
Complexité avancée - TD 3

Guillaume Scerri

October 07, 2022

We recall the space-hierarchy theorem.

Theorem 1 (Space-hierarchy theorem). For two space-constructible functions f and g
such that f = o(g), we have DSPACE(f) ⊊ DSPACE(g).

Exercise 1 (Poly-logarithmic space). 1. Let polyL = ∪k∈NSPACE(logk). Show that
polyL does not have a complete problem for logarithmic space reduction.1

2. Recall that PSPACE = ∪k∈NSPACE(nk). Does PSPACE have a complete problem for
logarithmic space reduction ? Why doesn’t the proof of the previous question apply
to PSPACE?

Exercise 2 (Padding argument). 1. Show that if DSPACE(nc) ⊆ NP for some c > 0,
then PSPACE ⊆ NP.

Hint: for  L ∈ DSPACE(nk) one may consider the language L̃ = {(x,wx) | x ∈ L}.
where wx is a word written in unary.

2. Deduce that DSPACE(nc) ̸= NP.

Exercise 3 (On the existence of One-way function). A one-way function is a bijection
f from k-bit integers to k-bit integers such that f is computable in polynomial time, but
f−1 is not. Prove that for all one-way functions f , we have

A := {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P

Exercise 4 (Regular languages). Let REG denote the set regular/rational languages.

1. Show that for all L ∈ REG, L is recognized by a TM running in space 0 and time
n + 1.2

2. Exhibit a language recognized by a TM running in space log n and time O(n) that
is not in REG.

Exercise 5 (Yet another NL-complete problem). For a finite set X, a subset S ⊆ X,
and a binary operator ∗ : X × X → X defined on X, we inductively define S0,∗ := S
and Si+1,∗ := Si,∗ ∪ {x ∗ y | x, y ∈ Si,∗}. The closure of S with regard to ∗ is the set
S∗ = ∪i∈NSi,∗.

Show that the following problem is NL-complete.

• Input: A finite set X, a binary operation ∗ : X × X → X that is associative (i.e.
(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X), a subset S ⊆ X and a target t ∈ X.

1Note that, from this, we can deduce that polyL ̸= P.
2In fact, regular languages exactly correspond to languages that can be recognized in such a way.

1



• Output: Yes if and only t ∈ S∗.

Exercise 6 (Solving reachability games). A two player (turn-based) game is a directed
graph G = (V,E) where the set of vertices V = VA ⊎ VB is partitioned into vertices
belonging to Player A (i.e. VA) and vertices belonging to Player B (i.e. VB) with a
distinguished vertex v0 ∈ V that is the starting vertex. The graph is non-blocking in the
sense that every vertex has a successor, i.e. Succ(v) = {v′ ∈ V | (v, v′) ∈ E} ̸= ∅ for all
v ∈ V . A play then corresponds to a finite or infinite path ρ = v0 · v1 · · · ∈ V ∗ ∪ V ω with
v0 is the starting vertex. If the play is at a vertex vi ∈ VA then it is Player A’s turn to
choose the next vertex vi+1 ∈ Succ(vi), while it is Player B’s turn if vi ∈ VB. A winning
condition determines when a play is winning for Player A (we consider win/loose games,
hence if Player A does not win, Player B does). A Player C ∈ {A,B} has a winning
strategy (or wins) from a vertex v ∈ V if she can choose the next move in all vertices in
VC such that she wins in any play that starts in v.

1. Assume that the winning condition is a reachability objective: given a target set of
states T ⊆ V , Player A wins if and only if a state in T is seen at some point. Show
that deciding the winner of a reachability game from the vertex v0 ∈ V can be done
in polynomial time.

Hint: construct inductively the set of vertices from which Player A can ensure to
get closer to the target T (that is called the attractor of the set T ).

2. Consider some k ∈ N. A k-generalized reachability condition is the following: given
k target sets of states T1, . . . , Tk ⊆ V , Player A wins if and only if, for all 1 ≤ i ≤ k,
a state in Ti is seen at some point. Show that deciding the winner of a k-generalized
reachability game from the vertex v0 ∈ V can be done in polynomial time.

2


