
Complexité avancée - TD 4

Benjamin Bordais

October 14, 2020

Exercise 1 A translation result

Show that if P = PSPACE, then EXPTIME = EXPSPACE.

Solution:
In any case, we have EXPTIME ⊆ EXPSPACE. Let us assume that PSPACE = P and

let us show that EXPSPACE ⊆ EXPTIME. Let L1 ∈ EXPSPACE be a language accepted
by a Turing machine M1 running in 2n

c
space, for some c ≥ 1. We define:

L2 = {(x, 12|x|
c

) | x ∈ L1}

A Turing machine M2 which launches M1 on x for an input w = (x, 12
|x|c

) (after checking
the size of w) accepts L2 and runs in space O(|w|). Hence, L2 ∈ PSPACE ⊆ P. Therefore,
there exists a Turing machine M3 running in polynomial time accepting L2. Now, consider

a Turing machine M4 that, on an input x, computes w = (x, 12
|x|c

) in exponential time
and then launches M3. Then, M4 accepts L1 and runs in exponential time. That is,
L1 ∈ EXPTIME and EXPTIME ⊆ EXPSPACE.

Exercise 2 Unary languages

Recall that a unary language is any language over a one-letter alphabet.

1. Prove that if a unary language is NP-complete, then P = NP.

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Consider a unary language L (say on the alphabet Σ = {1}) that is NP-complete
and a reduction polynomial time reduction tr ensuring φ ∈ SAT ⇔ tr(φ) ∈ L. We
have |tr(φ)| ≤ a · |φ|c for some a, c ≥ 1. We design a polynomial time algorithm
that solves SAT. Consider a SAT formula φ. For a variable x appearing in φ, we
denote by φ[x ← True] the (simplification of the) formula φ where x is set to True
(and similarly φ[x← False]). Note that |φ[x← True]| ≤ |φ| and |φ[x← False]| ≤ |φ|
We maintain a list l of pairs (tr(ϕ), ϕ) such that φ is satisfiable if and only if one
of the formula of l is satisfiable while ensuring |l| ≤ 2 × a · |φ|c. Initially, we set
l = {(tr(φ), φ)}. Then, we loop over the variables x1, . . . , xn of φ and, at each
iteration dealing with a variable xi for some 1 ≤ i ≤ n, we proceed in two steps:

• for all pair p = (tr(ϕ), ϕ) in l, we add (tr(ϕ[xi → True]), ϕ[xi → True]) and
(tr(ϕ[xi → False]), ϕ[xi → False]) and we remove p.

1

• for all 1 ≤ k ≤ a · |φ|c, we keep (at most) one pair (1k, ϕ) and remove the other
from l.

By construction, at the end of each iteration, we have |l| ≤ a · |φ|c because, for all
formula ϕ on which tr is applied, we have tr(ϕ) ∈ {1k | 1 ≤ k ≤ a · |φ|c}. Therefore,
l is of size at most 2 · a · |φ|c (which may be achieved at the end of the first step).
Furthermore, if at the beginning of an iteration we have the equivalence that φ is
satisfiable if and only if one of the formula of l is satisfiable, we still have it at
the end of the iteration. Indeed, it is straightforward that this holds at the end
of the first step. Furthermore, if tr(ϕ) = tr(ϕ′) for two formulas ϕ and ϕ′, then
ϕ ∈ SAT ⇔ ϕ′ ∈ SAT. It follows that the property still holds at the end of the
second step and at the end of the iteration. Then, the final step is to check that
the list obtained contains a pair (1k,True) for some k. The algorithm we described
runs in polynomial time and decides SAT. Therefore SAT ∈ P.

2. Consider L ∈ NEXPTIME. For convenience, we assume that L is on the alphabet
Σ = {0, 1}. Consider a non-deterministic machine M that decides L in time O(2n

c
)

for some c ≥ 1. Then, consider the language L̃ = {1f(x) | x ∈ L} for some function
f : Σ∗ → N. We want the following to be ensured:

(a) f is injective;

(b) 2|x|
c ≤ f(x) for all x ∈ Σ∗;

(c) f is computable in (unary) exponential time.

