
Complexité avancée - TD 5

Benjamin Bordais

October 21, 2020

Exercise 1 Family of circuits

Definition 1 A boolean circuit with n inputs is an acylic graph where the n inputs
x1, . . . , xn are part of the vertices. The internal vertices are labeled with ∧, ∨ (with 2
incoming edges) or ¬ (with 1 incoming edge), with an additional distinguished vertex o
that is the output (with no exiting edge). The size |C| of a circuit C is its number of
vertices (excluding the input ones). For a word x ∈ {0, 1}∗, the notation C(x) refers to
the output of the circuit C if the input vertices of C are valued with the bits of x.

Definition 2 For a function t : N → N, a family of circuit of size t(n) is a sequence
(Cn)n∈N such that: Cn is an n-input circuit and |Cn| ≤ t(n).

Definition 3 A language L ⊆ {0, 1}∗ is decided by a family of circuit (Cn)n∈N if for all
n ∈ N, for all w ∈ {0, 1}n, we have: Cn(w) = 1⇔ w ∈ L.

Definition 4 For a function t : N→ N, we define SIZE(t) := {L ⊆ {0, 1}∗ | L is decided by
a family of circuits of size O(t(n))}.

Definition 5
P/poly := ∪k∈NSIZE(nk)

1. Show that any language L ⊆ {0, 1}∗ is in size SIZE(n · 2n).

2. Show that for all function t(n) = 2o(n), there exists L 6∈ SIZE(t(n)).

3. Show that every unary language is in P/poly.

4. Exhibit a undecidable language that is in P/poly.

5. Show that P/poly is not countable.

Solution:

1. Let L ⊆ {0, 1}∗. For all n ∈ N, we define fn : {0, 1}n → { 0, 1} by fn(w) =
1 ⇔ w ∈ L, for all w ∈ {0, 1}n. Now, let n ∈ N. Let us construct Cn with
O(n · 2n) vertices such that Cn(w) = fn(w) for all w ∈ {0, 1}n. The function fn
can be represented as a two-column table with 2n entries where each valuation of n
variables to either 0 or 1 is associated 0 or 1. This table can represented as a DNF
φ = ∨1≤j≤k(∧1≤i≤nxi = wj

i) where (wj)1≤j≤k (for some k ≤ 2n) are the words of

{0, 1}n ensuring fn(wi) = 1. Each clause (∧1≤i≤nxi = wj
i) can be represented by a

circuit with O(n) vertices. As there are at most 2n of them, the formula φ can be
represented by circuit of size O(n · 2n).

1

2. Let us find an upper bound on the number of circuits d(n) of size t(n). There are
at most t(n) internal vertices, each labeled by either ∨, ∧, or ¬. Furthermore, each
vertex has at most two predecessors taken among n + t(n) vertices. Overall, we
have:

d(n) ≤ 3t(n) · ((t(n) + n)2)t(n) = (3 · (t(n) + n)2)t(n) = 2t(n) log((3·(t(n)+n)2))

In addition, there are 22n functions from {0, 1}n → {0, 1}. Since t(n) = 2o(n),
we have t(n) · log((3 · (t(n) + n)2)) = o(2n). Thus d(n) = 2o(2n). It follows that,
asymptotically, there is not enough circuits of size t(n) to compute all Boolean
functions.1

3. Consider a unary language L ⊆ 1∗. For n ∈ N we build the circuit Cn such that,
if 1n ∈ L, then Cn consists of ∧ vertices leading to the output, whereas if 1n 6∈ L,
we consider a circuit Cn that always yields false (for instance, by having x∧¬x for
some input x). Then, for all n, we have |Cn| = O(n) and Cn(w) = 1⇔ w ∈ L.

4. The language

L = { 1n | the binary encoding of n encodes a Turing machine in that always stops}

is unary and undecidable.

5. There exists a bijection between the set of unary languages and the set of subsets
P(N) of N (which associates to a unary language L ⊆ 1∗ the set of n ∈ N such that
1n ∈ L). Since P(N) is not countable, so is P/poly.

Exercise 2 Some alternation

1. Exhibit a polynomial time alternating algorithm that solves QBF.

2. Let ONE− VAL be the problem of deciding whether a boolean formula is satisfied
by exactly one valuation. Show that ONE− VAL ∈ Σp

2.

3. A boolean formula is minimal if it has no equivalent shorter formula – where the
length of the formula is the number of symbols it contains. Let MIN− FORMULA
be the problem of deciding whether a boolean formula is minimal. Show that
MIN− FORMULA ∈ Πp

2.

Solution:

1. qbf (nu , phi) :
case (phi) :

− phi : p r o p o s i t i o n a l formula
re turn yes i f f nu s t i s f i e s phi

− phi = e x i s t s x , phi ’
(e x i s t s) choose i in [0 , 1]
qbf (nu [x = i] , phi ’)

− phi = f o r a l l x , phi ’
(f o r a l l) choose i in [0 , 1]
qbf (nu [x = i] , phi ’)

1Question and solution inspired from Sebastiaan A. Terwijn Complexity theory course notes.

2

Here, the number of alternations is unbounded.

2. OneVal (phi) :
(e x i s t s) choose a va luat i on nu
i f (nu s a t i s f i e s phi)
then

(f o r a l l) choose a va lua t i on nu ’
i f (nu ’ does not s a t i s f y phi) or (nu = nu ’)
then return TRUE
e l s e re turn FALSE

e l s e
re turn FALSE

Here we have one alternation, with first the existential states (exists) and then the
universal states (forall).

