Complexité avancée - TD 5

Benjamin Bordais

October 21, 2020

Exercise 1 Family of circuits

Definition 1 A boolean circuit with \(n \) inputs is an acyclic graph where the \(n \) inputs \(x_1, \ldots, x_n \) are part of the vertices. The internal vertices are labeled with \(\land \), \(\lor \) (with 2 incoming edges) or \(\neg \) (with 1 incoming edge), with an additional distinguished vertex \(o \) that is the output (with no exiting edge). The size \(|C| \) of a circuit \(C \) is its number of vertices (excluding the input ones). For a word \(x \in \{0,1\}^* \), the notation \(C(x) \) refers to the output of the circuit \(C \) if the input vertices of \(C \) are valued with the bits of \(x \).

Definition 2 For a function \(t : \mathbb{N} \rightarrow \mathbb{N} \), a family of circuit of size \(t(n) \) is a sequence \((C_n)_{n \in \mathbb{N}} \) such that: \(C_n \) is an \(n \)-input circuit and \(|C_n| \leq t(n) \).

Definition 3 A language \(L \subseteq \{0,1\}^* \) is decided by a family of circuit \((C_n)_{n \in \mathbb{N}} \) if for all \(n \in \mathbb{N} \), for all \(w \in \{0,1\}^n \), we have: \(C_n(w) = 1 \iff w \in L \).

Definition 4 For a function \(t : \mathbb{N} \rightarrow \mathbb{N} \), we define \(\text{SIZE}(t) := \{L \subseteq \{0,1\}^* \mid L \text{ is decided by a family of circuits of size } O(t(n))\} \).

Definition 5 \(\text{P/poly} := \cup_{k \in \mathbb{N}} \text{SIZE}(n^k) \)

1. Show that any language \(L \subseteq \{0,1\}^* \) is in size \(\text{SIZE}(n \cdot 2^n) \).
2. Show that for all function \(t(n) = 2^{o(n)} \), there exists \(L \notin \text{SIZE}(t(n)) \).
3. Show that every unary language is in \(\text{P/poly} \).
4. Exhibit a undecidable language that is in \(\text{P/poly} \).
5. Show that \(\text{P/poly} \) is not countable.

Exercise 2 Some alternation

1. Exhibit a polynomial time alternating algorithm that solves QBF.
2. Let \(\text{ONE} – \text{VAL} \) be the problem of deciding whether a boolean formula is satisfied by exactly one valuation. Show that \(\text{ONE} – \text{VAL} \in \Sigma_2^p \).
3. A boolean formula is minimal if it has no equivalent shorter formula – where the length of the formula is the number of symbols it contains. Let \(\text{MIN} – \text{FORMULA} \) be the problem of deciding whether a boolean formula is minimal. Show that \(\text{MIN} – \text{FORMULA} \in \Pi_2^p \).
Exercise 3 Collapse of \(\text{PH} \)

1. Prove that if \(\Sigma^P_k = \Sigma^P_{k+1} \) for some \(k \geq 0 \) then \(\text{PH} = \Sigma^P_k \). (Remark that this is implied by \(P = \text{NP} \)).

2. Show that if \(\Sigma^P_k = \Pi^P_k \) for some \(k \) then \(\text{PH} = \Sigma^P_k \) (i.e. \(\text{PH} \) collapses).

3. Show that if \(\text{PH} = \text{PSPACE} \) then \(\text{PH} \) collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?

Exercise 4 Oracles

Consider a language \(A \). A Turing machine with oracle \(A \) is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states: \(q_{\text{query}}, q_{\text{yes}}, q_{\text{no}} \). Whenever the machine enters the state \(q_{\text{query}} \), with some word \(w \) written on the oracle tape, it moves \textbf{in one step} to the state \(q_{\text{yes}} \) or \(q_{\text{no}} \) depending on whether \(w \in A \).

We denote by \(\text{P}^A \) (resp. \(\text{NP}^A \)) the class of languages decided in by a deterministic (resp. non-deterministic) Turing machine running in polynomial time with oracle \(A \). Given a complexity class \(\mathcal{C} \), we define \(\text{P}^\mathcal{C} = \bigcup_{A \in \mathcal{C}} \text{P}^A \) (and similarly for \(\text{NP} \)).

1. Prove that for any \(\mathcal{C} \)-complete language \(A \) (for logspace reductions), \(\text{P}^\mathcal{C} = \text{P}^A \) and \(\text{NP}^\mathcal{C} = \text{NP}^A \).

2. Show that for any language \(A \), \(\text{P}^A = \overline{\text{P}}^A \) and \(\text{NP}^A = \overline{\text{NP}}^A \).

3. Prove that if \(\text{NP} = \text{P}^{\text{SAT}} \) then \(\text{NP} = \overline{\text{NP}} \).

4. Show that there exists a language \(A \) such that \(\text{P}^A = \overline{\text{NP}}^A \).

5. We define inductively the classes \(\text{NP}_0 = \text{P} \) and \(\text{NP}_{k+1} = \text{NP}_{\text{NP}_k} \). Show that \(\text{NP}_k = \Sigma^P_k \) for all \(k \geq 0 \).

\[^{1}\text{In fact, there also exists a language} \overline{B} \text{such that} \overline{\text{P}}^B \neq \overline{\text{NP}}^B, \text{which does not prove that} \text{P} \neq \text{NP}.\]