Complexité avancée - TD 2

Benjamin Bordais

September 30, 2020

Exercise 1: Dyck’s language

e Let A be the language of balanced parentheses — that is the language generated by
the grammar S — (5)|SS|e. Show that A € L.

e What about the language B of balanced parentheses of two types? that is the
language generated by the grammar S — (5)|[S]|SS]e

Solution:

e We describe an algorithm running in logarithmic space. We read the input from
left to right while maintaining a “balancing” counter on a working tape with initial
value zero, and increment (resp. decrement) it when reading ’(’ (resp. ’)’). We
reject if the counter ever becomes negative, and accept if the counter is zero at the
end of the input. Since the counter can never exceed the input length n, it is a
loga(n)-bit number.

e Let us show that B € L. We say that each symbol has a type, either round or
square, and that each symbol is a left or right bracket regardless of the type. Each
left bracket has a right bracket which is its partner, and our goal is to check that
every left bracket’s partner is of the same type. To find its partner we use a counter
as in question 1 above. First, we check that the word is in the bracket language
of question 1 if we ignore round vs. square, so that every left bracket has a right
partner.

There now remains to check that every opening bracket is partnered with a closing
bracket of the same type (round or square). For this we observe that if z[i] is an
opening bracket matched at position j by a closing bracket, the factor z[i + 1:5 — 1]
is a well-balanced word. So it is enough to loop over all i = 1,...,n such that z[i]
is an opening bracket and run the algorithm for well-balanced words starting from
position ¢ + 1. When the “balancing” counter first becomes negative, this indicates
that we have arrived at the position 7 matching . We now check that the closing
parenthesis at 7 has the same type as its partner at ¢. This uses two counters: one
for looking at all positions ¢ and the “balancing” counter used by the subprogram
on the x[i + 1:j] factor.

Then, to check that partners match, we use the following pseudocode:

i=1
do until i exceeds the length of the input {



move i-1 steps from the left end of the input
read the input symbol a // a = w(i)

if a is a left bracket {

c=1

do until ¢ = 0 { // find w(i) partner
move right and read the next input symbol b
if b is a left bracket, increment c

if b is a right bracket, decrement c

b

if a and b are of different types, reject

b

}

accept

Exercise 2: Restrictions of the SAT problem

1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals
(called 3-clauses). In other words, the input is a finite set S of 3-clauses, and the
question is whether S is satisfiable. Show that 3-SAT is NP-complete for logspace
reductions (assuming SAT is).

2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals
(called 2-clauses). Show that 2-SAT is in P, using proofs by resolution.

3. Show that 2-UNSAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-complete.

4. Conclude that 2-SAT is NL-complete. You may use that coNL = NL.

Solution:

1. First, the problem is in NP as a sub case of SAT. We now must be able to transform
any instance of SAT into an instance of 3-SAT by using only logarithmic space. The
idea is the following: consider a clause C' = [ V Iy V L where L is a non-empty
subclause. Then, C and C, A C-, are equisatisfiable where C, = I1 V o V x and
C-z = —xV L for some fresh variable z. Indeed, consider a valuation (that does not
contain z) satisfying C. Then if I; V ls is satisfied, C, also is and we set x to false
to satisfy C-,. If L is satisfied, we set x to true so that C, also is. Reciprocally, if
C, N C-, is satisfied for some valuation (containing x), by a case disjonction on the
truth value of x, we can With this transformation, we have a new 3-clause C),, and
a new clause C_, that is not necessarily a 3-clause but it is a clause with one less
literal than C'. Hence, from a SAT formula ¢ = A C}, if n; refers to the number of
literals in clause Cj, we have to do k = > | l; — 3 such transformations to obtain
an equisatisfiable formula with only 3-clauses.

Let us show that this transformation can be done in logarithmic space. We denote
by N the size of the input. We first read the input to obtain the number n of
variables, and write n+1 (in binary) on a work tape B. Then, we treat each clauses
one after the other. For a clause C;, we keep a pointer on the subclause L;, we
copy the first two literals, we add the fresh variable x (by copying the content of the
tape B) and we write -z, then we increment the counter on the tape B. While the



pointer we keep on L is followed by at least three literals, we copy the first literal
and copy a new fresh variable.

The counter written in binary in the tape B equals at most n + k = O(log N). It
can then be represented in logspace, as can the pointer on the remaining subclause.
Overall, this can be done in logarithmic space.

