOF OF HIGMAN'S LEMMA

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite backsequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3,...$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \dots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \dots$

It cannot be bad (otherwise w_{n_0} would not have been shortest)

But an increasing pair like $v_n \leqslant_* v_m$ in S' leads to $x_n v_n \leqslant_* x_m v_m$; i.e., $w_n \leqslant_* w_m$, a contradiction.

PROOF OF HIGMAN'S LEMMA

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3,...$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \dots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \dots$

It cannot be bad (otherwise w_{n_0} would not have been shortest)

But an increasing pair like $v_n \leqslant_* v_m$ in S' leads to $x_n v_n \leqslant_* x_m v_m$, i.e., $w_n \leqslant_* w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, ...$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \le x_{n_1} \le x_{n_2} \le \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, \nu_{n_0}, \nu_{n_1}, \nu_{n_2}, \ldots$ It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leqslant_* v_m$ in S' leads to $x_n v_n \leqslant_* x_m v_m$; i.e., $w_n \leqslant_* w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, \dots$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \le x_{n_1} \le x_{n_2} \le \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, \nu_{n_0}, \nu_{n_1}, \nu_{n_2}, \ldots$ It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $\nu_n \leqslant_* \nu_m$ in S' leads to $x_n \nu_n \leqslant_* x_m \nu_m$, i.e., $w_n \leqslant_* w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, \dots$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \le x_{n_1} \le x_{n_2} \le \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, \nu_{n_0}, \nu_{n_1}, \nu_{n_2}, \ldots$ It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leqslant_* v_m$ in S' leads to $x_n v_n \leqslant_* x_m v_m$; i.e., $w_n \leqslant_* w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, \dots$

Claim. S too is bad

Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \ldots, w_{n_0-1}, \nu_{n_0}, \nu_{n_1}, \nu_{n_2}, \ldots$ It cannot be bad (otherwise w_{n_0} would not have been shortest). But an increasing pair like $v_n \leqslant_* v_m$ in S' leads to $x_n v_n \leqslant_* x_m v_m$, i.e., $w_n \leqslant_* w_m$, a contradiction.

Let (X, \leq) be wqo and assume by way of contradiction that (X^*, \leq_*) admits infinite bad sequences (sequences with no increasing pairs).

Let $w_0 \in X^*$ be a shortest word that can start an infinite bad sequence.

Let $w_1 \in X^*$ be a shortest word that can continue, i.e., such that there is an infinite bad sequence starting with w_0, w_1

Continue. This way we pick an infinite sequence $S = w_0, w_1, w_2, w_3, \dots$

Claim. S too is bad

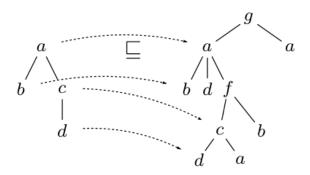
Write w_i under the form $w_i = x_i v_i$. Since X is wqo, there is an infinite increasing sequence $x_{n_0} \leqslant x_{n_1} \leqslant x_{n_2} \leqslant \cdots$ (here we use Def2)

Now consider $S' \stackrel{\text{def}}{=} w_0, w_1, \dots, w_{n_0-1}, v_{n_0}, v_{n_1}, v_{n_2}, \dots$

It cannot be bad (otherwise w_{n_0} would not have been shortest).

But an increasing pair like $\nu_n \leqslant_* \nu_m$ in S' leads to $x_n \nu_n \leqslant_* x_m \nu_m$, i.e., $w_n \leqslant_* w_m$, a contradiction.

► Finite Trees ordered by embeddings (Kruskal's Tree Theorem)



PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be wqo and assume, b.w.o.c., that $(\mathfrak{T}(X), \sqsubseteq)$ is not wqo.