3. MinFormula (phi) :
(f o r a l l) choose a formula p s i with | p s i | < | phi |
(e x i s t s) choose a va luat i on nu
i f nu does not s a t i s f y phi <−> p s i
then

return TRUE
e l s e

re turn FALSE

Here we have one alternation, with first the universal states (forall) and then the
existential states (exists).

Exercise 3 Collapse of PH

1. Prove that if ΣP
k = ΣP

k+1 for some k ≥ 0 then PH = ΣP
k . (Remark that this is

implied by P = NP).

2. Show that if ΣP
k = ΠP

k for some k then PH = ΣP
k (i.e. PH collapses).

3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula
into a QBF formula with at most 10 variables ?

Solution:
First, note that ΣP

k = co ΠP
k for all k ≥ 0. In the following, all quantifications are made

with a polynomial bound on the size of the variables considered.

1. Let us assume that ΣP
k = ΣP

k+1 for some k ≥ 0 , we prove by induction that

∀j ≥ k,ΣP
k = ΣP

j , This holds for j = i. Now, consider some j > i and assume

that ΣP
k = . . . = ΣP

j−1. Let L ∈ ΣP
j . There exists a language B ∈ P ensuring:

x ∈ L⇔ ∃y1, ∀y2, . . . , Qjyj , (x, y1, . . . , yj) ∈ B.

Let L′ = {(x, y1) | |y1| ≤ p(|x|) ∧ ∀y2, . . . , Qjyj , (x, y1, y2, . . . , yj) ∈ B} for some
polynomial function p. We have L′ ∈ ΠP

j−1 = co ΣP
j−1 = co ΣP

k = ΠP
k . That is,

x ∈ L⇔ ∃y1, (x, y1) ∈ L′ with L′ ∈ ΠP
k . In fact, L ∈ ΣP

k+1 = ΣP
k by hypothesis.

3

2. With the previous question, we just have to prove that ΣP
k = ΣP

k+1.

Let L ∈ ΣP
k+1. As previously, There exists a language B ∈ P ensuring: x ∈ L ⇔

∃y1, ∀y2, . . . , Qk+1yk+1, (x, y1, . . . , yk+1) ∈ B .

We define L′ = {(x, y1) | |y1| ≤ p(|x|) ∧ ∀y2, . . . , Qk+1yk+1, (x, y1, y2, . . . , yk+1) ∈
B} for some polynomial function p. We have L′ ∈ ΠP

k = ΣP
k by hypothesis.

That is, there existsB′ ∈ P such that x ∈ L′ ⇔ ∃y1, ∀y2, . . . , Qkyk, (x, y1, . . . , yk) ∈
B′. But then, we have x ∈ L ⇔ ∃y, (x, y) ∈ L′. This is equivalent to x ∈
L ⇔ ∃y,∃y1, ∀y2, . . . , Qkyk, (x, y, y1, . . . , yk) ∈ B′. This can be rephrased as
x ∈ L⇔ ∃y′, ∀y2, . . . , Qkyk, (x, y′, . . . , yk) ∈ B′. It follows that L ∈ ΣP

k .

3. If PH = PSPACE, then QBF is in ΣP
k for some k. But QBF is a complete problem

for PSPACE, and thus PH. Let there be B ∈ PH, it can be reduced to QBF ∈ ΣP
k in

logspace, so B ∈ ΣP
k . That is, PH = ΣP

k

4. It is unlikely that PH collapses, and the statement would imply the previous ques-
tion.

Exercise 4 Oracles

Consider a language A. A Turing machine with oracle A is a Turing machine with a special
additional read/write tape, called the oracle tape, and three special states: qquery, qyes, qno.
Whenever the machine enters the state qquery, with some word w written on the oracle
tape, it moves in one step to the state qyes or qno depending on whether w ∈ A.

We denote by PA (resp. NPA) the class of languages decided in by a deterministic
(resp. non-deterministic) Turing machine running in polynomial time with oracle A.
Given a complexity class C, we define PC =

⋃
A∈C P

A (and similarly for NP).

1. Prove that for any C-complete language A (for logspace reductions), PC = PA and
NPC = NPA.

2. Show that for any language A, PA = PĀ and NPA = NPĀ.

3. Prove that if NP = PSAT then NP = coNP.

4. Show that there exists a language A such that PA = NPA.2

5. We define inductively the classes NP0 = P and NPk+1 = NPNPk . Show that NPk =
Σp
k for all k ≥ 0.

Solution:

1. We do the proof for NP. Obviously, we have NPC ⊇ NPA. Now, B ∈ NPC . There
exists a non-deterministic Turing machine running in polynomial time deciding B
with an oracle C ∈ C. We also have a logspace (and hence polynomial time) re-
duction f such that: x ∈ C ⇔ f(x) ∈ A since A is hard for C. We build the
non-deterministic Turing machine N ′ that executes N while replacing a call u ∈ C?
with a call f(u) ∈ A?. The Turing machine N ′ also runs in polynomial time and
decides B with the oracle A. That is, B ∈ NPA.

2In fact, there also exists a language B such that PB 6= NPB , which does not prove that P 6= NP.

4

2. We simply have to swap the states qyes and qno in the computation.

3. PSAT is a deterministic class, so it is closed by complementation. Hence, if NP =
PSAT, we have coNP = NP

4. Consider A = QBF. By question 1, we have PQBF = PPSPACE and NPQBF =
NPPSPACE. Furthermore, NPPSPACE ⊆ NPSPACE since one can simulate the calls
to the oracle in polynomial space (as there is a polynomial number of calls). There-
fore, NPPSPACE ⊆ NPSPACE ⊆ PSPACE ⊆ PPSPACE.

5

