
Complexité avancée - TD 5

Guillaume Scerri

October 21, 2022

Exercise 1 (Number Expressions). A Number Expression (or NE) e is an expression
made up of natural numbers, and symbols ’+’ and ’∪’ according to the following inductive
definition:

e ::= n | (e1 ∪ e2) | (e2 + e2)

where n ∈ N is any number. We often omit some of the parentheses when writing NEs.
We define |e|, the size of e, as the number of occurrences of the symbols ’0’, ’1’, +’ and
’∪’ in e, assuming that numbers are written in binary. (NB: the real size on a TM tape
includes the parentheses, hence is O(|e|).)

An NE is interpreted as a subset V (e) of N, defined by

V (n) = {n} , V (e1 ∪ e2) = V (e1) ∪ V (e2) ,

V (e1 + e2) = {n1 + n2 |n1 ∈ V (e1), n2 ∈ V (e2)} .

1. Let 0 < n ∈ N be a positive number and consider en = (1 ∪ 2) + (2 ∪ 4) + · · · +
(2n−1 ∪ 2n). What is V (en) and |en|?

2. Let ISOLATED = {(e, n) | n ∈ V (e) ∧ n − 1, n + 1 ̸∈ V (e)}. In other words, we
consider the problem of checking whether a given number appears as an isolated
value in some set of numbers denoted by a NE.

Show that ISOLATED ∈ DP.

Exercise 2 (Σp
2 and Πp

2 membership). 1. Let ONE− VAL be the problem of decid-
ing whether a boolean formula is satisfied by exactly one valuation. Show that
ONE− VAL ∈ Σp

2;

2. A boolean formula is minimal if it has no equivalent shorter formula – where the
length of the formula is the number of symbols it contains. Let MIN− FORMULA
be the problem of deciding whether a boolean formula is minimal. Show that
MIN− FORMULA ∈ Πp

2.

Exercise 3 (Σp
2 and Πp

2 completeness). 1. The classical Σp
2-complete problem is Σp

2-
SAT (note that it can be assumed that the Boolean formula is in DNF). Consider
now a different version of SAT denoted ∃∃!− SAT:

• Input: a CNF-formula φ(x, y) depending on the variables in x and y;

• Outout: yes iff there exists x such that there exists a unique y satisfying φ(x, ·).

Show that ∃∃!− SAT is also Σp
2-complete.

1

2. Similarly, the classical Πp
2-complete problem is Πp

2-SAT (the Boolean formula can
be assumed in 3-CNF). Consider now a new notion of satisfiability: we say that a
valuation ν nae-satisfies (for not all equal) a 3-CNF formula ϕ, if in all clauses (with
at least two literals) of ϕ, ν both sets a literal to true and a literal to false. The
clauses with only one literal only need to be satisfied. We consider now this new
version of SAT denoted nae-Πp

2 − SAT:

• Input: a Πp
2-SAT formula ∀x,∃y, φ(x, y) with φ a 3-CNF;

• Outout: yes iff for all x, there exists y nae-satisfying φ.

Show that nae-Πp
2 − SAT is Πp

2 complete.

Exercise 4 (Collapse of PH). 1. Prove that if ΣP
k = ΣP

k+1 for some k ≥ 0 then PH =

ΣP
k . (Remark that this is implied by P = NP).

2. Show that if ΣP
k = ΠP

k for some k then PH = ΣP
k .

3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula
into a QBF formula with at most 10 variables ?

Exercise 5 (Oracles). Consider a language A. A Turing machine with oracle A is a
Turing machine with a special additional read/write tape, called the oracle tape, and
three special states: qquery, qyes, qno. Whenever the machine enters the state qquery, with
some word w written on the oracle tape, it moves in one step to the state qyes or qno
depending on whether w ∈ A.

We denote by PA (resp. NPA) the class of languages decided in by a deterministic
(resp. non-deterministic) Turing machine running in polynomial time with oracle A.
Given a complexity class C, we define PC =

⋃
A∈C P

A (and similarly for NP).

1. Prove that for any C-complete language A (for logspace reductions), PC = PA and
NPC = NPA.

2. Show that for any language A, PA = PĀ and NPA = NPĀ.

3. Prove that if NP = PSAT then NP = coNP.

4. Show that there exists a language A such that PA = NPA.

5. We define inductively the classes NP0 = P and NPk+1 = NPNPk . Show that NPk =
Σp
k for all k ≥ 0.

Exercise 6 (Family of Circuits).

Definition. A boolean circuit with n inputs is an acylic graph where the n inputs
x1, . . . , xn are part of the vertices. The internal vertices are labeled with ∧, ∨ (with
2 incoming edges) or ¬ (with 1 incoming edge), with an additional distinguished vertex
o that is the output (with no exiting edge). The size |C| of a circuit C is its number of
vertices (excluding the input ones). For a word x ∈ {0, 1}∗, the notation C(x) refers to
the output of the circuit C if the input vertices of C are valued with the bits of x.

Definition. For a function t : N → N, a family of circuit of size t(n) is a sequence
(Cn)n∈N such that: Cn is an n-input circuit and |Cn| ≤ t(n).

2

Definition. A language L ⊆ {0, 1}∗ is decided by a family of circuit (Cn)n∈N if for all
n ∈ N, for all w ∈ {0, 1}n, we have: Cn(w) = 1 ⇔ w ∈ L.

Definition. For a function t : N → N, we define SIZE(t) := {L ⊆ {0, 1}∗ | L is decided by
a family of circuits of size O(t(n))}.

Definition.
P/poly := ∪k∈NSIZE(n

k)

1. Show that any language L ⊆ {0, 1}∗ is in size SIZE(n · 2n).

2. Show that for all function t(n) = 2o(n), there exists L ̸∈ SIZE(t(n)).

3. Show that every unary language is in P/poly.

4. Exhibit a undecidable language that is in P/poly.

5. Show that P/poly is not countable.

3