We pick a "minimal" bad sequence $S = t_0, t_1, t_2, ...$

Write every t_i under the form $t_i = \mathsf{f}_i(u_{i,1}, \ldots, u_{i,k_i}).$

Claim. The set $U = \{u_{i,j}\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence u_{i_0,j_0} , u_{i_1,j_i} ,... could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(\mathfrak{u}_{n_1,1},\ldots,\mathfrak{u}_{n_1,k_{n_1}})\leqslant_* (\mathfrak{u}_{n_2,1},\ldots,\mathfrak{u}_{n_2,k_{n_2}})\leqslant_* (\mathfrak{u}_{n_3,1},\ldots,\mathfrak{u}_{n_3,k_{n_3}})\leqslant_* \ldots$

Further extracting some $f_{n_{i_1}}\leqslant f_{n_{i_2}}\leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}}\sqsubseteq t_{n_{i_2}}\sqsubseteq \cdots$ in S, a contradiction

PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be wqo and assume, b.w.o.c., that $(\mathfrak{T}(X), \sqsubseteq)$ is not wqo.

We pick a "minimal" bad sequence $S = t_0, t_1, t_2, ...$

Write every t_i under the form $t_i = \mathsf{f}_i(u_{i,1}, \ldots, u_{i,k_i}).$

Claim. The set $U = \{u_{i,j}\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence u_{i_0,j_0} , u_{i_1,j_i} ,... could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(\mathfrak{u}_{n_1,1},\ldots,\mathfrak{u}_{n_1,k_{n_1}})\leqslant_* (\mathfrak{u}_{n_2,1},\ldots,\mathfrak{u}_{n_2,k_{n_2}})\leqslant_* (\mathfrak{u}_{n_3,1},\ldots,\mathfrak{u}_{n_3,k_{n_3}})\leqslant_* \ldots$

Further extracting some $f_{n_{i_1}}\leqslant f_{n_{i_2}}\leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}}\sqsubseteq t_{n_{i_2}}\sqsubseteq \cdots$ in S, a contradiction

PROOF OF KRUSKAL'S TREE THEOREM

Let (X, \leq) be wqo and assume, b.w.o.c., that $(\mathfrak{T}(X), \sqsubseteq)$ is not wqo.

We pick a "minimal" bad sequence $S = t_0, t_1, t_2,...$

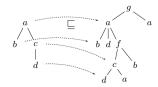
Write every t_i under the form $t_i = f_i(u_{i,1}, ..., u_{i,k_i})$.

Claim. The set $U = \{u_{i,j}\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence u_{i_0,j_0} , u_{i_1,j_i} ,... could be used to show that t_{i_0} was not "shortest").

Since U is wqo, and using Higman's Lemma on U*, there is some $(\mathfrak{u}_{\mathfrak{n}_1,1},\ldots,\mathfrak{u}_{\mathfrak{n}_1,k_{\mathfrak{n}_1}}) \leqslant_* (\mathfrak{u}_{\mathfrak{n}_2,1},\ldots,\mathfrak{u}_{\mathfrak{n}_2,k_{\mathfrak{n}_2}}) \leqslant_* (\mathfrak{u}_{\mathfrak{n}_3,1},\ldots,\mathfrak{u}_{\mathfrak{n}_3,k_{\mathfrak{n}_3}}) \leqslant_* \ldots$

Further extracting some $f_{n_{i_1}} \leqslant f_{n_{i_2}} \leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_1}} \sqsubseteq t_{n_{i_2}} \sqsubseteq \cdots$ in S, a contradiction

► Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

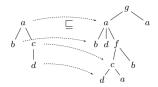


$$C_n \leq_{minor} K_n$$
 and $C_n \leq_{minor} C_{n+1}$

- ► (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_f(X), \sqsubseteq_H)$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

► Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

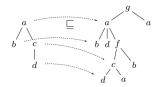


$$C_n \leqslant_{\text{minor}} K_n \text{ and } C_n \leqslant_{\text{minor}} C_{n+1}$$

- ► (X^{ω}, \leq_*) for X linear wqo.
- \triangleright $(\mathcal{P}_f(X), \sqsubseteq_H)$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

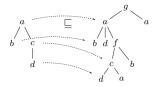


$$C_n \leqslant_{\text{minor}} K_n \text{ and } C_n \leqslant_{\text{minor}} C_{n+1}$$

