Complexité avancée - TD 5

Benjamin Bordais

October 21, 2020

Exercise 1 Family of circuits

Definition 1 A boolean circuit with n inputs is an acylic graph where the n inputs
Z1,...,Ty are part of the vertices. The internal vertices are labeled with N, V (with 2
incoming edges) or — (with 1 incoming edge), with an additional distinguished vertex o
that is the output (with no exiting edge). The size |C| of a circuit C is its number of
vertices (excluding the input ones). For a word x € {0,1}*, the notation C(x) refers to
the output of the circuit C' if the input vertices of C are valued with the bits of x.

Definition 2 For a function t : N — N, a family of circuit of size t(n) is a sequence
(Cn)nen such that: Cy, is an n-input circuit and |Cy| < t(n).

Definition 3 A language L C {0,1}* is decided by a family of circuit (Cy,)nen if for all
n €N, for all w € {0,1}", we have: Cp(w) =1< w € L.

Definition 4 For a functiont : N — N, we define SIZE(t) := {L C {0,1}* | L is decided by
a family of circuits of size O(t(n))}.

Definition 5
P/poly := UkeNSIZE(nk)

1. Show that any language L C {0,1}* is in size SIZE(n - 2™).

2. Show that for all function t(n) = 2°"), there exists L & SIZE(t(n)).
3. Show that every unary language is in P/poly.

4. Exhibit a undecidable language that is in P/poly.

5. Show that P/poly is not countable.

Solution:

1. Let L C {0,1}*. For all n € N, we define f,, : {0,1}" — { 0,1} by fno(w) =
1< we L, forall we {0,1}". Now, let n € N. Let us construct C,, with
O(n - 2™) vertices such that Cp(w) = fp(w) for all w € {0,1}". The function f,
can be represented as a two-column table with 2" entries where each valuation of n
variables to either 0 or 1 is associated 0 or 1. This table can represented as a DNF
¢ = vlgjgk(/\lgignxi = wlj) where (U}j)lgjgk (fOl“ some k < 2") are the words of

{0,1}™ ensuring f,(w;) = 1. Each clause (A1<i<n2; = w]) can be represented by a

circuit with O(n) vertices. As there are at most 2" of them, the formula ¢ can be
represented by circuit of size O(n - 2™).

2. Let us find an upper bound on the number of circuits d(n) of size t(n). There are
at most t(n) internal vertices, each labeled by either V, A, or =. Furthermore, each
vertex has at most two predecessors taken among n + t(n) vertices. Overall, we
have:

A(n) < 340 - () + 1)2)10) = (3 (t(n) +n)?)() = 2 s+

In addition, there are 22" functions from {0,1}* — {0,1}. Since t(n) = 2°",
we have t(n) - log((3 - (t(n) + n)?)) = 0o(2"). Thus d(n) = 2°C"). It follows that,
asymptotically, there is not enough circuits of size t(n) to compute all Boolean
functions.!

3. Consider a unary language L C 1*. For n € N we build the circuit C),, such that,
if 1" € L, then C), consists of A vertices leading to the output, whereas if 1" ¢ L,
we consider a circuit C), that always yields false (for instance, by having x A —z for
some input x). Then, for all n, we have |C,,| = O(n) and C,(w) =1 < w € L.

4. The language
L ={1"| the binary encoding of n encodes a Turing machine in that always stops}
is unary and undecidable.

5. There exists a bijection between the set of unary languages and the set of subsets
P(N) of N (which associates to a unary language L C 1* the set of n € N such that
1" € L). Since P(N) is not countable, so is P/poly.

Exercise 2 Some alternation

1. Exhibit a polynomial time alternating algorithm that solves QBF.

2. Let ONE — VAL be the problem of deciding whether a boolean formula is satisfied
by exactly one valuation. Show that ONE — VAL € 7.

3. A boolean formula is minimal if it has no equivalent shorter formula — where the
length of the formula is the number of symbols it contains. Let MIN — FORMULA
be the problem of deciding whether a boolean formula is minimal. Show that
MIN — FORMULA € I1%.

Solution:

1. gbf(nu, phi):
case (phi):

— phi: propositional formula
return yes iff nu stisfies phi

— phi = exists x, phi’
(exists) choose i in [0,1]
gbf(nu[x = i],phi’)

— phi = forall x, phi’
(forall) choose i in [0,1]
gbf(nu[x = i],phi’)

!Question and solution inspired from Sebastiaan A. Terwijn Complexity theory course notes.

Here, the number of alternations is unbounded.

2. OneVal(phi):
(exists) choose a valuation nu
if (nu satisfies phi)

then
(forall) choose a valuation nu’
if (nu’ does not satisfy phi) or (nu = nu’)
then return TRUE
else return FALSE
else

return FALSE

Here we have one alternation, with first the existential states (exists) and then the
universal states (forall).

