Exercise 1: One-minute-long exercise
Prove that any language $L \subset \{0, 1\}^*$ that is neither empty nor $\{0, 1\}^*$ is hard for NL for polynomial-time reductions.

Exercise 2: Graph representation and why it does not matter. Let $\Sigma = \{0, 1, /, \cdot, \#\}$ with $\#$ the end-of-word symbol. For a directed graph $G = (V, E)$ with $V = [0, n - 1]$ for some $n \in \mathbb{N}$ and $E \subseteq V \times V$, we consider the following two representations of G by a word in Σ^*:

- By its adjacency matrix $m_G \in \Sigma^*$:
 $$m_G \overset{\text{def}}{=} m_{0,0} m_{0,1} \cdots m_{0,n-1} \cdot \cdots \cdot m_{n-1,0} \cdots m_{n-1,n-1} \#$
 where for all $0 \leq i, j < n$, $m_{i,j}$ is 1 if $(i, j) \in E$, 0 otherwise.

- By its adjacency list $l_G \in \Sigma^*$:
 $$l_G \overset{\text{def}}{=} k_0^0 / \cdots / k_{m_1}^0 \cdot \cdots \cdot k_{m_i}^{n-1} / \cdots / k_{m_{n-1}}^{n-1} \#$
 where for all $0 \leq i < n$, $k_0^i, \ldots, k_{m_i}^i$ are binary words listing the (codes of) right neighbors of vertex i.

1. Show that it is possible to check in logarithmic space that a word $w \in \Sigma^*$ is a well-formed description of a graph (for any of the two representations).

2. Describe a logarithmic space bounded deterministic Turing machine taking as input a graph G, represented by its adjacency matrix, and computing the adjacency list representation of G.

Exercise 3: A few NL-complete problems
Show that the following problems are NL-complete for logspace reductions (you may use the fact that REACH is NL-hard for logspace reductions):

1. Deciding if a non-deterministic automaton A accepts a word w.

2. Deciding if a directed graph has a cycle.

Exercise 4: Inclusions of complexity classes

Definition 1 A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is said to be space-constructible if $\forall n \in \mathbb{N}, f(n) > \log(n)$ and there exists a deterministic Turing machine that computes $f(|x|)$ in space $O(f(|x|))$ given x as input.

Show that for a space-constructible function f,
$$\text{NSPACE}(f(n)) \subseteq \text{DTIME}(2^{O(f(n))})$$
Exercise 5: Restrictions in the definition of \(\text{SPACE}(f(n)) \)

In the course, we restricted our attention to Turing machines that always halt, and whose computations are space-bounded on every input. In particular, remember that \(\text{SPACE}(f(n)) \) is defined as the class of languages \(L \) for which there exists some deterministic Turing machine \(M \) that always halts (i.e. on every input), whose computations are \(f(n) \) space-bounded (on every input), such that \(M \) decides \(L \).

Now, consider the following two classes of languages:

- \(\text{SPACE}'(f(n)) \) is the class of languages \(L \) such that there exists a deterministic Turing machine \(M \), running in space bounded by \(f(n) \), such that \(M \) accepts \(x \) iff \(x \in L \). Note that if \(x \notin L \), \(M \) may not terminate.

- \(\text{SPACE}''(f(n)) \) is the class of languages \(L \) such that there exists a deterministic Turing machine \(M \) such that \(M \) accepts \(x \) using space bounded by \(f(n) \) iff \(x \in L \) (\(M \) may use more space and not even halt when \(x \notin L \)).

1. Show that for a space-constructible function \(f = \Omega(\log n) \), \(\text{SPACE}'(f(n)) = \text{SPACE}(f(n)) \)
2. Show that for a space-constructible function \(f = \Omega(\log n) \), \(\text{SPACE}''(f(n)) = \text{SPACE}(f(n)) \)