
Complexité avancée - TD 3

Benjamin Bordais

October 07, 2020

Exercise 1 Space hierarchy theorem

Consider two space-constructible functions f and g such that f(n) = o(g(n)). Prove that
DSPACE(f) (DSPACE(g).

Hint: You may consider a language L = {(M,w′) | the simulation of M on (M,w′) rejects }
with an appropriate restriction on the simulation of M .

Solution:
First, we have DSPACE(f) ⊆ DSPACE(g) since f(n) ≤ g(n) for a high enough n. Let

us show that this inclusion is strict.
We define the following language:

L = {(M,w′) | the simulation of M on (M,w′) rejects using space ≤ g(|M,w′|)}

.

• First, we show that L ∈ SPACE(g). We describe the steps taken by a Turing
machine M ′ on an input w = M,w′. M ′ first computes g(|w|) (which can be done
in space O(g(|w|)) since g is space constructible) and marks down an end of tape
marker at position g(|w|) on the work tape: if more space is used, M ′ rejects. Then,
M ′ simulates M on w by rejecting if the number of steps taken is bigger than
|QM | · g(|w|)kM · |ΓM |kM ·g(|w|) (where QM is the set of states, ΓM is the alphabet
and kM is the number of working tapes of the Turing machine M). Then, if w
is accepted by M , M ′ rejects, otherwise M ′ accepts. Then, this Turing Machine
M accepts the language L and runs in space O(g(|w|)). We conclude by using the
speed-up theorem.

• Second, we show that L 6∈ SPACE(f). Let us assume towards a contradiction that
there is a machine M ′ recognizing L in space f . Simulating M ′ on an input w takes
space in O(f(|w|)) = c × f(|w|) where the constant c only depends on the Turing
Machine M (its number of states, size of alphabet, number of work tapes). For a
sufficiently long w′, we have c × f(|M ′, w′|) ≤ g(|M ′, w′|). Then, if (M ′, w′) ∈ L,
the simulation of M ′, and therefore M ′ rejects (M ′, w′). However, since M ′ accepts
L, M ′ also accepts (M ′, w′). Hence the contradiction. Let us now assume that
(M ′, w′) 6∈ L. Since the space used by the simulation of M ′ is c × f(|M ′, w′|) ≤
g(|M ′, w′|), we can conclude that M ′ accepts (M ′, w′) by definition of L. But then,
since the language L is accepted by M ′, we should have (M ′, w′) ∈ L. Hence the
contradiction. In fact, there is no such Turing Machine M ′.

Exercise 2 Polylogarithmic space

1

1. Let polyL = ∪k∈NSPACE(logk). Show that polyL does not have a complete problem
for logarithmic space reduction.1

2. We recall that PSPACE = ∪k∈NSPACE(nk). Does PSPACE have a complete problem
for logarithmic space reduction ? Why doesn’t the proof of the previous question
apply to PSPACE?

Solution:

1. Assume towards a contradiction that there exists a polyL-complete problem L for
logspace reduction. Then, there exists k ∈ N such that L ∈ SPACE(logk). Let us
show that SPACE(logk) = SPACE(logk+1), which is a contradiction with the space
hierarchy theorem. Let L′ ∈ SPACE(logk+1) ⊆ polyL. There exists a reduction f
of L′ to L that can be computed in logarithmic space since L is polyL-complete.
Now, consider a Turing machine that, on an input w, computes f(w) in logarithmic
space and then simulates a Turing machine deciding L that runs in space logk on
f(w). Note that here, it is important not store f(w) on a working tape as this
could make the space used exceed the logk space bound. Instead, one must use a
virtual tape where we only compute bits of f(w) when they are needed without
remembering the whole computation. Then, note that |f(w)| = O(|w|c) for some
c ≥ 0. Hence, the space used to check if f(w) is in L is lower than logk(|f(w)|)
hence is in ck · logk(O(|w|)) = O(logk(|w|)). We conclude with the speed-up theorem
to get that L′ ∈ SPACE(logk). We get SPACE(logk) = SPACE(logk+1) which is in
contradiction with the space hierarchy theorem. Hence L cannot exist.

2. PSPACE does have complete problems for logarithmic space reductions (such as
TQBF). However, if we try to apply the previous proof to establish that SPACE(nk) =
SPACE(nk+1), a problem arises: since |f(w)| is in O(|w|c), we have |f(w)|k in
O(|w|c·k) 6= O(|w|k) if c > 1.

Exercise 3 Padding argument

1. Show that if DSPACE(nc) ⊆ NP for some c > 0, then PSPACE ⊆ NP.

Hint: for L ∈ DSPACE(nk) one may consider the language L̃ = {(x, 1|x|k/c) | x ∈ L}.

2. Deduce that DSPACE(nc) 6= NP.

Solution:

1. Assume DSPACE(nc) ⊆ NP and consider any L ∈ PSPACE: we have to prove
L ∈ NP. For some k, we have L ∈ DSPACE(nk). Let M be a Turing Machine

deciding L in space nk. Now, consider the language L̃ = {(x, 1|x|k/c) | x ∈ L}
and consider the Turing machine M̃ that, on an input w, checks that it has the
form w = (x, 1`), verifies that ` = |x|k/c, and if so launches a simulation of M
on x. Note that computing |x|k/c only uses k/c nested loops going from 1 to |x|,
which can be done in logspace since k/c is a “constant” that depends on M , not x.

Then, M̃ accepts L̃ and the space used by M̃ is in |x|k = |1|x|k/c |c ≤ |w|c. Hence,

1From this, we can deduce that polyL 6= P.

2

L̃ ∈ DSPACE(nc) ⊆ NP. Thus L̃ ∈ NP. As we can reduce L to L̃ by transforming x

into (x, 1|x|
k/c

) in logspace, we do have that L ∈ NP.

2. Assume DSPACE(nc) = NP, then DSPACE(nc+1) ⊆ PSPACE = NP = DSPACE(nc)
which is in contradiction with the space hierarchy theorem.

3