3. MinFormula(phi):
(forall) choose a formula psi with |psi| < |phi]
(exists) choose a valuation nu
if nu does not satisfy phi <—> psi
then
return TRUE

else
return FALSE

Here we have one alternation, with first the universal states (forall) and then the
existential states (exists).

Exercise 3 Collapse of PH

1. Prove that if ka = Efﬂ for some £ > 0 then PH = ka. (Remark that this is
implied by P = NP).

2. Show that if X = II" for some k then PH = X¥ (i.e. PH collapses).
3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula
into a QBF formula with at most 10 variables ?

Solution:
First, note that Ekp = co Hf for all £ > 0. In the following, all quantifications are made
with a polynomial bound on the size of the variables considered.

1. Let us assume that Ef = Zf 41 for some k > 0, we prove by induction that
Vi > k,Zf = Ef, This holds for j = i. Now, consider some j > ¢ and assume

that EkP =...= Ef_l. Let L € Zf. There exists a language B € P ensuring:
x € Le Iy, Yy, ..., Qjyj, (x,y1,...,y;) € B.
Let L' = {(z,y1) | [y| < p(l2]) AVy2, ..., Qjy5, (z,51,92,...,y;) € B} for some

polynomial function p. We have L' € Hﬁl = co Zﬁl = co Zf = H,Ij. That is,
v €L 3y, (z,y1) € L' with L’ € IIF. In fact, L € ©f ., = Xt by hypothesis.

2. With the previous question, we just have to prove that ©F = %

k+1-
Let L € Ef +1- As previously, There exists a language B € P ensuring: =z € L &

Jy1, Yyo, -y Qrr1Yks1, (2,91, Yk11) € B .

We deﬁne L, = {(‘T7y1) ’ |y1| S p(|$’) /\VZUQ, ey Qk+1yk+17 (x7y17y27 cee 7yk+1) S
B} for some polynomial function p. We have L' € II¥ = Z}j by hypothesis.

That is, there exists B’ € P such that x € L' & 3y, Yyo, ..., Qryk, (T, y1,---,Yx) €
B’. But then, we have x € L < 3y, (x,y) € L. This is equivalent to =z €
L & Jy, 3, Yy, ...y Quyk, (x,y,y1,...,yx) € B’. This can be rephrased as
zeLe, Yy, ..., Qrug, (2,Y,...,yk) € B'. It follows that L € X

. If PH = PSPACE, then QBF is in Ekp for some k. But QBF is a complete problem

for PSPACE, and thus PH. Let there be B € PH, it can be reduced to QBF € Ef in
logspace, so B € Z,f. That is, PH = ZkP

. It is unlikely that PH collapses, and the statement would imply the previous ques-

tion.

Exercise 4 Oracles

Consider a language A. A Turing machine with oracle A is a Turing machine with a special
additional read /write tape, called the oracle tape, and three special states: gquery, Gyes, Gno-
Whenever the machine enters the state gguery, With some word w written on the oracle
tape, it moves in one step to the state gyes or ¢n, depending on whether w € A.

We denote by P4 (resp. NPA) the class of languages decided in by a deterministic
(resp. non-deterministic) Turing machine running in polynomial time with oracle A.
Given a complexity class C, we define P¢ = |J 4., P (and similarly for NP).

1.

Prove that for any C-complete language A (for logspace reductions), P¢ = P4 and
NPC = NP4

. Show that for any language 4, PA = PA and NP4 = NP4,
. Prove that if NP = PSAT then NP = coNP.
. Show that there exists a language A such that P4 = NP4 2

. We define inductively the classes NPy = P and NPy, = NPNPx. Show that NPy =

¥ for all k > 0.

Solution:

1.

We do the proof for NP. Obviously, we have NP¢ D NPA. Now, B € NPC. There
exists a non-deterministic Turing machine running in polynomial time deciding B
with an oracle C' € C. We also have a logspace (and hence polynomial time) re-
duction f such that: x € C < f(x) € A since A is hard for C. We build the
non-deterministic Turing machine N’ that executes N while replacing a call u € C?
with a call f(u) € A?. The Turing machine N’ also runs in polynomial time and
decides B with the oracle A. That is, B € NP4,

2In fact, there also exists a language B such that P? % NPZ, which does not prove that P # NP.

2. We simply have to swap the states gyes and gy, in the computation.

3. PSAT is a deterministic class, so it is closed by complementation. Hence, if NP =
PSAT we have coNP = NP

4. Consider A = QBF. By question 1, we have PQBF — PPSPACE 4,4 NPRBF —
NPPSPACE Furthermore, NPPSPACE C NPSPACE since one can simulate the calls

to the oracle in polynomial space (as there is a polynomial number of calls). There-
fore, NPPSPACE C NPSPACE C PSPACE C PPSPACE,

