Complexité avancée - Homework 4

Benjamin Bordais

October 14, 2020 Due at 8.30 a.m., October 21, 2020

Closure under morphims Given a finite alphabet Σ , a function $f : \Sigma^* \to \Sigma^*$ is a morphism if $f(\Sigma) \subseteq \Sigma$ and for all $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f is uniquely determined by the value it takes on Σ).

Show that P = NP if and only if P is closed under morphism.

Solution:

- Assume that P = NP. Consider f a morphism and $L \in P = NP$. Let us show that $f(L) \in NP = P$. We consider a non-deterministic Turing machine M that, on an input $w \in \Sigma^*$, guesses a word $a \in \Sigma^*$ such that |a| = |w| and then checks that f(a) = w and that $a \in L$ in polynomial time. It follows that $f(L) \in NP = P$ and P is closed under morphisms.
- Now, assume that P is closed under morphism. We show that $SAT \in P$, which proves that $NP \subseteq P$ since SAT is NP-complete for logspace reductions and P is closed under logarithmic space reductions. Consider the following language:

 $L = \{(\phi, v) \mid v \text{ is a valuation satisfying } \phi\}$

We have that $L \in \mathsf{P}$ as one can check in polynomial time that a valuation satisfies a boolean formula. Furthermore, we can assume that the alphabet Σ is equal to the disjoint union $\Sigma_{\phi} \uplus \Sigma_{v}$ and the symbols used to encode ϕ (resp. v) are in Σ_{ϕ} (resp. Σ_{v}). Then, if we consider the morphism f that ensures f(a) = a for all $a \in \Sigma_{\phi}$ and f(a) = 0 for all $a \in \Sigma_{v}$. Then,

 $f(L) = \{(\phi, 0^n) \mid \phi \text{ has n variables and is satisfiable}\}$

By closure under morphism, it follows that $f(L) \in \mathsf{P}$. Since, an instance of SAT can be reduced in polynomial time (in fact, in logarithmic space) to an instance of f(L), it follows that SAT $\in \mathsf{P}$. Hence, $\mathsf{P} = \mathsf{NP}$.