Complexité avancée - TD 3

Benjamin Bordais

October 07, 2020

Exercise 1 Space hierarchy theorem

Consider two space-constructible functions f and g such that f(n) = o(g(n)). Prove that
DSPACE(f) C DSPACE(g).

Hint: You may consider a language L = {(M,w") | the simulation of M on (M,w’) rejects }
with an appropriate restriction on the simulation of M.

Solution:
First, we have DSPACE(f) C DSPACE(g) since f(n) < g(n) for a high enough n. Let
us show that this inclusion is strict.
We define the following language:

L ={(M,w') | the simulation of M on (M,w’) rejects using space < g(|M,w'])}

e First, we show that L € SPACE(g). We describe the steps taken by a Turing
machine M’ on an input w = M,w’. M’ first computes g(Jw|) (which can be done
in space O(g(Jwl|)) since g is space constructible) and marks down an end of tape
marker at position g(Jw|) on the work tape: if more space is used, M’ rejects. Then,
M’ simulates M on w by rejecting if the number of steps taken is bigger than
1Qaz| - g(Jw])*rr - Ty a9 (where Qs is the set of states, I'y; is the alphabet
and kjps is the number of working tapes of the Turing machine M). Then, if w
is accepted by M, M’ rejects, otherwise M’ accepts. Then, this Turing Machine
M accepts the language L and runs in space O(g(Jw|)). We conclude by using the
speed-up theorem.

e Second, we show that L ¢ SPACE(f). Let us assume towards a contradiction that
there is a machine M’ recognizing L in space f. Simulating M’ on an input w takes
space in O(f(|w])) = ¢ x f(|w|) where the constant ¢ only depends on the Turing
Machine M (its number of states, size of alphabet, number of work tapes). For a
sufficiently long w’, we have ¢ x f(|M',w']) < g(|]M’,w']). Then, if (M',w') € L,
the simulation of M’ and therefore M’ rejects (M’ , w’). However, since M’ accepts
L, M’ also accepts (M',w’). Hence the contradiction. Let us now assume that
(M’ ,w'") ¢ L. Since the space used by the simulation of M’ is ¢ x f(|M',w'|) <
g(|M’,w']), we can conclude that M’ accepts (M’ w') by definition of L. But then,
since the language L is accepted by M’ we should have (M’,w’) € L. Hence the
contradiction. In fact, there is no such Turing Machine M’.

Exercise 2 Polylogarithmic space

1. Let polyL = UpenSPACE(log®). Show that polyL does not have a complete problem
for logarithmic space reduction.!

2. We recall that PSPACE = UcnSPACE(n*). Does PSPACE have a complete problem
for logarithmic space reduction ? Why doesn’t the proof of the previous question
apply to PSPACE?

Solution:

1. Assume towards a contradiction that there exists a polyL-complete problem L for
logspace reduction. Then, there exists k& € N such that L € SPACE(log®). Let us
show that SPACE(log®) = SPACE(log"™!), which is a contradiction with the space
hierarchy theorem. Let L' € SPACE(logk+1) C polyL. There exists a reduction f
of L' to L that can be computed in logarithmic space since L is polyL-complete.
Now, consider a Turing machine that, on an input w, computes f(w) in logarithmic
space and then simulates a Turing machine deciding L that runs in space log® on
f(w). Note that here, it is important not store f(w) on a working tape as this
could make the space used exceed the log* space bound. Instead, one must use a
virtual tape where we only compute bits of f(w) when they are needed without
remembering the whole computation. Then, note that |f(w)| = O(|w|®) for some
¢ > 0. Hence, the space used to check if f(w) is in L is lower than log®(|f(w)]|)
hence is in ¢¥-log*(O(Jw|)) = O(log®(|w|)). We conclude with the speed-up theorem
to get that L' € SPACE(log"). We get SPACE(log®) = SPACE(log"*!) which is in
contradiction with the space hierarchy theorem. Hence L cannot exist.

2. PSPACE does have complete problems for logarithmic space reductions (such as
TQBF). However, if we try to apply the previous proof to establish that SPACE(n¥) =
SPACE(n**1), a problem arises: since |f(w)| is in O(|w|), we have |f(w)|* in
O(|w|¢*) # O(Jw|*) if ¢ > 1.

Exercise 3 Padding argument

1. Show that if DSPACE(n¢) C NP for some ¢ > 0, then PSPACE C NP.
Hint: for L € DSPACE(n*) one may consider the language L = {(z, 1|x|k/c) | z € L}.
2. Deduce that DSPACE(n¢) # NP.

Solution:

1. Assume DSPACE(n¢) € NP and consider any L € PSPACE: we have to prove
L € NP. For some k, we have L € DSPACE(n*). Let M be a Turing Machine
deciding L in space n*. Now, consider the language L = {(:):,1‘5’3|k/c) | z € L}
and consider the Turing machine M that, on an input w, checks that it has the
form w = (z,1%), verifies that ¢ = |z|*/°, and if so launches a simulation of M
on z. Note that computing |z|*/¢ only uses k/c nested loops going from 1 to |z|,
which can be done in logspace since k/c is a “constant” that depends on M, not z.
Then, M accepts L and the space used by M is in |z|* = |1|$WC]C < |w|®. Hence,

'From this, we can deduce that polyL # P.

L € DSPACE(n®) € NP. Thus L € NP. As we can reduce L to L by transforming
into (z, 1|x|k/c) in logspace, we do have that L € NP.

2. Assume DSPACE(n¢) = NP, then DSPACE(n°*t!) C PSPACE = NP = DSPACE(n¢)
which is in contradiction with the space hierarchy theorem.

