Complexité avancée - TD 3

Guillaume Scerri

October 07, 2022

We recall the space-hierarchy theorem.

Theorem 1 (Space-hierarchy theorem). For two space-constructible functions f and g such that f = o(g), we have $\mathsf{DSPACE}(f) \subsetneq \mathsf{DSPACE}(g)$.

- **Exercise 1** (Poly-logarithmic space). 1. Let $polyL = \bigcup_{k \in \mathbb{N}} SPACE(\log^k)$. Show that polyL does not have a complete problem for logarithmic space reduction.¹
 - 2. Recall that $PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^k)$. Does PSPACE have a complete problem for logarithmic space reduction ? Why doesn't the proof of the previous question apply to PSPACE?
- **Exercise 2** (Padding argument). 1. Show that if $DSPACE(n^c) \subseteq NP$ for some c > 0, then $PSPACE \subseteq NP$.

Hint: for $L \in \mathsf{DSPACE}(n^k)$ one may consider the language $\tilde{L} = \{(x, w_x) \mid x \in L\}$. where w_x is a word written in unary.

2. Deduce that $\mathsf{DSPACE}(n^c) \neq \mathsf{NP}$.

Exercise 3 (On the existence of One-way function). A one-way function is a bijection f from k-bit integers to k-bit integers such that f is computable in polynomial time, but f^{-1} is not. Prove that for all one-way functions f, we have

$$A := \{(x, y) \mid f^{-1}(x) < y\} \in (\mathsf{NP} \cap \mathsf{coNP}) \setminus \mathsf{P}$$

Exercise 4 (Regular languages). Let REG denote the set regular/rational languages.

- 1. Show that for all $L \in \mathsf{REG}$, L is recognized by a TM running in space 0 and time $n+1.^2$
- 2. Exhibit a language recognized by a TM running in space $\log n$ and time O(n) that is not in REG.

Exercise 5 (Yet another NL-complete problem). For a finite set X, a subset $S \subseteq X$, and a binary operator $* : X \times X \to X$ defined on X, we inductively define $S_{0,*} := S$ and $S_{i+1,*} := S_{i,*} \cup \{x * y \mid x, y \in S_{i,*}\}$. The closure of S with regard to * is the set $S_* = \bigcup_{i \in \mathbb{N}} S_{i,*}$.

Show that the following problem is NL-complete.

Input: A finite set X, a binary operation * : X × X → X that is associative (i.e. (x * y) * z = x * (y * z) for all x, y, z ∈ X), a subset S ⊆ X and a target t ∈ X.

¹Note that, from this, we can deduce that $polyL \neq P$.

 $^{^{2}}$ In fact, regular languages exactly correspond to languages that can be recognized in such a way.

• Output: Yes if and only $t \in S_*$.

Exercise 6 (Solving reachability games). A two player (turn-based) game is a directed graph G = (V, E) where the set of vertices $V = V_A \uplus V_B$ is partitioned into vertices belonging to Player A (i.e. V_A) and vertices belonging to Player B (i.e. V_B) with a distinguished vertex $v_0 \in V$ that is the starting vertex. The graph is non-blocking in the sense that every vertex has a successor, i.e. $Succ(v) = \{v' \in V \mid (v, v') \in E\} \neq \emptyset$ for all $v \in V$. A play then corresponds to a finite or infinite path $\rho = v_0 \cdot v_1 \cdots \in V^* \cup V^{\omega}$ with v_0 is the starting vertex. If the play is at a vertex $v_i \in V_A$ then it is Player A's turn to choose the next vertex $v_{i+1} \in Succ(v_i)$, while it is Player B's turn if $v_i \in V_B$. A winning condition determines when a play is winning for Player A (we consider win/loose games, hence if Player A does not win, Player B does). A Player $C \in \{A, B\}$ has a winning strategy (or wins) from a vertex $v \in V$ if she can choose the next move in all vertices in V_C such that she wins in any play that starts in v.

1. Assume that the winning condition is a reachability objective: given a target set of states $T \subseteq V$, Player A wins if and only if a state in T is seen at some point. Show that deciding the winner of a reachability game from the vertex $v_0 \in V$ can be done in polynomial time.

Hint: construct inductively the set of vertices from which Player A can ensure to get closer to the target T (that is called the attractor of the set T).

2. Consider some $k \in \mathbb{N}$. A k-generalized reachability condition is the following: given k target sets of states $T_1, \ldots, T_k \subseteq V$, Player A wins if and only if, for all $1 \le i \le k$, a state in T_i is seen at some point. Show that deciding the winner of a k-generalized reachability game from the vertex $v_0 \in V$ can be done in polynomial time.