Complexité avancée - TD 3

Guillaume Scerri
October 07, 2022

We recall the space-hierarchy theorem.

Theorem 1 (Space-hierarchy theorem). For two space-constructible functions f and g such that $f = o(g)$, we have $\text{DSPACE}(f) \subsetneq \text{DSPACE}(g)$.

Exercise 1 (Poly-logarithmic space).

1. Let $\text{polyL} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(\log k)$. Show that polyL does not have a complete problem for logarithmic space reduction.\(^1\)

2. Recall that $\text{PSPACE} = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k)$. Does PSPACE have a complete problem for logarithmic space reduction? Why doesn’t the proof of the previous question apply to PSPACE?

Exercise 2 (Padding argument).

1. Show that if $\text{DSPACE}(n^c) \subseteq \text{NP}$ for some $c > 0$, then $\text{PSPACE} \subseteq \text{NP}$.

 Hint: for $L \in \text{DSPACE}(n^k)$ one may consider the language $\tilde{L} = \{(x, w_x) \mid x \in L\}$, where w_x is a word written in unary.

2. Deduce that $\text{DSPACE}(n^c) \neq \text{NP}$.

Exercise 3 (On the existence of One-way function). A one-way function is a bijection f from k-bit integers to k-bit integers such that f is computable in polynomial time, but f^{-1} is not. Prove that for all one-way functions f, we have

$$A := \{(x, y) \mid f^{-1}(x) < y\} \in (\text{NP} \cap \text{coNP}) \setminus \text{P}$$

Exercise 4 (Regular languages). Let REG denote the set regular/rational languages.

1. Show that for all $L \in \text{REG}$, L is recognized by a TM running in space 0 and time $n + 1$.\(^2\)

2. Exhibit a language recognized by a TM running in space $\log n$ and time $O(n)$ that is not in REG.

Exercise 5 (Yet another NL-complete problem). For a finite set X, a subset $S \subseteq X$, and a binary operator $* : X \times X \to X$ defined on X, we inductively define $S_{0,*} := S$ and $S_{i+1,*} := S_{i,*} \cup \{x * y \mid x, y \in S_{i,*}\}$. The closure of S with regard to $*$ is the set $S_* = \bigcup_{i \in \mathbb{N}} S_{i,*}$. Show that the following problem is NL-complete.

- **Input**: A finite set X, a binary operation $* : X \times X \to X$ that is associative (i.e. $(x * y) * z = x * (y * z)$ for all $x, y, z \in X$), a subset $S \subseteq X$ and a target $t \in X$.

\(^1\)Note that, from this, we can deduce that $\text{polyL} \neq \text{P}$.

\(^2\)In fact, regular languages exactly correspond to languages that can be recognized in such a way.
• Output: Yes if and only if \(t \in S_\times. \)

Exercise 6 (Solving reachability games). A two player (turn-based) game is a directed graph \(G = (V, E) \) where the set of vertices \(V = V_A \cup V_B \) is partitioned into vertices belonging to Player A (i.e. \(V_A \)) and vertices belonging to Player B (i.e. \(V_B \)) with a distinguished vertex \(v_0 \in V \) that is the starting vertex. The graph is non-blocking in the sense that every vertex has a successor, i.e. \(\text{Succ}(v) = \{v' \in V \mid (v, v') \in E\} \neq \emptyset \) for all \(v \in V \). A play then corresponds to a finite or infinite path \(\rho = v_0 \cdot v_1 \cdots \in V^* \cup V^\omega \) with \(v_0 \) is the starting vertex. If the play is at a vertex \(v_i \in V_A \) then it is Player A’s turn to choose the next vertex \(v_{i+1} \in \text{Succ}(v_i) \), while it is Player B’s turn if \(v_i \in V_B \). A winning condition determines when a play is winning for Player A (we consider win/loose games, hence if Player A does not win, Player B does). A Player \(C \in \{A, B\} \) has a winning strategy (or wins) from a vertex \(v \in V \) if she can choose the next move in all vertices in \(V_C \) such that she wins in any play that starts in \(v \).

1. Assume that the winning condition is a reachability objective: given a target set of states \(T \subseteq V \), Player A wins if and only if a state in \(T \) is seen at some point. Show that deciding the winner of a reachability game from the vertex \(v_0 \in V \) can be done in polynomial time.

 Hint: construct inductively the set of vertices from which Player A can ensure to get closer to the target \(T \) (that is called the attractor of the set \(T \)).

2. Consider some \(k \in \mathbb{N} \). A \(k \)-generalized reachability condition is the following: given \(k \) target sets of states \(T_1, \ldots, T_k \subseteq V \), Player A wins if and only if, for all \(1 \leq i \leq k \), a state in \(T_i \) is seen at some point. Show that deciding the winner of a \(k \)-generalized reachability game from the vertex \(v_0 \in V \) can be done in polynomial time.