Assume that we have such a function f (we will discuss later on how to build such a
function). Then, L̃ is a unary language in NP: indeed, given an input, one can guess
x and run M on x. The time taken is in O(2|x|

c
) = O(|1f(x)|) by assumption (b). It

follows that L̃ ∈ P. Consider a Turing machine M ′ deciding L̃ in polynomial time.
Then, we build the Turing machine M ′′ that decide L in exponential time: on an
input x, M ′′ builds w = 1f(x), which can be done in exponential time by assumption
(c) and launches M ′ on w. It takes time in O(p(f(x))) for some polynomial function
p. Since f is injective (assumption (a)), we have w ∈ L̃⇔ x ∈ L.

For the implementation of f , one may consider f(x) = bin(1|x|
c · x) for all x ∈ Σ∗

where bin is the binary value of a word written in binary with highest bit on the
left.

Exercise 3 P-choice

A language L is said to be P-peek, written L ∈ Pp, if there is a function f : Σ∗×Σ∗ → Σ∗,
computable in polynomial time, such that ∀x, y ∈ Σ∗ :

• f(x, y) ∈ {x, y},

• if x ∈ L or y ∈ L then f(x, y) ∈ L.

In that case, f is called the peeking function for L.

1. Show that P ⊆ Pp.

2. Show that Pp is closed under complementation.

3. Show that if there exists a NP-hard language in Pp then P = NP.

2

Solution:

1. Consider L ∈ P. We build f such that, on an input w = (x, y), f checks in
polynomial time if x ∈ L. If so it returns x, otherwise, it returns y. Then, we have
L ∈ Pp.

2. Consider L ∈ Pp and its peeking function f . Let us consider f ′ such that f ′(x, y) = x
if f(x, y) = y and y otherwise. One can check that f ′ is a peeking function the
complement of L.

3. Consider a polynomial time reduction tr from SAT to L ∈ Pp with the peeking
function f . We design the following algorithm that runs in polynomial time and
decides SAT:

a (s) :
i f s = True :
then accept ;
e l i f s = False :
then r e j e c t ;
e l s e
l e t x in Var (s) ;
i f f (t r (s [x <− True]) , t r (s [x <− False])) = t r (s [x <− True]) :
then a (s [x <− True]) ;
e l s e a (s [x <− False])

Computing f and tr can be done in polynomial time and there is |V ar(s)| recursive
call where V ar(s) is the set of variables appearing in the formula s. Hence the
algorithm runs in polynomial time. The correction of the algorithm comes from the
definition of a peeking function.

Exercise 4 Regular language

Let REG denote the set of regular/rational languages.

1. Show that for all L ∈ REG, L is recognized by a TM running in space 0 and time
n+ 1.

2. Exhibit a language recognized by a TM running in space log n and time O(n) that
is not in REG.

Solution:

1. Consider L ∈ REG. It is recognized by a finite automaton A. We consider the TM
with the same states than A that, on an input w, simulates the execution of w on
A and accepts if A does. This TM does not consumes any space and runs in time
n+ 1 (the n+ 1-th step reads the first blank after the input and accepts/rejects).

2. The language L = {an · bn | n ≥ 0} is not regular and can be recognized by a TM
that counts the number of a with a binary counter, decrements it for each b seen
and accepts if, at the end of the word, the counter equal 0.

3

Exercise 5 On the existence of one-way functions

A one-way function is a bijection f from k-bit integers to k-bit integers such that f
is computable in polynomial time, but f−1 is not. Prove that if there exist one-way
functions, then

A
def
= {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P .

Solution:

1. A ∈ NP: consider a Turing machine that, on an input w = (x, y), guesses a number
c (with |c| = |x|) and checks in polynomial time that f(c) = x and c < y. This
non-deterministic TM runs in polynomial time and accepts the language A.

2. A ∈ coNP⇔ {(x, y) | f−1(x) ≥ y} ∈ NP , which we solve as previously.

3. Assume that A ∈ P . Then we build a Turing machine running in polynomial time
that computes f−1: On an input x such that |x| = n, there is 2n possibility for the
value of f−1(x). We consider a TM that proceeds by a dichotomic search on the
possible values v of f−1(x) until it finds some v with (x, v − 1) ∈ A and (x, v) 6∈ A
and deduce f−1(x) = v − 1. Since at most n tests are necessary and each test is
polynomial time, this TM runs in polynomial time.

Exercise 6 Too fast!

Show that ATIME(log n) 6= L.

Solution: When considering ATIME(log n), we do not even have the time to read the
full input. So any language which is in L and needs for the input to be completely read
will yield the result. For instance, one may use the palindromes language, or 0n on a two
letter alphabet, or 02k on a one letter alphabet.

4

