
Complexité avancée - Homework 5

Benjamin Bordais

October 21, 2020
Due at 11.59 p.m., November 2, 2020

Some P-complete Problems

1. Show that the following problems are P-hard.

• Recall that for a finite set X, a subset S ⊆ X, and a binary operator ∗ :
X × X → X defined on X, we inductively define S0,∗ = S and Si+1,∗ =
Si,∗ ∪ {x ∗ y | x, y ∈ Si,∗}. Then, the closure of S with regard to ∗ is the set
S∗ = ∪i∈NSi,∗.
BinOpGen:

– INPUT: A finite set X, a binary operator ∗ : X ×X → X defined on X,
a subset S ⊂ X and x ∈ X;

– OUTPUT: x ∈ S∗?
Hint: reduce from MonotoneCircuitValue with all nodes having at most two
predecessors.

• Recall that a context-free grammar is a grammar G = (V, T, I,P) where V is
the set of non-terminal symbols, T is the alphabet of terminal symbols, I ⊆ V
is the axiom (i.e. set of initial variables) and P ⊆ V × (V ∪T)∗ is the finite set
of production rules (the “context-free” part can be seen in the fact that the
left-hand member of a rule in P has length one). The language L(G) of G is
the set of words w ∈ T ∗ that can be derived from I by applying the production
rules.

CFG-Derivability:

– INPUT: G a context-free grammar on an alphabet T , and w ∈ T ∗ a word;

– OUTPUT: w ∈ L(G) ?

Hint: reduce from the previous problem.

2. In fact these problems are P-complete. Show that BinOpGen is in P. Do you know
a polynomial-time algorithm for CFG-Derivability ?

Solution:

1. • This question was in fact given in the exam of the year 2019-2020, and solutions
for Questions 8 and 9 can be found on the web page of the course.

• Consider an instance (X,S, x, ∗) of BinOpGen. We define a grammar G =
(V, T, I,P) and a word w ∈ T ∗ in the following way: the set of variables is

1

http://www.lsv.fr/~phs/partiel_complexite_avance_oct2019.pdf
http://www.lsv.fr/~phs/partiel_complexite_avance_oct2019.pdf

V = X, there is only one terminal symbol T = {a}, the initial variable is
I = {x}, the set of production rules is : P = P∗ ∪ PS with:

P∗ = {x→ yz | x, y, z ∈ V, y ∗ z = x} and PS = {x→ ε | x ∈ S}

and w = ε is the empty string.

Then, we can prove that:

x ∈ S∗ ⇔ ε can be derived from x in G

First note that since this grammar is context-free and by definition of the
production rules, any word that can be derived from x may be derived by first
applying only rules in P∗ and then rules in PS .

⇐: First, we can prove by induction on the number of rules used that if a word
v = v1 . . . vk is derived from x by only using production rules from P∗, then
x ∈ {vi | 1 ≤ i ≤ k}∗. Second, if ε can be derived from x, then by considering
the word v = v1 . . . vk ∈ T ∗ that can be derived from x by only applying rules
in P∗ such that ε can be derived from v by only applying rules in PS , we obtain
that {vi | 1 ≤ i ≤ k} ⊆ S and x ∈ {vi | 1 ≤ i ≤ k}∗. That is, x ∈ S∗.
⇒: First we prove that if a word v = v1 . . . vk ∈ T ∗ is such that there exists
j ≥ 1 such that for all 1 ≤ i ≤ k we have vi ∈ Sj,∗, then there exists a
word v′ = v′1 . . . v

′
k′ ∈ T ∗ for some k′ ≥ k that can be derived from v by only

applying rules in P∗ such that for all 1 ≤ i ≤ k′ we have v′i ∈ Sj−1,∗. Second,
if we assume that x ∈ S∗, then there exists j ≥ 1 such that x ∈ Sj,∗. It follows
that there exists a word u = u1 . . . un ∈ T ∗ that can be derived from x such
that for all 1 ≤ i ≤ n, we have ui ∈ S0,∗ = S. Then, ε can be derived from u
by applying a rule in PS for each of its letter. Hence, ε can be derived from x.

Overall, we have:

(X,S, x, ∗) ∈ BinOpGen⇔ (V, T, I,P) ∈ CFG-Derivability

As the reduction we described can be done in logspace, it follows that CFG-
Derivability is P-hard.

2. CFG-Derivability can be solved in polynomial time using dynamic programming tech-
niques, see for example the CYK algorithm on Wikipedia.

2

https://en.wikipedia.org/wiki/CYK_algorithm