- ▶ (X^{ω}, \leq_*) for X linear wqo.
- \triangleright $(\mathcal{P}_f(X), \sqsubseteq_H)$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

Finite Trees ordered by embeddings (Kruskal's Tree Theorem)



$$C_n \leqslant_{\text{minor}} K_n \text{ and } C_n \leqslant_{\text{minor}} C_{n+1}$$

- ▶ (X^{ω}, \leq_*) for X linear wqo.
- $(\mathcal{P}_f(X), \sqsubseteq_H)$ for X wqo, where

$$U \sqsubseteq_H V \stackrel{\text{def}}{\Leftrightarrow} \forall x \in U : \exists y \in V : x \leqslant y$$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B\subseteq X$, the upward-closure $\uparrow B$ of B is $\{x\mid x\geqslant b \text{ for some }b\in B\}$. Note that $\uparrow(\bigcup_i B_i)=\bigcup_i \uparrow B_i$, and that V is upward-closed iff $V=\uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, ..., m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow m_1 \not\leq x \wedge \cdots \wedge m_k \not\leq x$$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, ..., m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

 $x \in V \Leftrightarrow m_1 \not\leq x \wedge \cdots \wedge m_k \not\leq x$

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, ..., m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow m_1 \not\leq x \land \dots \land m_k \not\leq x$$

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain K_5 or $K_{3,3}$.

Gives polynomial-time characterization of closed sets.

Defn. (X, \leq) is a wqo $\stackrel{\text{def}}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).

For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b \text{ for some } b \in B\}$. Note that $\uparrow(\bigcup_i B_i) = \bigcup_i \uparrow B_i$, and that V is upward-closed iff $V = \uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow \{m_1, ..., m_k\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$x \in V \Leftrightarrow m_1 \not\leq x \wedge \cdots \wedge m_k \not\leq x$$

Cor3. Any sequence $\uparrow V_0 \subseteq \uparrow V_1 \subseteq \uparrow V_2 \subseteq \cdots$ of upward-closed subsets converges in finite-time: $\exists m : (\bigcup_i \uparrow V_i) = \uparrow V_m = \uparrow V_{m+1} = \dots$

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

$$U \sqsubseteq_{S} V \overset{\mathsf{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\overset{\mathsf{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wgo

—Defn′

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_f(X)$ wqo?)

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

$$U \sqsubseteq_{S} V \overset{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\overset{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wgo

—Def \mathfrak{n}'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_f(X)$ wqo?)

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

$$U \sqsubseteq_S V \stackrel{\text{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\stackrel{\text{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo

—Def \mathfrak{n}'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded **Question.** Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_f(X)$ wqo?)

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

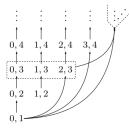
$$U \sqsubseteq_S V \overset{\mathsf{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\overset{\mathsf{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wgo

—Def \mathfrak{n}'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded

Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_f(X)$ wqo?)



$$\begin{split} X & \stackrel{\mathsf{def}}{=} \{(a,b) \in \mathbb{N}^2 \mid a < b\} \\ (a,b) &< (a',b') \stackrel{\mathsf{def}}{\Leftrightarrow} \left\{ \begin{array}{l} a = a' \text{ and } b < b' \\ \text{ or } b < a' \end{array} \right. \end{split}$$

Fact. (X, \leq) is WQO

For (X, \leq) , we consider $(\mathcal{P}(X), \sqsubseteq_S)$ defined with

$$U \sqsubseteq_{S} V \overset{\mathsf{def}}{\Leftrightarrow} \forall y \in V : \exists x \in U : x \leqslant y \qquad (\overset{\mathsf{def}}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wgo

—Def \mathfrak{n}'

NB. X well-founded $\Rightarrow \mathcal{P}(X)$ well-founded

Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_f(X)$ wqo?)

Thm. 1. $(\mathcal{P}_f(X), \sqsubseteq_S)$ is not wqo: rows are incomparable 2. $(\mathcal{P}(Y), \sqsubseteq_S)$ is wqo iff Y does not contain X