Exercise 1 Space hierarchy theorem

Consider two space-constructible functions f and g such that $f(n) = o(g(n))$. Prove that $\text{DSPACE}(f) \subseteq \text{DSPACE}(g)$.

Hint: You may consider a language $L = \{(M, w') \mid \text{the simulation of } M \text{ on } (M, w') \text{ rejects}\}$ with an appropriate restriction on the simulation of M.

Solution:
First, we have $\text{DSPACE}(f) \subseteq \text{DSPACE}(g)$ since $f(n) \leq g(n)$ for a high enough n. Let us show that this inclusion is strict.

We define the following language:

$L = \{(M, w') \mid \text{the simulation of } M \text{ on } (M, w') \text{ rejects using space } \leq g(|M, w'|)\}$

- First, we show that $L \in \text{SPACE}(g)$. We describe the steps taken by a Turing machine M' on an input $w = M, w'$. M' first computes $g(|w|)$ (which can be done in space $O(g(|w|))$ since g is space constructible) and marks down an end of tape marker at position $g(|w|)$ on the work tape: if more space is used, M' rejects. Then, M' simulates M on w by rejecting if the number of steps taken is bigger than $|Q_M| \cdot g(|w|)^{k_M} \cdot |\Gamma_M|^{|\Gamma_M| g(|w|)}$ (where Q_M is the set of states, Γ_M is the alphabet and k_M is the number of working tapes of the Turing machine M). Then, if w is accepted by M, M' rejects, otherwise M' accepts. Then, this Turing Machine M accepts the language L and runs in space $O(g(|w|))$. We conclude by using the speed-up theorem.

- Second, we show that $L \notin \text{SPACE}(f)$. Let us assume towards a contradiction that there is a machine M' recognizing L in space f. Simulating M' on an input w takes space in $O(f(|w|)) = c \times f(|w|)$ where the constant c only depends on the Turing Machine M (its number of states, size of alphabet, number of work tapes). For a sufficiently long w', we have $c \times f(|M', w'|) \leq g(|M', w'|)$. Then, if $(M', w') \in L$, the simulation of M', and therefore M' rejects (M', w'). However, since M' accepts L, M' also accepts (M', w'). Hence the contradiction. Let us now assume that $(M', w') \notin L$. Since the space used by the simulation of M' is $c \times f(|M', w'|) \leq g(|M', w'|)$, we can conclude that M' accepts (M', w') by definition of L. But then, since the language L is accepted by M', we should have $(M', w') \in L$. Hence the contradiction. In fact, there is no such Turing Machine M'.

Exercise 2 Polylogarithmic space
1. Let \(\text{polyL} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(\log^k) \). Show that \(\text{polyL} \) does not have a complete problem for logarithmic space reduction.\(^1\)

2. We recall that \(\text{PSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k) \). Does \(\text{PSPACE} \) have a complete problem for logarithmic space reduction? Why doesn’t the proof of the previous question apply to \(\text{PSPACE} \)?

Solution:

1. Assume towards a contradiction that there exists a \(\text{polyL} \)-complete problem \(L \) for logspace reduction. Then, there exists \(k \in \mathbb{N} \) such that \(L \in \text{SPACE}(\log^k) \). Let us show that \(\text{SPACE}(\log^k) = \text{SPACE}(\log^{k+1}) \), which is a contradiction with the space hierarchy theorem. Let \(L' \in \text{SPACE}(\log^{k+1}) \subseteq \text{polyL} \). There exists a reduction \(f \) of \(L' \) to \(L \) that can be computed in logarithmic space since \(L \) is \(\text{polyL} \)-complete. Now, consider a Turing machine that, on an input \(w \), computes \(f(w) \) in logarithmic space and then simulates a Turing machine deciding \(L \) that runs in space \(\log^k \) on \(f(w) \). Note that here, it is important not store \(f(w) \) on a working tape as this could make the space used exceed the \(\log^k \) space bound. Instead, one must use a virtual tape where we only compute bits of \(f(w) \) when they are needed without remembering the whole computation. Then, note that \(|f(w)| = O(|w|^c) \) for some \(c \geq 0 \). Hence, the space used to check if \(f(w) \) is in \(L \) is lower than \(\log^k(|f(w)|) \) hence is in \(c^k \cdot \log^k(O(|w|)) = O(\log^k(|w|)) \). We conclude with the speed-up theorem to get that \(L' \in \text{SPACE}(\log^k) \). We get \(\text{SPACE}(\log^k) = \text{SPACE}(\log^{k+1}) \) which is in contradiction with the space hierarchy theorem. Hence \(L \) cannot exist.

2. \(\text{PSPACE} \) does have complete problems for logarithmic space reductions (such as \(\text{TQBF} \)). However, if we try to apply the previous proof to establish that \(\text{SPACE}(n^k) = \text{SPACE}(n^{k+1}) \), a problem arises: since \(|f(w)| \) is in \(O(|w|^c) \), we have \(|f(w)|^k \) in \(O(|w|^{c+k}) \neq O(|w|^k) \) if \(c > 1 \).

Exercise 3 Padding argument

1. Show that if \(\text{DSPACE}(n^c) \subseteq \text{NP} \) for some \(c > 0 \), then \(\text{PSPACE} \subseteq \text{NP} \).

 Hint: for \(L \in \text{DSPACE}(n^k) \) one may consider the language \(\tilde{L} = \{(x, 1|x|^{k/c}) \mid x \in L \} \).

2. Deduce that \(\text{DSPACE}(n^c) \neq \text{NP} \).

Solution:

1. Assume \(\text{DSPACE}(n^c) \subseteq \text{NP} \) and consider any \(L \in \text{PSPACE} \): we have to prove \(L \in \text{NP} \). For some \(k \), we have \(L \in \text{DSPACE}(n^k) \). Let \(M \) be a Turing Machine deciding \(L \) in space \(n^k \). Now, consider the language \(\tilde{L} = \{(x, 1|x|^k) \mid x \in L \} \) and consider the Turing machine \(\tilde{M} \) that, on an input \(w \), checks that it has the form \(w = (x, 1^\ell) \), verifies that \(\ell = |x|^k \), and if so launches a simulation of \(M \) on \(x \). Note that computing \(|x|^k \) only uses \(k/c \) nested loops going from 1 to \(|x| \), which can be done in logspace since \(k/c \) is a “constant” that depends on \(M \), not \(x \). Then, \(\tilde{M} \) accepts \(\tilde{L} \) and the space used by \(\tilde{M} \) is in \(|x|^k = |1|x|^k| \leq |w|^c \). Hence, \(\tilde{M} \) accepts \(\tilde{L} \) and the space used by \(\tilde{M} \) is in \(|x|^k = |1|x|^k| \leq |w|^c \). Hence,

\(^1\)From this, we can deduce that \(\text{polyL} \neq \text{P} \).
\(\tilde{L} \in \text{DSPACe}(n^c) \subseteq \text{NP}. \) Thus \(\tilde{L} \in \text{NP} \). As we can reduce \(L \) to \(\tilde{L} \) by transforming \(x \) into \((x, 1^{\lceil \varepsilon k / c \rceil})\) in logspace, we do have that \(L \in \text{NP} \).

2. Assume \(\text{DSPACe}(n^c) = \text{NP} \), then \(\text{DSPACe}(n^{c+1}) \subseteq \text{PSPACE} = \text{NP} = \text{DSPACe}(n^c) \) which is in contradiction with the space hierarchy theorem.