. From the formula ¢, we construct a graph G, where the nodes are all the variables
in ¢ and their negation. For every clause C' = [1 V [y we create an edge from —ly to
lo and one from —ly to ;. We denote the fact that there is a directed path from ¢
to s in G, by t —* s. Then, we claim that ¢ is satisfiable if and only if there is no
variable x such that x —* -~z —* x. First, it is straightforward to show that if we
have path | —* I’ in G, for two literals [ and I, then we have ¢ = (I = ') [Proof
idea: by induction on the length of the path, the base case uses the definition of
edges from ¢|. Finally, if G, has a cycle + —* =2 —* x for some variable = then ¢
entails (z = —x) A (-z = z), i.e., ¢ entails a contradiction and must be uniformly
false, i.e. not satisfiable. That proves direction “ =" of the above claim.

Let us now prove the reverse direction. We assume that there is no such literal and
must show that ¢ is satisfiable. We define by induction on 1 < ¢ < n the valuation
of z; and a graph G; as follow. We set Gg = G, and for 1 < ¢ < n, if we have
—x; —* x; in G471 then we set z; to true and G; = G;_1. Otherwise, x; is set
to false and G is obtained from G;_; by adding an edge between z; and —x;. By
induction, we show that for all 0 < ¢ < n, the graph G; does not contain a cycle
going through a literal and its negation. It is true for Gy by hypothesis. Now,
consider 7 > 1 assume this holds for G;_1. The case G; = G;_1 is obvious. Assume
that G; is obtained from G;_; by adding an edge between x; to —x;. Assume that
there is a cycle going through a literal and its negation in G;. Since there is none
in G;_1, it must use the arc x; — —x;. Therefore, there is a path from —z; to x; in
G;, which also exists in GG;_1. Hence the contradiction since we consider the case
where —x; —* x; does not hold. By construction we also have that, for all variable
x, in Gy, either x —* —x or ~z —* .

Now, consider the valuation v : {z; | 1 <i <n} — {T, F'} that we have constructed.
We have that, for all literal [, v(l) =T < (=l =" ) and v(I) = F < (I =* =l).
Let us show that the valuation v satisfies ¢. Consider a clause C' = (11 V la). If
v(l1) =T, C is satisfied. Now, assume that v(l;) = F. Then, we have [; —* —l;.
Furthermore, by construction of G, = Gg, we have —ls — [; and —l; — [>. Hence,
we have the path —ly —* lo. That is, v(l2) = T and the clause is satisfied. This
holds for all clauses of ¢.

It follows that 2 — SAT is in P since the construction of the graph can be done in
polynomial time and and so can checking the existence of a cycle going through a
literal and its negation.

. In the previous question, we have established that a 2-SAT formula ¢ is satisfiable if
and only if, in the graph G, there exists a variable x so that x —* -z —* . Hence,
the unsatisfability of a 2-SAT formula ¢ can be decided in logarithmic space. Note
that the graph G, is never constructed in its entirety. We only keep a pointer on
the current vertex and we check the formula ¢ to determine which are the possible
successors. By doing, we can guess a variable = and call REACH (G, z,~x) and

REACH (G, —x,x).



Let us prove that the UNSAT is NL-hard. Consider an instance (G, s,t) of REACH.
We construct a 2-SAT formula ¢ from G by adding a 2-clause —u V v, i.e. “u = v”,
for every edge (u,v) in G. We also add two unit clauses: s and —t. Then, if s —* ¢
in G, ¢ entails the implication s = ¢ (or =sVt), hence ¢ is false since it also contains
s and —t as clauses. On the other hand, assuming that ¢ is not reachable from s, we
can construct a valuation satisfying ¢: we assign true to every variable reachable
from s in G, and false to the unreachable ones (in particular, ¢ is set to false). Then,
the clauses s and —t are satisfied. Furthermore, consider a clause (—u V v) of ¢. If
u is set to false, the clause is satisfied, otherwise u is set to true, which means that
it is reachable from s, and so is v. Hence v is set to true and the clause is satisfied.
Finally we have shown that ¢ is not satisfiable if and only if (G, s,t) is a positive
instance of REACH, i.e., our reduction is correct. Since this transformation can be
done in logarithmic space, we can conclude that UNSAT is NL-complete.

4. 2-SAT = 2-UNSAT is in NL = coNL. Hence, 2-SAT is in NL. Furthermore, for any
language A € NL, A € coNL = NL can be reduced in logspace to 2-UNSAT that is NL-

complete. The same reduction can be used to reduce A = A to 2-UNSAT = 2-SAT.



